首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 20-d experiment was conducted to test the hypothesis that phytase increases nutrient digestibility, bone ash, and growth performance of pigs fed diets containing 0.23%, 0.29%, or 0.35% phytate-bound P. Within each level of phytate, five diets were formulated to contain 0, 500, 1,000, 2,000, or 4,000 phytase units (FTU)/kg of a novel phytase (PhyG). Three reference diets were formulated by adding a commercial Buttiauxella phytase (PhyB) at 1,000 FTU/kg to diets containing 0.23%, 0.29%, or 0.35% phytate-bound P. A randomized complete block design with 144 individually housed pigs (12.70 ± 4.01 kg), 18 diets, and 8 replicate pigs per diet was used. Pigs were adapted to diets for 15 d followed by 4 d of fecal collection. Femurs were collected on the last day of the experiment. Results indicated that diets containing 0.35% phytate-bound P had reduced (P < 0.01) digestibility of Ca, P, Mg, and K compared with diets containing less phytate-bound P. Due to increased concentration of total P in diets with high phytate, apparent total tract digestible P and bone ash were increased by PhyG to a greater extent in diets with 0.29% or 0.35% phytate-bound P than in diets with 0.23% phytate-bound P (interaction, P < 0.05). At 1,000 FTU/kg, PhyG increased P digestibility and bone P more (P < 0.05) than PhyB. The PhyG increased (P < 0.01) pig growth performance, and pigs fed diets containing 0.35% or 0.29% phytate-bound P performed better (P < 0.01) than pigs fed the 0.23% phytate-bound P diets. In conclusion, the novel phytase (i.e., PhyG) is effective in increasing bone ash, mineral digestibility, and growth performance of pigs regardless of dietary phytate level.  相似文献   

2.
The effect of body weight on P digestibility and on efficacy of supplemental Aspergillus niger phytase was studied in two experiments with young growing pigs. Excreta were collected quantitatively. All diets contained 2.0 g digestible P per kg dry matter at a maximum and renal P excretion never exceeded 15 mg/d. When dietary P mainly originated from monocalcium-phosphate, both P digestibility and Ca net absorption linearly increased by 3.6 and 5.6 percentage units, respectively, when BW increased from 15 to 35 kg. With a similar range in BW, P digestibility and Ca net absorption were unaffected by BW when P mainly originated from maize, barley and soybean meal. In both types of diet, crude protein digestibility increased with increasing body weight, whereas organic matter digestibility was effected by BW only in the diet containing maize, barley and soybean meal. Phytase (400 U/kg) almost doubled P digestibility when supplemented to a diet with P mainly originating from maize, soybean meal and barley. This effect of phytase supplementation was equal in pigs at 15.7 kg BW (33 vs. 55%) and at 39.1 kg BW (32 vs. 56%). Digestibility of any organic fraction was unaffected by supplemental phytase. With regard to on-farm conditions, it appears eligible from this results to apply digestibility coefficients for P determined in growing-finishing pigs for piglets as well.  相似文献   

3.
The effect of phytase and xylanase supplementation of a wheat-based pig diet on the ileal and total tract apparent digestibility of dietary components and minerals were studied in eight growing pigs fitted with a PVTC cannula in a randomized block design experiment. The diets (A and B) were similar in major ingredient composition and in nutrient content. In diet A, part of the limestone was replaced with di-calcium phosphate to increase the content of available phosphorus (P). Diet B was fed without or with supplementation with phytase (500 FTU/kg; diet BP), xylanase (4000 XU/kg; diet BX) and phytase + xylanase (500 FTU and 4000 XU/kg; diet BPX). There were no differences (P > 0.05) between diets in the ileal or total tract digestibility of organic matter (OM), NDF and crude protein (CP). The ileal and total tract digestibility for P and Ca differed (P < 0.05) between diets, while there were no treatment effects for Zn. The ileal and total tract digestibility for P and Ca was higher (P < 0.05) on diets BP and BPX than on the other diets. In conclusion, phytase improved the utilization of dietary P and Ca in a wheat-based diet, while xylanase had no additional benefits in terms of OM and CP digestibility or mineral utilization. Phytase had no effect on the digestibility of OM, CP or NDF.  相似文献   

4.
Dietary phytase supplementation improves bioavailabilities of phytate-bound minerals such as P, Ca, and Zn to pigs, but its effect on Fe utilization is not clear. The efficacy of phytase in releasing phytate-bound Fe and P from soybean meal in vitro and in improving dietary Fe bioavailability for hemoglobin repletion in young, anemic pigs was examined. In Exp. 1, soybean meal was incubated at 37 degrees C for 4 h with either 0, 400, 800, or 1,200 units (U) of phytase/kg, and the released Fe and P concentrations were determined. In Exp. 2, 12 anemic, 21-d-old pigs were fed either a strict vegetarian, high-phytate (1.34%) basal diet alone, or the diet supplemented with 50 mg Fe/kg diet (ferrous sulfate) or phytase at 1,200 U/kg diet (Natuphos, BASF, Mt. Olive, NJ) for 4 wk. In Exp. 3, 20 anemic, 28-d-old pigs were fed either a basal diet with a moderately high phytate concentration (1.18%) and some animal protein or the diet supplemented with 70 mg Fe/kg diet, or with one of two types of phytase (Natuphos or a new phytase developed in our laboratory, 1,200 U/kg diet) for 5 wk. In Exp. 2 and 3, diets supplemented with phytase contained no inorganic P. In Exp. 1, free P concentrations in the supernatant increased in a phytase dose-dependent fashion (P<.05), whereas free Fe concentrations only increased at the dose of 1,200 U/kg (P<.10). In Exp. 2 and 3, dietary phytase increased hemoglobin concentrations and packed cell volumes over the unsupplemented group; these two measures, including growth performance, were not significantly different than those obtained with dietary supplemental Fe. In conclusion, both sources of phytase effectively degraded phytate in corn-soy diets and subsequently released phytate-bound Fe from the diets for hemoglobin repletion in young, anemic pigs.  相似文献   

5.
Abstract

Effects of phytase and xylanase supplementation to a wheat-based pig diet were studied. The diet was fed without or with supplementation of dicalcium phosphate (diet A), phytase (diet BP), xylanase (diet BX) and phytase + xylanase (diet BPX). Apparent digestibility of P and Ca were higher in diets BP and BPX. Apparent digestibility of crude protein (CP) was higher in pigs which were fed the BPX diet than pigs which were fed the BP and BX diets. Pigs given diet BPX, had highest daily weight gain and had higher daily feed consumption, except for pigs given diet BP. In conclusion, phytase improved the utilisation of P and Ca, while xylanase alone had no positive effects on OM, CP and NDF digestibility. The combination of the two enzymes had some benefits in terms of CP digestibility and resulted in an improved feed intake and daily weight gain, while feed conversion ratio was unaffected.  相似文献   

6.
Two experiments were conducted to evaluate the efficacy of low doses of Aspergillus niger (AN) phytase for growing and finishing pigs fed corn-soybean meal (SBM) diets with narrow Ca:P ratios that were about 0.9 g/kg deficient in available P and Ca. Experiment 1 utilized 120 pigs with an early finisher period from 51.5 +/- 0.2 to 89.7 +/- 0.9 kg of BW and a late finisher period that ended at 122.5 +/- 2.0 kg of BW. During each period, treatments were the low-P diets with 0, 150, 300, or 450 units (U) of AN phytase added/kg of diet, and a positive control (PC) diet. There were linear increases (P < or = 0.001) in bone strength and ash weight, the absorption of P (g/d and %) and Ca (%), and overall ADG (P = 0.01) with increasing concentration of AN phytase. Pigs fed the diets with 150, 300, or 450 U of AN phytase/kg did not differ from pigs fed the PC diet in growth performance overall, and pigs fed the diets with 300 or 450 U of AN phytase did not differ in P and Ca absorption (g/d) or bone ash weight from pigs fed the PC diet. However, only pigs fed the diet with 450 U of AN phytase/kg had bone strength similar to that of pigs fed the PC diet. Experiment 2 utilized 120 pigs in a grower phase from 25.3 +/- 0.1 to 57.8 +/- 0.8 kg of BW and a finisher phase that ended at 107.6 +/- 1.0 kg of BW. Treatments were the low-P diet with AN phytase added at 300, 500, or 700 U/kg of grower diet, and 150, 250, or 350 U/kg of finisher diet, respectively, resulting in treatments AN300/150, AN500/250, and AN700/350. Growth performance and the absorption (g/d) of P and Ca for the grower and finisher phases were not different for pigs fed the diets containing AN phytase and pigs fed the PC diets. However, pigs fed the PC diets excreted more fecal P (g/d, P < or = 0.01) during the grower and more P and Ca (g/d, P < 0.001) during the finisher phases than the pigs fed the diets with phytase. There were linear increases (P < or = 0.05) in bone strength and bone ash weight with increasing concentration of AN phytase. However, pigs fed the PC diets had a greater bone strength and bone ash weight than pigs fed diets AN300/150, AN500/250 (P < or = 0.02), or AN700/350 (P < or = 0.08). There were no treatment responses for N or DM digestibility in either experiment. Phytase supplementation reduced fecal P excretion from 16 to 38% and fecal Ca excretion from 21 to 42% in these experiments. In conclusion, 450 U of AN phytase/kg was effective in replacing 0.9 g of the inorganic P/kg of corn-SBM diet for finishing swine based on bone strength, whereas 300 or 150 U of AN phytase/kg of diet maintained growth performance of grower or finisher pigs, respectively.  相似文献   

7.
Ileally cannulated pigs were used to assess the effects of four dietary levels of microbial phytase (Natuphos) on the apparent and true digestibility of Ca, P, CP, and AA in dehulled soybean meal. Fourteen pigs (25 kg initial BW) were surgically fitted with T-cannulas at the terminal ileum and assigned to diets in a replicated 7 x 7 Latin square design. Following a 14-d recovery, four diets consisting of 30.5% soybean meal with 0, 500, 1,000, or 1,500 units of phytase/kg of diet were fed. Diets 5 (1.05% lysine, 0.90% Ca, and 0.75% P) and 6 (1.05% lysine, 0.90% Ca, and 0.75% P) contained 35.25% soybean meal and 27.0% soy protein concentrate, respectively. Diet 7 (0.37% lysine, 0.03% Ca, and 0.05% P) was a low-CP, casein-based diet used to estimate the nonspecific endogenous losses of Ca, P, CP, and AA in order to estimate the true digestibility of these nutrients. All diets contained cornstarch and dextrose and were fortified with vitamins and minerals. Chromic oxide was used as an indigestible indicator. The diets were fed daily at 9% of metabolic BW (BW0.75). Apparent and true ileal digestibility of P increased quadratically (P < 0.01) and true digestibility of Ca increased linearly (P < 0.07) with increasing levels of phytase. Apparent digestibility of Ca was unaffected (P = 0.15) by phytase level. Apparent and true ileal digestibility of CP and most AA increased slightly with the addition of 500 units of phytase/kg of diet, but not at higher levels of phytase supplementation (in most cases, cubic effect, P < 0.05). Apparent and true ileal nutrient digestibility coefficients were unaffected by soybean meal source (Diet 1 vs Diet 5), except for arginine and Ca. The apparent and true digestibility coefficients for most of the AA tended (P < 0.10) to be lower in diets containing soy protein concentrate vs the common source of soybean meal used in Diet 5, but ileal digestibilities of Ca and P were unaffected (P = 0.15). In this study, supplemental microbial phytase did not improve the utilization of AA provided by soybean meal but was an effective means of improving Ca and P utilization by growing swine fed soybean meal-based diets.  相似文献   

8.
The effect of high levels of microbial phytase supplementation in diets for growing pigs was studied in a 2‐week performance and nutrient digestibility trial involving 28 growing pigs weighing 16.4 ± 1.06 (mean ± SD) kg. Seven corn‐barley‐soybean meal‐based diets consisting of a positive control (PC) formulated to meet or exceed NRC nutrient requirements; a negative control (NC) with non‐phytate P reduced by 0.1% unit from NRC requirement and fed without or with 500 or 1000 U/kg; a doubled negative control (DNC) with no added inorganic P and fed without or with 2000 or 4000 U/kg. Chromic oxide was added as an indigestible marker and all diets were fed as mash. Pigs fed the PC diet had a higher P digestibility compared with those fed the NC (P < 0.02) and the DNC (P < 0.001) diets. Supplementing the NC diet with pyhtase tended to improve P digestibility (P < 0.10). However, addition of phytase to the DNC diet resulted in linear (P < 0.001) and quadratic (P < 0.03) increases in P digestibility with an overall improvement of 8% and 121% at 4000 phytase U/kg of diet, respectively, compared with the PC and DNC diets. Apparent total tract digestibility of N, OM and DM were higher (P < 0.05) in the PC diet compared with the DNC diet, but not the NC diet (P < 0.10). No effect of phytase addition to NC was observed on Ca, N, DM and OM digestibility. Phytase addition to the DNC diet resulted in a linear increase (P < 0.05) in N, DM and OM digestibility but not Ca. Increasing the levels of phytase supplementation in the NC and the DNC diets linearly decreased fecal P (P < 0.05) content by 45 and 42%, respectively. Adding phytase at 1000 or 4000 U/kg increased P retention (P < 0.05) by 14.3 or 15.6% units, respectively, compared with the PC diet. Urinary P excretion was higher in the group fed the PC diet compared with those fed the NC and DNC diets (P < 0.05). The results of this study show that complete removal of inorganic P from growing pig diets coupled with phytase supplementation improves digestibility and retention of P and N, thus reducing manure P excretion without any negative effect on pig performance.  相似文献   

9.
Three experiments were conducted to evaluate P bioavailability, growth performance, and nutrient balance in pigs fed high available P (HAP) corn with or without phytase. The bioavailability of P in normal and HAP corn relative to monosodiumphosphate (MSP) for pigs was assessed in Exp. 1. In a randomized complete block design, 96 pigs (average initial BW 9.75 kg) were fed eight diets for 28 d. The reference and test diets were formulated by adding P as MSP, HAP, or normal corn at 0, 0.75, or 1.5 g/kg to a corn-starch-soybean meal basal diet (2.5 g/kg P) at the expense of cornstarch. Plasma inorganic P concentration responded linearly (P < 0.05) to supplemental P intake. Estimates of P bioavailability from HAP andnormal corn when plasma P was regressed on supplemental P intake were 46 and 33%, respectively. In Exp. 2 and 3, pigs were fed corn-soybean meal-based diets containing HAP corn or normal corn and 0 or 600 units of phytase per kilogram in a 2 x 2 factorial arrangement (two corn sources and two levels of phytase). In Exp. 2, 48 crossbred pigs (barrow:gilt, 1:1) averaging 9.25 kg were used to evaluate growth performance. There were no detectable interactions between corn source and phytase for any of the performance criteria measured. Pigs receiving normal corn had the lowest (P < 0.05) BW and rate of gain. Feed efficiency was lower (P < 0.05) in pigs fed normal compared with those fed the HAP corn phytase-supplemented diet. In Exp. 3, 24 crossbred barrows averaging 14.0 kg were used to evaluate nutrient digestibility. There were no detectable interactions between corn and phytase for any of the N and Ca balance criteria. Nitrogen and Ca retention were improved in pigs receiving HAP corn with phytase (P < 0.05). Retention and digestibility of P was lowest (P < 0.01) for pigs on normal corn diet without phytase. The percentage of P digested and retained was improved and fecal P excretion lowered (P < 0.05) by feeding HAP corn.The results of this study indicate that the bioavailability and balance of P in HAP corn is superior to that of normal corn. The addition of 600 phytase units (Natuphos 600, BASF) to HAP corn-based diets further improved P digestibility and reduced P excretion in pigs.  相似文献   

10.
Ten 56-d-old, 15-kg barrows were surgically fitted with a postvalvular T-cecum cannula at the ileo-cecal junction to evaluate the effect of microbial phytase on apparent and true ileal AA digestibility and N utilization. A semipurified cornstarch- and soybean meal-based diet was formulated to contain 3.4 Mcal of DE/kg, 17.0% CP, 0.8% Ca, and 0.6% P but had a low phytate-P concentration (0.13%; all on an as-fed basis). Chromic oxide and dysprosium chloride were used as indigestible markers. The basal diet was supplemented with 0 or 1,000 phytase units/kg of microbial phytase. Postprandial plasma urea N and alpha-amino N concentrations, excretion of Ca, P, and N in feces and urine, and ileal AA digestibilities were determined 3 times at 4-wk intervals beginning at 70 d of age. The homoarginine (HA) method was used to determine endogenous AA flow by replacing 50% of the basal protein with guanidinated protein. Microbial phytase had no effect on apparent ileal digestibility (AID) or on true ileal digestibilities of N and most AA but did increase AID for arginine (P = 0.006) and methionine (P = 0.037). However, in HA diets, phytase increased the AID of CP (P = 0.01) and several AA. Addition of microbial phytase had no effect on the postprandial alpha-amino N concentrations in plasma but increased overall plasma urea N concentrations (P = 0.035). Barrows fed phytase-supplemented diets had decreased P in feces (P = 0.003) and greater P in urine (P = 0.001) but comparable total P excretion compared with barrows fed no phytase-supplemented diets. In conclusion, the addition of phytase to a semi-purified soybean meal-based diet did not affect the AID of several AA. In addition, differences between the basal and HA diets in N digestibilities indicated that that guanidination may limit the use of the HA method in determining endogenous protein losses.  相似文献   

11.
Phytase supplementation beyond the standard doses used for phosphorus release has been reported to result in extraphosphoric effects by enhancing nutrient digestibility resulting in improved performance of broilers. A study was conducted to examine the effects of the progressive addition of an enhancedEscherichia Coli phytase (400–1,600 phytase units; FTU) on growth performance and carcass characteristics from 1 to 42 d of age in male broilers. One thousand four hundred Hubbard × Cobb 500 1-d-old chicks were randomly distributed into 56 floor pens (0.08 m2/bird). Seven dietary treatments were provided in a 3-phase feeding program consisting of (1) a positive control (adequate Ca and nonphytate P; PC); (2) 1 negative control (Ca and nonphytate P reduced by 0.14% and 0.13%; NC); (3 to 6) the NC diet with 4 increasing supplemental phytase concentrations (NC + 400 FTU, NC + 800 FTU, NC + 1,200 FTU, and NC + 1,600 FTU, respectively); and (7) a low-energy NC diet without phytase and xylanase (reduced 66 kcal of AMEn/kg). Body weight gain, feed conversion, mortality, weight and yield of whole carcass, abdominal fat, and pectoralis major and minor muscles were evaluated. Progressive supplementation of phytase decreased cumulative FCR linearly. Broilers fed diets containing 1,600 FTU had heavier total breast meat by 49 g compared with birds receiving the PC diets. Broilers consuming the NC + 400 FTU or the low-energy NC diet had similar growth performance and meat yield compared with birds provided PC diet. These data indicated that phytase supplementation beyond the need for phosphorus enhances growth performance and carcass characteristics.  相似文献   

12.
The objective of these studies was to determine if dietary enzymes increase the digestibility of nutrients bound by nonstarch polysaccharides, such as arabinoxylans, or phytate in wheat millrun. Effects of millrun inclusion rates (20 or 40%), xylanase (0 or 4,375 units/kg of feed), and phytase (0 or 500 phytase units/kg of feed) on nutrient digestibility and growth performance were investigated in a 2 x 2 x 2 factorial arrangement with a wheat control diet (0% millrun). Diets were formulated to contain 3.34 Mcal of DE/kg and 3.0 g of true ileal digestible Lys/Mcal of DE and contained 0.4% chromic oxide. Each of 18 cannulated pigs (36.2 +/- 1.9 kg of BW) was fed 3 diets at 3x maintenance in successive 10-d periods for 6 observations per diet. Feces and ileal digesta were collected for 2 d. Ileal energy digestibility was reduced (P < 0.01) linearly by millrun and increased by xylanase (P < 0.01) and phytase (P < 0.05). Total tract energy digestibility was reduced linearly by millrun (P < 0.01) and increased by xylanase (P < 0.01). For 20% millrun, xylanase plus phytase improved DE content from 3.53 to 3.69 Mcal/kg of DM, a similar content to that of the wheat control diet (3.72 Mcal/kg of DM). Millrun linearly reduced (P < 0.01) ileal digestibility of Lys, Thr, Met, Ile, and Val. Xylanase improved (P < 0.05) ileal digestibility of Ile. Phytase improved ileal digestibility of Lys, Thr, Ile, and Val (P < 0.05). Millrun linearly reduced (P < 0.05) total tract P and Ca digestibility and retention. Phytase (P < 0.01) and xylanase (P < 0.05) improved total tract P digestibility, and phytase and xylanase tended to improve (P < 0.10) P retention. Phytase improved Ca digestibility (P < 0.05) and retention (P < 0.01). The 9 diets were also fed for 35 d to 8 individually housed pigs (36.2 +/- 3.4 kg of BW) per diet. Millrun reduced (P < 0.05) ADFI, ADG, and final BW. Xylanase increased (P < 0.05) G:F; phytase reduced (P < 0.05) ADFI; and xylanase tended to reduce (P = 0.07) ADFI. In summary, millrun reduced energy, AA, P, and Ca digestibility and growth performance compared with the wheat control diet. Xylanase and phytase improved energy, AA, and P digestibility, indicating that nonstarch polysaccharides and phytate limit nutrient digestibility in wheat byproducts. The improvement by xylanase of energy digestibility coincided with improved G:F but did not translate into improved ADG.  相似文献   

13.
Two experiments with growing pigs were conducted to determine the effects of dietary P and Ca level, phytase supplementation, and ileal pectin infusion on ileal and fecal P and Ca balance, chemical composition of fecal mixed bacterial mass (MBM), and bacterial metabolic activity. Pigs (initial BW = 30 kg) were fitted with simple T-cannulas at the distal ileum. They were fed a low-P corn-soybean meal control diet (3 g of P/kg) or the control diet supplemented with monocalcium phosphate (MCP; 7 g of P/kg; Exp. 1) or 1,000 FTU phytase/kg (Exp. 2). The daily infusion treatments consisted of 60 g of pectin dissolved in 1.8 L of demineralized water or 1.8 L of demineralized water as the control infusion, infused via the ileal cannula. In each experiment, 8 barrows were assigned to 4 dietary treatments according to a double, incomplete 4 x 2 Latin square. The dietary treatments in Exp. 1 were the control (Con-) diet with water infusion; the control (Con+) diet with pectin infusion; the MCP diet with water infusion; and the MCP diet with pectin infusion. In Exp. 2, the pigs received the same Con- and Con+ treatments as in Exp. 1 and, in addition, the phytase-supplemented diet in combination with water or pectin infusion. After a 15-d adaptation period, feces were collected for 5 d followed by ileal digesta collection for 24 h. In Exp. 1, supplemental MCP increased (P 相似文献   

14.
A 3 x 2-factorial balance trial was conducted with dietary concentrations of P below the requirement (3.6, 4.3 and 5.0 g/kg DM) and Ca below or at the requirement (28 and 37 g/kg DM) adjusted by monobasic calcium phosphate (MCP, Ca(H2PO4)2) and calcium carbonate (CaCO3). The diets were mainly based on maize and soybean meal. Six 18-week old laying hens were allocated to each of the diets, and excreta were quantitatively collected for 21 days from week 22 of age onwards. Feed allowance was 95 g/d according to pre-treatment ad libitum intake of the hens receiving the lowest P concentration. After the balance trial was terminated, ileal digesta was obtained from each hen, and the flow at the terminal ileum was calculated using TiO2 as indigestible marker. Linear regression analysis was applied to determine the effect of supplementary P. Hens were in a negative energy balance, indicated by a loss in BW across all treatments. Intake and excretion of both N and energy were not significantly affected by the P or Ca content of the diet. P from supplemented MCP was almost completely recovered in excreta, irrespective of dietary Ca concentration. At the terminal ileum, however, the P flow was not significantly affected by the MCP supplementation. Net absorption of P from MCP was almost complete until the terminal ileum, but P was re-directed into the excreta, likewise via the urine. The supplementation of Ca reduced praecaecal net absorption and utilisation of P from the basal diet, likewise due to a reduced phytate hydrolysis. It is suggested by the data, that comparative measurements of P availability for laying hens should be conducted on the basis of praecaecal net absorption rather than on total excretion measurements.  相似文献   

15.
An experiment was conducted to test the hypothesis that formulating diets for pigs based on a ratio between standardized total tract digestible (STTD) Ca and STTD P instead of total Ca and STTD P does not decrease Ca retention, but increases P utilization. Forty barrows (59.4 ± 3.8 kg) were individually housed in metabolism crates and allotted to four corn-soybean meal-based diets in a randomized complete block design with two blocks and five pigs per diet in each block. Diets were formulated using a 2 × 2 factorial design with two diet formulation principles (total Ca or STTD Ca) and two inclusion levels of microbial phytase (0 or 500 units per kg of feed). Phytase was assumed to release 0.11% STTD P and 0.16% total Ca. Diets were formulated based on requirements for total Ca and STTD P or a ratio between STTD Ca and STTD P of 1.25:1. Diets were fed for 11 d and fecal and urine samples were collected from feed provided from day 6 to day 10. Interactions (P < 0.05) between diet formulation principle and phytase level were observed for Ca intake, Ca in feces, Ca absorbed, Ca retained, P digestibility, P absorbed, and P in urine. Phytase increased (P < 0.05) the digestibility of Ca in both total Ca and STTD Ca diets. Without phytase, Ca intake, Ca in feces, and Ca absorbed was greater (P < 0.05) from pigs fed total Ca diets than from pigs fed STTD Ca diets, but P absorbed, P digestibility, and P in urine was greater (P < 0.05) from pigs fed STTD Ca diets than from pigs fed total Ca diets. However, in the presence of phytase, no differences between diet formulation principles were observed in these variables. Regardless of phytase, Ca in urine was lower (P < 0.05) from pigs fed STTD Ca diets than from pigs fed total Ca diets. There were no differences in Ca retention between pigs fed STTD Ca diets and total Ca diets, but pigs fed total Ca diets retained less (P < 0.05) Ca if diets contained phytase. No differences in P retention were observed between diet formulation principles, but pigs fed non-phytase diets retained more (P < 0.05) P than pigs fed diets with phytase. In conclusion, because diets formulated based on STTD Ca contain less Ca than total Ca diets, pigs fed STTD Ca diets excreted less Ca in urine, but retention of Ca was not affected. Formulating non-phytase diets based on STTD Ca instead of total Ca increased P absorption, which confirms the detrimental effect of excess Ca on P digestibility. However, P retention was not improved if pigs were fed STTD Ca diets.  相似文献   

16.
A performance trial was conducted with broiler chicks to study the effect of phytase (PHY) supplementation in diets formulated with reduced AME, Ca, and P. The nutrient digestibility was determined during the 14- to 21-d and 28- to 35-d periods. The treatments consisted of 3 diets (NC1, NC2, NC3) differing in nutrient content and each diet with or without supplemental PHY (NC1, 0 or 500; NC2, 0 or 750; NC3, 0 or 1,000 U of PHY/kg feed) and 1 positive control diet (PC). Compared with the PC diet, negative control diets (NC) resulted in lower AME and apparent ileal amino acid digestibility for some amino acids. Phytase supplementation of the NC diets increased AME, apparent ileal amino acid digestibility, and apparent ileal crude protein digestibility. Phytase addition also increased mineral absorption in 21- and 35-d-old broilers fed NC diets. Reduced nutrient digestibility appears to be a factor in the weight gain and feed intake results. Reducing Ca and P content reduced feed intake in a stepwise fashion in the NC diets. Phytase increased feed intake and generally improved nutrient digestibility, which resulted in an increase in digestible nutrient intake. Averaged across NC diets, PHY improved body weight. Bone-breaking strength was the most consistent predictor of Ca and P reduction. All NC diets had significantly lower bone-breaking strength than the PC. Phytase supplementation of the NC diets gave bone-breaking strengths that were comparable to the PC. Diets with PHY had the highest bioeconomic index.  相似文献   

17.
Two studies were conducted to determine the efficacy of an Escherichia coli-derived phytase (ECP) and its equivalency relative to inorganic phosphorus (iP) from monosodium phosphate (MSP). In Exp. 1, one thousand two hundred 1-d-old male broilers were used in a 42-d trial to assess the effect of ECP and iP supplementation on growth performance and nutrient digestibility. Dietary treatments were based on corn-soybean meal basal diets (BD) containing 239 and 221 g of CP, 8.2 and 6.6 g of Ca, and 2.4 and 1.5 g of nonphytate P (nPP) per kg for the starter and grower phases, respectively. Treatments consisted of the BD; the BD + 0.6, 1.2, or 1.8 g of iP from MSP per kg; and the BD + 250, 500, 750, or 1,000 phytase units (FTU) of ECP per kg. Increasing levels of MSP improved gain, gain:feed, and tibia ash (linear, P < 0.01). Increasing levels of ECP improved gain, gain:feed, tibia ash (linear, P < 0.01), apparent ileal digestibility of P, N, Arg, His, Phe, and Trp at d 21 (linear, P < 0.05), and apparent retention of P at d 21 (linear, P < 0.05). Increasing levels of ECP decreased apparent retention of energy (linear, P < 0.01). Five hundred FTU of ECP per kg was determined to be equivalent to the addition of 0.72, 0.78, and 1.19 g of iP from MSP per kg in broiler diets based on gain, feed intake, and bone ash, respectively. In Exp. 2, forty-eight 10-kg pigs were used in a 28-d trial to assess the effect of ECP and iP supplementation on growth performance and nutrient digestibility. Dietary treatments consisted of a positive control containing 6.1 and 3.5 g of Ca and nPP, respectively, per kg; a negative control (NC) containing 4.8 and 1.7 g of Ca and nPP, respectively, per kg; the NC diet plus 0.4, 0.8, or 1.2 g of iP from MSP per kg; and the NC diet plus 500, 750, or 1,000 FTU of ECP per kg. Daily gain improved (linear, P < 0.05) with ECP addition, as did apparent digestibility of Ca and P (linear, P < 0.01). Five hundred FTU of ECP per kg was determined to be equivalent to the addition of 0.49 and 1.00 g of iP from MSP per kg in starter pigs diets, based on ADG and bone ash, respectively.  相似文献   

18.
The objective of this study was to measure apparent total tract digestibility (ATTD) of Ca and P as well as reproductive performance in late gestation and lactating sows supplemented with a novel phytase and to compare the response to phytase supplementation between late gestation and lactating sows. A total of 45 late gestation sows and 45 lactating sows were used in experiments 1 and 2, respectively, in a completely randomized design. The sows were provided with a control diet or the control diet supplemented with 187.5 or 375 FYT phytase/kg feed for 10 days. The diets were prepared according to the formulas in use for production but without any inorganic P supplement. Titanium dioxide was included at 3 g/kg feed as an indigestible marker. Each dietary treatment was replicated with 15 sows individually housed in farrowing stalls. The sows were allowed to adapt to the experimental diets for 5 days before a 5-d fecal collection by grab sampling, and the performance of the sows and their litters were measured until weaning. The results showed that the ATTD of Ca increased linearly (P < 0.001), while the ATTD of P increased both linearly and quadratically (P < 0.01) with increasing supplementation of phytase in both late gestation and lactating sows. There was no significant effect of phytase on the ATTD of dry matter, crude protein, and gross energy, and the performance of the sows and their progenies. The phytase added at 187.5 and 375 FYT/kg feed released 0.07% and 0.10% digested P, respectively, in late gestation sows, which compared with 0.09% and 0.12% digested P in lactating sows. In conclusion, a novel phytase at 187.5–375 FYT/kg feed could release 0.07–0.12% digestible P for sows. It appeared that using the P digestibility values of feed ingredients listed by NRC to formulate a diet for sows might overestimate dietary P supply and a greater response to phytase supplementation could be expected in lactating sows than in late gestation sows.  相似文献   

19.
Two experiments were conducted to investigate the concept that the addition of corn expressing an Escherichia coli-derived gene (corn-based phytase; CBP) to a P-deficient diet would improve growth performance and P utilization in pigs. An E. coli-derived microbial phytase (expressed in Pichia pastoris) sprayed onto a wheat carrier (Quantum) was included for comparison. In Exp. 1, forty-eight 10-kg pigs were blocked by BW into 6 blocks and allotted to 8 dietary treatments such that the BW among dietary treatments was similar and given free access to feed for 28 d. The dietary treatments were a negative control (NC) with no inorganic P supplementation; NC + 2, 4, or 6 g of monosodium phosphate/kg; NC + 16,500, 33,000, or 49,500 phytase units (FTU) of CBP/kg; and NC + 16,500 FTU of Quantum/kg. In Exp. 2, twenty-four 13-kg barrows were assigned to the NC, NC + 16,500 or 33,000 FTU of CBP/kg, or NC + 16,500 FTU of Quantum/kg, in a nutrient- and energy-balance study consisting of 5 d of adjustment and 5-d collection periods. The total collection method was used to determine nutrient and energy balance. Addition of CBP to the low-P NC diet linearly increased (P < 0.01) ADG, G:F, and plasma P concentration of pigs during the 28-d study. There was no difference in ADG, G:F, or plasma P concentration between pigs fed the CBP or Quantum phytase at 16,500 FTU/kg. Weight gain, G:F, and plasma P concentration of pigs increased (P < 0.01) with monosodium phosphate supplementation, confirming P deficiency of the NC diet. Linear improvements (P < 0.05) in DM digestibility and energy retention were observed with CBP supplementation of the NC diet. Although there were linear (P < 0.01) and quadratic (P < 0.05) increases in N digestibility, N retention was unaffected by CBP supplementation of the NC diet in growing pigs. Phosphorus and Ca digestibilities and retentions improved linearly and quadratically (P < 0.01) with the addition of CBP to the NC diet. There was no difference in digestive utilization of P or Ca between pigs fed CBP and Quantum phytase at 16,500 FTU/kg. The data showed that the addition of a corn expressing an E. coli-derived gene to a P-deficient diet improved growth performance and indices of P utilization in pigs, and corn expressing phytase was as efficacious as Quantum phytase when supplemented in P-deficient diets for weanling pigs.  相似文献   

20.
Fermentation of cereal grains may degrade myo-inositol 1,2,3,4,5,6-hexakis (dihydrogen phosphate) (InsP6) thereby increasing nutrient digestibility. Effects of chemical acidification or fermentation with Limosilactobacillus (L.) reuteri with or without phytase of high β-glucan hull-less barley grain on apparent ileal digestibility (AID) and apparent total tract digestibility (ATTD) of nutrients and gross energy (GE), standardized ileal digestibility (SID) of crude protein (CP) and amino acids (AAs), and standardized total tract digestibility (STTD) of P were assessed in growing pigs. Pigs were fed four mash barley-based diets balanced for water content: 1) unfermented barley (Control); 2) chemically acidified barley (ACD) with lactic acid and acidic acid (0.019 L/kg barley grain at a ratio of 4:1 [vol/vol]); 3) barley fermented with L. reuteri TMW 1.656 (Fermented without phytase); and 4) barley fermented with L. reuteri TMW 1.656 and phytase (Fermented with phytase; 500 FYT/kg barley grain). The acidification and fermentation treatments occurred for 24 h at 37 °C in a water bath. The four diets were fed to eight ileal-cannulated barrows (initial body weight [BW], 17.4 kg) for four 11-d periods in a double 4 × 4 Latin square. Barley grain InsP6 content of Control, ACD, Fermented without phytase, or Fermented with phytase was 1.12%, 0.59%, 0.52% dry matter (DM), or not detectable, respectively. Diet ATTD of DM, CP, Ca, and GE, digestible energy (DE), predicted net energy (NE) value, and urinary excretion of P were greater (P < 0.05) for ACD than Control. Diet ATTD of DM, CP, Ca, GE, DE and predicted NE value, urinary excretion of P was greater (P < 0.05), and diet AID of Ca and ATTD and STTD of P tended to be greater (P < 0.10) for Fermented without phytase than Control. Diet ATTD of GE was lower (P < 0.05) and diet ATTD and STTD of P, AID and ATTD of Ca was greater (P < 0.05) for Fermented with phytase than Fermented without phytase. Acidification or fermentation with/without phytase did not affect diet SID of CP and AA. In conclusion, ACD or Fermented without phytase partially degraded InsP6 in barley grain and increased diet ATTD of DM, CP, and GE, but not SID of CP and most AA in growing pigs. Fermentation with phytase entirely degraded InsP6 in barley grain and maximized P and Ca digestibility, thereby reducing the need to provide inorganic dietary P to meet P requirements of growing pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号