首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of cropping history (pasture or arable) and sample pretreatment (field-moist, air-dried or air-dried and then tension or vacuum rewetted) on aggregate stability as measured by wet sieving or turbidimetry were compared. When field-moist samples were used there was a tendency for aggregate stability, as measured by wet sieving, to decline with increasing time under arable cropping (i.e. decreasing soil organic matter content). Air-drying samples caused a pronounced decline in stability of soils from under arable management and as a consequence there was a marked decline in stability with increasing time under arable. Use of tension or vacuum rewetted samples resulted in high values of stability which were unaffected by cropping history. For turbidimetry, there was a marked decline in measured stability with increasing time under arable cropping when field-moist samples were used. Air-drying caused an increase in measured stability that was relatively greater for the less stable samples. In comparison with air-dried samples, tension and vacuum rewetting caused a decrease in stability values for relatively unstable soils. It is suggested that, upon air-drying (and contraction of aggregates), additional intermolecular associations were formed between soil constituents thus conferring greater stability on aggregates. This resulted in reduced dispersion (and the release of particles <0.04 mm in diameter) from the surfaces of aggregates and slaked aggregate fragments following rapid rewetting. As a consequence stability as measured by turbidimetry was increased by drying. For aggregates from a predominantly arable history, this stabilization was not great enough to prevent slaking occurring following rapid rewetting, with the formation of a large proportion of stabilized fragments <0.5 mm in diameter. The stability of these aggregates as measured by wet sieving was therefore decreased by drying.  相似文献   

2.
The effects of soil organic matter content, soil water content and duration of wet-sieving on aggregate stability of soils with contrasting cropping histories were investigated. Long-term pasture samples had a greater aggregate stability than long-term arable samples. However, air-drying aggregates before wet-sieving increased the aggregate stability of long-term pasture samples, but decreased that of long-term arable samples. With increasing duration of wet-sieving, the proportion of water-stable aggregates declined until a near-constant value was reached for each sample. Thus, within a sample there are aggregates possessing a wide range of stabilities; with increasing time under arable cropping there is an increase in the proportion of unstable aggregates present, and the measured aggregate stability, therefore, declines. Unstable aggregates (defined as those dispersed after wet-sieving for 1 min) generally had lower organic matter content than stable ones (those still intact after sieving for 15 min). The aggregate stability of a regrassed site (13 years of arable plus 2 years of pasture) was markedly higher than that of a corresponding site from 15 years of arable cropping. Nonetheless, levels of organic matter (organic C, total N and hydrolysable carbohydrate) were almost identical at the two sites. However, aggregates from the regrassed site did have a higher biomass C and water-extractable carbohydrate content than those from the 15-year arable site. For a group of soils with varying cropping histories, aggregate stability was significantly more closely correlated with hot water-extractable carbohydrate content than with organic C or hydrolysable carbohydrate content. It is suggested that the hot water-extractable carbohydrate fraction may represent a pool of carbohydrate involved in the formation of stable aggregates.  相似文献   

3.
Soil-surface seals and crusts resulting from aggregate breakdown reduce the soil infiltration rate and may induce erosion by increasing runoff. The cultivated loess areas of northwestern Europe are particularly prone to these processes.Surface samples of ten tilled silty loamy loess soils, ranging in clay content from 120 to 350 g kg−1 and in organic carbon from 10 to 20 g kg−1, were packed into 0.5 m2 plots with 5% slopes and subjected to simulated rainfall applied at 30 mm h−1. The 120 minutes rainfall events were applied to initially field-moist soil, air-dried soil and rewetted soil to investigate the effect of soil moisture content prior to rainfall. Runoff and eroded sediments were collected at 5 minutes intervals. Aggregate stability of the soils was assessed by measuring particle-size distribution after different treatments.All soils formed seals. Runoff rates were between 70 and 90% by the end of the rainfall event for field-moist plots. There were large differences between soil runoff rates for the air-dried and rewetted plots. Interrill erosion was associated with runoff, and sediment concentration in runoff readily reached a steady-state value. Measurements of aggregate stability for various treatments were in good agreement with sealing, runoff and erosion responses to rainfall. Runoff and erosion were lower for air-dried plots than for field-moist plots, and were either intermediate or lowest for rewetted plots, depending on soil characteristics. Soils with a high clay content had the lowest erosion rate when they were rewetted, whereas the soil with a high organic-carbon content had the lowest erosion rate in air-dry conditions. The results indicate the complexity of the effect of initial moisture content, and the interactions between soil properties and climate.  相似文献   

4.
The mechanisms responsible for stabilization of earthworm casts were investigated in a laboratory study. Earthworms (Aporrectodea caliginosa) were fed soil or soil amended with either ground wheat straw or lucerne hay. Cast material and uningested soil material were incubated for 56 days, and changes in aggregate stability (measured by wet sieving), soil biological activity and macronutrient availability were measured periodically. In general, aggregate stability and microbial biomass C tended to increase during the incubation for both cast and soil material, whereas hot-water extractable carbohydrate content declined. For amended treatments, basal respiration rate and microbial metabolic quotient were large at the first sampling (7 days) but declined rapidly thereafter. There was a transitory increase in extractable P in fresh casts compared with uningested material, a sustained increase in mineral N concentrations but no change in exchangeable K content. For unamended treatments, the casts were less stable than soil material, but this difference diminished during incubation. Drying aggregates before analysing them did not reverse this trend. The casts contained more microbial biomass C than soil material did, but the basal respiratory rate, respiratory quotient and hot-water extractable carbohydrate content were less. By contrast, for wheat- and lucerne-amended treatments casts were more stable than soil material, and the microbial biomass was less at all sampling times. For wheat treatments, respiratory quotient and hot-water extractable carbohydrate content were larger for cast than soil material, but the opposite was the case for lucerne treatments. We attribute the stability of casts in amended treatments to the intimate mixing of part-decomposed organic fragments with comminuted soil particles, binding by microbial mucilage associated with the organic fragments and linking and binding by fungal hyphae.  相似文献   

5.
The use of annually sown pastures to provide winter forage is common in dairy farming in many regions of the world. Loss of organic matter and soil structural stability due to annual tillage under this management may be contributing to soil degradation. The comparative effects of annual ryegrass pastures (conventionally tilled and resown each year), permanent kikuyu pastures and undisturbed native vegetation on soil organic matter content, microbial size and activity, and aggregate stability were investigated on commercial dairy farms in the Tsitsikamma region of the Eastern Cape, South Africa. In comparison with soils under sparse, native grassy vegetation, those under both annual ryegrass and permanent kikuyu pasture had higher soil organic matter content on the very sandy soils of the eastern end of the region. By contrast, in the higher rainfall, western side, where the native vegetation was coastal forest, there was a loss of organic matter under both types of pasture. Nonetheless, soil organic C, K2SO4-extractable C, microbial biomass C, basal respiration, arginine ammonification and fluorescein diacetate hydrolysis rates and aggregate stability were less under annual than permanent pastures at all the sites. These results reflect the degrading effect of annual tillage on soil organic matter and the positive effect of grazed permanent pasture on soil microbial activity and aggregation. Soil organic C, microbial biomass C, K2SO4-extractable C, basal respiration and aggregate stability were significantly correlated with each other. The metabolic quotient and percentage of organic C present as microbial biomass C were generally poorly correlated with other measured properties but negatively correlated with one another. It was concluded that annual pasture involving conventional tillage results in a substantial loss of soil organic matter, soil microbial activity and soil physical condition under dairy pastures and that a system that avoids tillage needs to be developed.  相似文献   

6.
Soil biochemical properties are useful indicators of soil quality as they are very sensitive to disturbance. Sample storage or pre-treatments could affect the results in these assays, which are normally determined on fresh samples, kept cold or frozen. The objectives of this study were to (i) evaluate the effect of air-drying or incubation of rewetted air-dried soil samples on microbial biomass carbon (MBC), basal soil respiration (BSR), qCO2 and water soluble carbon (WSC), in soils from different locations, with different degradation status and sampling seasons, and (ii) assess if air-drying or incubation of rewetted air-dried soil samples is an accurate sample storage and pre-treatment procedure for these soil properties in soil quality evaluations under semiarid Mediterranean conditions. Our results showed that air-drying does not have the same effects on MBC, BSR, qCO2 and WSC depending on the geographical situation and sampling date. It seems that the warmest and driest place and season show less variation when using air-dried soil samples, with values representative of those obtained under field-moist conditions. Short incubations (4, 8 and 12 days at 23 °C) provoked a general decrease in all properties, probably due to labile organic compounds depletion. Hence, air-dried soils can be used as part of soil quality analysis to estimate these biochemical properties in summer time in the semiarid region of South-East Spain, because they have not suffered severe affections. Moreover, MBC could also be determined using air-dried soil in the driest zones during all year. In contrast, estimations with incubated soil samples are not, in any case, representative of field-moist soil values.  相似文献   

7.
The effects of growth of various crop and forage species on microbial biomass C, soil carbohydrate content and monosaccharide composition, and mean weight diameter (MWD) were investigated in two field experiments. One experiment was conducted over one growing season (4 months) whereas the other had been conducted for three consecutive growing seasons (32 months). In the four-month experiment, aggregate stability (estimated as MWD) of soil from experimental plots followed the order Italian ryegrass > prairie grass > phacelia = pea = maize. At the 32-month site the order was perennial ryegrass > annual ryegrass > perennial white clover = barley. At both sites crops with the greatest root mass and root length density had the greatest effect on increasing MWD. In all cases, rhizosphere soil had a significantly higher microbial biomass and MWD than non-rhizosphere soil. However, organic C, total content of acid-hydrolysable carbohydrate and content of individual monosaccharides in acid hydrolysates were similar in rhizosphere and non-rhizosphere soil. The fraction of soil carbohydrate extractable with hot water (representing about 6-8% of the total carbohydrate content) was significantly higher in the rhizosphere soil. This fraction has a galactose plus mannose over arabinose plus xylose ratio of 2.1–2.3 indicating that it was predominantly of microbial origin. It is suggested that the carbohydrate fraction extractable with hot water is made up of exocellular microbial polysaccharides that are involved in stabilizing soil aggregates in the rhizosphere. By comparison with arable crop species, grass species have a larger root mass and root length density, and therefore a higher microbial biomass and larger production of carbohydrate extractable with hot water. As a result they have a more marked effect on improving soil aggregate stability.  相似文献   

8.
The effects of agricultural land use on organic matter content and related soil microbial and physical properties were compared with those under undisturbed native grassland in KwaZulu-Natal, South Africa. Two separate farms situated on Oxisols were used and both contained fields with continuous long-term (>20 y) cropping histories. At site 1, soil organic C content in the surface 30 cm followed the order permanent kikuyu pasture > annual ryegrass pasture > native grassland > sugarcane > maize under conventional tillage (CT). At site 2, organic C in the surface 30 cm decreased in the order kikuyu pasture > native grassland > annual ryegrass pasture > maize under zero tillage (ZT) > maize CT. Organic C, microbial biomass C, percentage organic C present as organic C, basal respiration and aggregate stability were substantially greater in the surface 5 cm under maize ZT than maize CT but this trend tended to be reversed in the 10- to 30-cm layer. In the undisturbed sites (e.g. native grassland and kikuyu pasture) the metabolic quotient increased with depth. By contrast, under maize CT and sugarcane there was no significant stratification of organic C, yet there was a sharp decrease in the metabolic quotient with depth. Aggregate stability was high under both native grassland and kikuyu pasture and it remained high to 40 cm depth under the deep-rooted kikuyu pasture. Although soil organic C content was similar under maize CT and sugarcane, values for microbial biomass C, percentage of organic present as microbial biomass, basal respiration and aggregate stability were lower, and those for metabolic quotient and bulk density were higher, under sugarcane. This was attributed to the fallow nature of the soil in the interrows of sugarcane fields. It was concluded that the loss of organic matter, microbial activity and aggregate stability is potentially problematic under maize CT, sugarcane and annual pasture and measures that improve organic matter status should be considered.  相似文献   

9.
The influence of root growth and activities on soil aggregate stability was investigated using five crop species and two soils. Single plants were grown in pots for 6 weeks or less to minimise any possibility of changes in aggregate stability caused by decomposition of dead roots. Planted soils were compared with fallow controls. Aggregate stability was estimated by a turbidimetric technique (used for fresh and air-dried samples) and by wet sieving (used for air-dried samples only). Root growth of perennial ryegrass and of lucerne for 42 days was generally associated with increases in aggregate stability whether the soil was tested in a fresh or an air-dried condition. These beneficial effects were associated with periodate-sensitive (probably polysaccharide) materials produced in the rhizosphere. Growth of maize, tomato and wheat roots for 25 days decreased the stability of fresh soil aggregates, although the effects of tomato and of wheat were not consistent. However, the deleterious effects of these three species on aggregate stability were not apparent after air-drying. The restabilization of maize soils (relative to fallow controls) on air-drying appeared to be caused by increased stabilization by periodate-sensitive materials. The results suggest that the growth and activities of living roots may be a major factor controlling the overall direction and magnitude of changes in aggregate stability under arable or ley crops.  相似文献   

10.
The effects of tillage on soil organic carbon content, carbohydrate content, monosaccharide composition, aggregate stability, compactibility and plasticity were investigated in a field experiment on a gleysol and on a cambisol under winter barley in South-East Scotland. Two long-term treatments (direct drilling and conventional mouldboard ploughing for 22 years) were compared with short-term direct drilling and broadcast sowing plus rotavation for 5 years. Carbohydrate released sequentially to cold water, hot water, 1.0 M HCl and 0.5 M NaOH was determined after hydrolysis as reducing sugar equivalent to glucose in both fresh and air-dried samples. All other measurements were made on dry soils only. About 3% of the soluble carbohydrate was extracted by cold water, 10% by hot water, 12% by HCl and 75% by NaOH from both the dry and fresh soils. The total reducing sugars of the fractions were proportional to the total organic carbon determined by dichromate oxidation or C analysis. Organic carbon and carbohydrates were concentrated near the surface of the direct drilled soil, but were more uniformly distributed with depth in the ploughed soil. The surface soil under direct drilling was more stable, less compactible and had greater plasticity limits than under ploughing. However, particle size distributions were unaffected by tillage so that differences in soil properties were attributed to differences in the quantity and quality of organic matter. Differences in compactibility, structural stability and plasticity limits between depths and tillage treatments correlated with total carbon and with total carbohydrates. The hot water extractable carbohydrate fraction correlated best with aggregate stability and the NaOH fraction correlated best with compactibility and plastic limit. Both fractions were greatest in the long-term direct drilled soil. The hot water fraction had a galactose plus mannose over arabinose plus xylose ratio of 1.0–1.6 in comparison to 0.4–0.7 in the NaOH fraction indicating that the microbial contribution within the hot water-soluble fraction was the greater. The hot-water fraction was likely to contain more exocellular microbial polysaccharides involved in the stabilizing of soil aggregates. The hot-water and NaOH carbohydrate fractions may be good indicators of soil organic matter quality relevant to the preservation of good soil physical conditions.  相似文献   

11.
Maintaining the productivity of tropical pastures is a major challenge for the sustainable management of tropical landscapes around the globe. To address this issue, we examined linkages between soil organic matter (SOM), aggregation, and phosphorus (P) dynamics by comparing productive vs. degraded pastures in the deforested Amazon Basin of Colombia. Paired plots of productive (dominated by planted Brachiaria spp.) vs. degraded pasture were identified on nine farms in the Department of Caquetá and sampled during the rainy season of 2011. Aboveground pasture biomass production and nutrient content were measured. Surface soils (0–10 cm) were also fractionated by wet sieving, and C, 13C, N and P contents were analyzed for the bulk soil and various aggregate size classes. Productive pastures yielded more than double the aboveground biomass compared to degraded pastures (during a 35 day regrowth period following cutting), with over 60% higher N and P contents in this material. Similar trends were observed for the standing litter biomass and nutrient contents. Soil aggregate stability was found to differ between pasture types, with a mean weight diameter of 3590 vs. 3230 μm in productive vs. degraded pastures, respectively. Productive pastures were found to have 20% higher total soil C and N contents than degraded pastures. While there was no difference in total P content between pasture types, organic P was found to be nearly 40% higher in soils of productive vs. degraded pastures. Differences in total SOM between pasture types were largely explained by a higher C content in the large macroaggregate fraction (>2000 μm), and more specifically in the microaggregates (53–250 μm) occluded within this fraction. These findings confirm the role of microaggregates within macroaggregates as a preferential site for the physical stabilization of SOM, and furthermore, suggest that it may serve as a useful diagnostic fraction for evaluating management impacts on SOM in tropical pasture systems. Similar to trends observed for C and N, total P content was 25% higher in the microaggregates within large macroaggregates of productive vs. degraded pasture soils. This correspondence between C and total P contents in large macroaggregate fractions, along with elevated levels of organic P in productive pastures, suggests that this P is likely in an organic form and that there is a close link between soil structure, SOM dynamics and the maintenance of organic P in these soils. Given the potential relevance of organic P for efficient P cycling in these soils, our findings offer critical new insight for the management of SOM and aggregate-associated P pools in tropical pasture systems.  相似文献   

12.
Abstract. We compared the effects of conventional and organic arable farming on soil organic matter (SOM) content, soil structure, aggregate stability and C and N mineralization, which are considered important factors in defining sustainable land management. Within one soil series, three different farming systems were selected, including a conventional and an organic arable system and permanent pasture without tillage. The old pasture represents optimal conditions in terms of soil structure and organic matter inputs and is characterized by high earthworm activity. More than 70 years of different management has caused significant differences in soil properties. SOM content, mineralization, earthworm activity and water-stable aggregation decreased as a result of tillage and arable cropping when compared with pasture, but were significantly greater under organic farming than under conventional farming. Total SOM contents between 0 and 20 cm depth amounted to 15, 24 and 46 g kg−1 for the conventional arable, organic arable and permanent pasture fields, respectively. Although less sensitive to slaking than the conventionally managed field, the soil under organic farming was susceptible to compaction when high pressures were exerted on the soil under wet conditions. The beneficial effects of organic farming are generally associated with soil biochemical properties, but soil physical aspects should also be considered. Depending on soil type and climate, organic farmers need to be careful not to destroy the soil structure, so that they can enjoy maximum advantage from their organic farming systems.  相似文献   

13.
Surface runoff is the major way of P transport from agricultural land to surface waters. To assess the potential of P loss in runoff in relation to soil P status, the chemical nature and distribution of soil P in different size classes of water-stable aggregates were quantified for two distinctive soil types. For both soils unfertilized areas under pasture and well-fertilized arable soils were sampled. The content of total P, organic P and microbial biomass P (Pmic) decreased in the aggregate size order <0.1, 1–2, and 0.1–1.0 mm respectively. In contrast available P (extracted by Bray I reagent) was lowest in the <0.1 mm aggregate size. Cultivation decreased the percentage of 1–2 mm aggregates but increased that of the <0.1 mm aggregates. Fertilization increased markedly both total P and organic P in the <0.1 mm fraction of arable soils compared to the corresponding samples from unfertilized grassland soils. During aggregate separation, most of P loss was in the form of particulate P and less than 1% in solution. More organic P and Pmic were lost from the grassland soils than from the arable soils.  相似文献   

14.
Depending on agricultural management, soil aggregation can provide physical protection of organic matter against rapid decomposition. Within a given soil series, farm management affects the quality and quantity of organic inputs, soil disturbance and biological activity, and thereby the processes of aggregate formation (biogenic vs. physicogenic). We determined the physical protection of readily mineralizable organic matter against mineralization in undisturbed aggregates from a conventional arable field and a permanent pasture (>70 years). Soil samples from the two fields were incubated at constant temperature and moisture content, corresponding to field capacity. The increase in CO2 evolution due to crushing (<250 μm) of the aggregates was used to estimate the macroaggregate-protected C fraction. The fraction of C protected at the microstructural level was estimated from the increase in CO2 evolution after ball-mill grinding. In addition, aggregate size distribution and bulk density and porosity of undisturbed soil and macroaggregates were determined. Unprotected C fractions were not significantly different between the management systems and ranged from 1.9% to 2.4% of total organic C. In the arable soil, 1.4% of total soil organic C was physically protected in macroaggregates. Crushing of macroaggregates did not significantly increase C mineralization in the pasture soil. The results indicate that mineralization was considerably suppressed in the dominantly large and dense physicogenic macroaggregates from the arable field, but not in the dominantly porous, biogenic macroaggregates of the pasture soil. However, the protection in macroaggregates from the arable soil is not likely to be effective on the long-term because of the low water stability and the disrupting forces of cultivation under field conditions. A relatively high additional C mineralization from ground compared to crushed soil material, especially in the upper layer of the pasture soil, suggests a more important C protection at the microstructural level. Higher C protection in microaggregates from the pasture soil was supported by a previous micromorphological study of soil microstructures in thin sections of the considered management systems.  相似文献   

15.
Near-infrared reflectance spectroscopy (NIRS) is known for its inexpensiveness, rapidity and accuracy and may become a useful tool for the assessment of soil quality. Objectives were (i) to evaluate the ability of NIRS to predict several chemical and biological properties of organically managed arable soils as well as the properties of grain yield from winter cereals for a closed population and (ii) to test whether the use of field-moist and pre-treated (quick-freezing followed by freeze-drying and grinding) samples will generate similar results. One hundred and sixteen soil samples from nine organically managed farms from Germany sampled in 2005 and 2006 were used for this investigation. Spectra of the near-infrared region (including the visible range, 400–2500 nm) from field-moist (<2 mm) or pre-treated soil samples were recorded. A modified partial least-square regression method and cross-validation were used to develop an equation over the whole spectrum (first–third derivation). For the pre-treated soils, good predictions were obtained for pH, contents of organic C, total N, plant-available P (Olsen) and exchangeable K (calcium-acetate-lactate (CAL)), contents of microbial biomass C and N (Cmic and Nmic) and ergosterol, basal respiration, metabolic quotient, the ratio of organic C/total N, the grain yield of winter cereals and grain nitrogen uptake. The RSC (the ratio of standard deviation of laboratory results to standard error of cross-validation) was greater than 2.0, the correlation coefficients (r) of a linear regression (measured against predicted values) were greater than or equal to 0.9 and the regression coefficients (a) ranged from 0.9 to 1.1. Similar good predictions were obtained if field-moist samples were used, with the exception of P (Olsen), K (CAL), metabolic quotient, grain yield of winter cereals and grain nitrogen uptake (satisfactory predictions) and ergosterol content (unsatisfactory prediction). Good predictions of the contents of Mg (CaCl2) and microbial biomass P (Pmic) were achieved for field-moist but not for pre-treated samples. Despite sample preparation, only satisfactory predictions were obtained for the ratios of Cmic/Nmic and ergosterol/Cmic and grain nitrogen content (1.4RSC2.0, r0.8 and 0.8a1.2). However, unsatisfactory predictions for field-moist and pre-treated samples were achieved for the content of P (CAL), the nitrogen mineralisation rate and the ratios of Cmic/Pmic and basal respiration/nitrogen mineralisation rate. Our results demonstrate that biological soil properties can be predicted with NIRS for closed populations in both sample states. The pre-treatment should be used if samples have to be stored prior to infrared measurements for periods longer than a month.  相似文献   

16.
N mineralization in soils under laboratory incubation conditions The potential rate of release of nitrogen by the organic matter in agriculturally used soils was determined under laboratory conditions by means of incubation. Mineralization of the more resistant soil organic matter proceeded linearly with time during an incubation period of 2–3 weeks, when field-moist and air-dried samples were used and at the beginning of the incubation experiment sufficient water was added to bring them to saturation. Mineralization was taking an exponential course in soils with additions of easily decomposable organic matter or in soils with a higher proportion of organic residues from crops. For the 14 investigated arable and grassland soils great variations in the average daily rate of mineralization were found ranging from 5–60 μg Nmin/10 g DM. The data correlated very well with the biomass (r = 0.96) and the cell-free protease activity (r = 0.98) of the soils. Different measures of soil management (preceding crops, application of sewage sludge, addition of heavy metals) had a more or less pronounced influence on the rate of mineralization. The optimum temperature was 50°C for N mineralization and 26°C for nitrification. Contrary to nitrification, the soil reaction had only little influence on mineralization and proved also independent of the Nmin content of soils. The results indicate that ammonification of organic N compounds may largely proceed via the microbial biomass.  相似文献   

17.
The size of the microbial biomass and dehydrogenase activity were measured in air-dried and rewetted apple orchard surface soils with accumulation of Cu, Pb, and As due to the application of Bordeaux mixtures and lead arsenate. The largest amounts of total Cu, Pb, and As found in the soils used were 1,108, 1,271, and 209 mg kg-1 soil, respectively. The amounts of 0.1 M HCl-extractable heavy metals were strongly correlated with the total amounts, while those of 0.1 M CaCl2-extractable heavy metals, except for As, increased significantly with decreasing soil pH. The amounts of microbial biomass C and N, expressed on a soil organic C and total N basis, respectively, were each negatively correlated with the amounts of total and 0.1 M HCl-extractable Cu. On the other hand, the dehydrogenase activity was not affected by the amounts of total and 0.1 M HCl-extractable heavy metals, and was negatively correlated with the amount of 0.1 M CaCl2-extractable Cu and positively with the soil pH. Higher significant correlations were observed when the dehydrogenase activity was calculated per unit of soil organic C. Thus the microbial biomass was adversely affected by the slightly soluble fractions of Cu accumulated in apple orchard soils, whereas the dehydrogenase activity was affected by the water-soluble and exchangeable Cu of which amount depended on the soil pH. It is suggested that the microbial biomass and dehydrogenase activity expressed on a soil organic matter basis could become useful indicators for assessing the effects of heavy metals on the size and activity of the microbial biomass in soils differing in organic matter contents.  相似文献   

18.
采集喀斯特地区灰质白云岩发育的乔木林下土壤,全部湿筛分为>5mm,5~2mm,2~1mm,1~0.5mm,0.5~0.25mm共5个粒级团聚体,再将5个粒级团聚体进行碳水化合物提取后后再次分别湿筛,收集>5mm,5~2mm,2~1mm,1~0.5mm,0.5~0.25mm共5个粒级的团聚体样品.对两次湿筛中5个粒级的土壤分别进行团聚体含量、土壤有机碳、土壤可氧化态有机碳测定,分析土壤团聚体稳定性与土壤有机碳、土壤可氧化态有机碳的关系.结果表明:灰质白云岩乔木林下土壤在经过提取碳水化合物的第二次湿筛后,大粒级团聚体(>5mm,5~2mm)向小粒级(2~1mm,1~0.5mm,0.5~0.25mm)转移;有机碳主要存在于较大粒级团聚体中,但各粒级团聚体有机碳并不随之转移;各粒径团聚体可氧化态碳含量均减少,但较大粒级(>5mm,5~2mm)可氧化态有机碳含量多,较小粒级(2~1mm,1~0.5mm,0.5~0.25mm)可氧化态有机碳含量少,故推测较大粒级团聚体(>2mm)保护土壤活性有机碳能力比较小粒级团聚体(<2mm)强.  相似文献   

19.
Samples from six ash soils were chosen with a range of Fe and C contents. Stabilities over the aggregate size-range from < 1 †m to > 2 mm were measured by selectively removing aggregating agents from fresh soil samples. Wet-sieving was also carried out on both field-moist and air-dried 3.4–2.0 mm macroaggregates.
Macroaggregate stabilities were closely related to C contents and were also enhanced by high contents of allophane and/or Feox. High water contents decreased the stability of field-moist macroaggregates.
Clay-sized material was most readily dispersed with Na resin after pretreatment with hydrogen peroxide; removing the latter alone was usually ineffective in dispersing clays.  相似文献   

20.
《Applied soil ecology》2001,16(3):195-208
Soil structure mediates many biological and physical soil processes and is therefore an important soil property. Physical soil processes, such as aggregation, can be markedly influenced by both residue quality and soil microbial community structure. Three experiments were conducted to examine (i) the temporal dynamics of aggregate formation and the water stability of the obtained aggregates, (ii) the effect of residue quality on aggregation and microbial respiration, and (iii) the effect of fungi and bacteria on aggregation.In the first experiment, 250 μm sieved air-dried soil, mixed with wheat straw, was incubated for 14 days to allow formation of water-stable macroaggregates (>250 μm). Aggregate stability was measured by wet sieving after four different disruptive treatments: (i) soil at field capacity; (ii) soil air-dried and slowly wetted; (iii) soil air-dried and quickly wetted; (iv) 8 mm sieved soil, air-dried and immersed in water (slaking). After 14 days of incubation, maximum aggregation for soil sieved at field capacity was reached; however, these newly formed aggregates were not yet resistant to slaking.During the second experiment, the effect of low-quality residue (C/N: 108) (with or without extra mineral nitrogen) and high-quality residue (C/N: 19.7) (without extra mineral nitrogen) on macroaggregate formation and fungal and bacterial populations was tested. After 14 days, aggregation, microbial respiration, and total microbial biomass were not significantly different between the low-quality (minus mineral nitrogen) and high-quality residue treatment. However, fungal biomass was higher for the low-quality residue treatment compared to the high-quality residue treatment. In contrast, bacterial populations were favored by the high-quality residue treatment. Addition of mineral N in the low-quality residue treatment resulted in reduced macroaggregate formation and fungal biomass, but had no effect on bacterial biomass. These observations are not conclusive for the function of fungal and/or bacterial biomass in relation to macroaggregate formation. In order to directly discern the influence of soil microflora on aggregation, a third experiment was conducted in which a fungicide (captan) or bactericide (oxytetracycline) was applied to selectively suppress fungal or bacterial populations. The direct suppression of fungal growth by addition of fungicide led to reduced macroaggregate formation. However, suppression of bacterial growth by addition of bactericide did not lead to reduced macroaggregate formation. In conclusion, macroaggregate formation was positively influenced by fungal activity but was not significantly influenced by residue quality or bacterial activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号