首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interleukin-2 (IL-2) is an immunoregulatory cytokine that binds sequentially to the alpha (IL-2Ralpha), beta (IL-2Rbeta), and common gamma chain (gammac) receptor subunits. Here we present the 2.8 angstrom crystal structure of a complex between human IL-2 and IL-2Ralpha, which interact in a docking mode distinct from that of other cytokine receptor complexes. IL-2Ralpha is composed of strand-swapped "sushi-like" domains, unlike the classical cytokine receptor fold. As a result of this domain swap, IL-2Ralpha uses a composite surface to dock into a groove on IL-2 that also serves as a binding site for antagonist drugs. With this complex, we now have representative structures for each class of hematopoietic cytokine receptor-docking modules.  相似文献   

2.
Interleukin-6 (IL-6) is an immunoregulatory cytokine that activates a cell-surface signaling assembly composed of IL-6, the IL-6 alpha-receptor (IL-6Ralpha), and the shared signaling receptor gp130. The 3.65 angstrom-resolution structure of the extracellular signaling complex reveals a hexameric, interlocking assembly mediated by a total of 10 symmetry-related, thermodynamically coupled interfaces. Assembly of the hexameric complex occurs sequentially: IL-6 is first engaged by IL-6Ralpha and then presented to gp130in the proper geometry to facilitate a cooperative transition into the high-affinity, signaling-competent hexamer. The quaternary structures of other IL-6/IL-12 family signaling complexes are likely constructed by means of a similar topological blueprint.  相似文献   

3.
4.
The cytokine interleukin-21 (IL-21) is closely related to IL-2 and IL-15, and their receptors all share the common cytokine receptor gamma chain, gammac, which is mutated in humans with X-linked severe combined immunodeficiency disease (XSCID). We demonstrate that, although mice deficient in the receptor for IL-21 (IL-21R) have normal lymphoid development, after immunization, these animals have higher production of the immunoglobulin IgE, but lower IgG1, than wild-type animals. Mice lacking both IL-4 and IL-21R exhibited a significantly more pronounced phenotype, with dysgammaglobulinemia, characterized primarily by a severely impaired IgG response. Thus, IL-21 has a significant influence on the regulation of B cell function in vivo and cooperates with IL-4. This suggests that these gammac-dependent cytokines may be those whose inactivation is primarily responsible for the B cell defect in humans with XSCID.  相似文献   

5.
6.
The T cell lymphokine, interleukin-2 (IL-2), plays a pivotal role in an immune response by stimulating antigen-activated B lymphocytes to progress through the cell cycle and to differentiate into antibody-secreting cells. An IL-2 inducible B lymphoma line, in which the growth and differentiation responses are uncoupled, provides a model system for dissecting the signaling mechanisms operating in each response. This system was used to show that both signals are initiated by IL-2 binding to a single, unifunctional receptor complex. Moreover, both signals are transduced by a pathway that does not involve any known second messenger system and that can be blocked by a second T cell lymphokine, interleukin 4. These findings suggest that the pleiotrophic effects of IL-2 are determined by different translations of the signal in the nucleus.  相似文献   

7.
The activation of gp130, a shared signal-transducing receptor for a family of cytokines, is initiated by recognition of ligand followed by oligomerization into a higher order signaling complex. Kaposi's sarcoma-associated herpesvirus encodes a functional homolog of human interleukin-6 (IL-6) that activates human gp130. In the 2.4 angstrom crystal structure of the extracellular signaling assembly between viral IL-6 and human gp130, two complexes are cross-linked into a tetramer through direct interactions between the immunoglobulin domain of gp130 and site III of viral IL-6, which is necessary for receptor activation. Unlike human IL-6 (which uses many hydrophilic residues), the viral cytokine largely uses hydrophobic amino acids to contact gp130, which enhances the complementarity of the viral IL-6-gp130 binding interfaces. The cross-reactivity of gp130 is apparently due to a chemical plasticity evident in the amphipathic gp130 cytokine-binding sites.  相似文献   

8.
Structure-activity studies of interleukin-2   总被引:7,自引:0,他引:7  
The critical role of interleukin-2 (IL-2) in immune response heightens the need to know its structure in order to understand its activity. New computer-assisted predictive methods for the assignment of secondary structure together with a method to predict the tertiary structure of a protein from data on its primary sequence and secondary structure were applied to IL-2. This method generated four topological families of structures, of which the most plausible is a right-handed fourfold alpha-helical bundle. Members of this family were shown to be compatible with existing structural data on disulfide bridges and monoclonal antibody binding for IL-2. Experimental estimates of secondary structure from circular dichroism and site-directed mutagenesis data support the model. A region likely to be important in IL-2 binding to its receptor was identified as residues Leu36, Met38, Leu40, Phe42, Phe44, and Met46.  相似文献   

9.
The lyso-phospholipid sphingosine 1-phosphate modulates lymphocyte trafficking, endothelial development and integrity, heart rate, and vascular tone and maturation by activating G protein-coupled sphingosine 1-phosphate receptors. Here, we present the crystal structure of the sphingosine 1-phosphate receptor 1 fused to T4-lysozyme (S1P(1)-T4L) in complex with an antagonist sphingolipid mimic. Extracellular access to the binding pocket is occluded by the amino terminus and extracellular loops of the receptor. Access is gained by ligands entering laterally between helices I and VII within the transmembrane region of the receptor. This structure, along with mutagenesis, agonist structure-activity relationship data, and modeling, provides a detailed view of the molecular recognition and requirement for hydrophobic volume that activates S1P(1), resulting in the modulation of immune and stromal cell responses.  相似文献   

10.
Severe combined immunodeficiency-X1 (SCID-X1) is an X-linked inherited disorder characterized by an early block in T and natural killer (NK) lymphocyte differentiation. This block is caused by mutations of the gene encoding the gammac cytokine receptor subunit of interleukin-2, -4, -7, -9, and -15 receptors, which participates in the delivery of growth, survival, and differentiation signals to early lymphoid progenitors. After preclinical studies, a gene therapy trial for SCID-X1 was initiated, based on the use of complementary DNA containing a defective gammac Moloney retrovirus-derived vector and ex vivo infection of CD34+ cells. After a 10-month follow-up period, gammac transgene-expressing T and NK cells were detected in two patients. T, B, and NK cell counts and function, including antigen-specific responses, were comparable to those of age-matched controls. Thus, gene therapy was able to provide full correction of disease phenotype and, hence, clinical benefit.  相似文献   

11.
Structure, dynamics, and reactivity in hemoglobin   总被引:10,自引:0,他引:10  
The static structure of hemoglobin and its functional properties are very well characterized. It is still not known how energy is stored and used within the structure of the protein to promote function and functional diversity. An essential part of this question is understanding the mechanism through which the overall protein structure (quaternary structure) couples to the local environment about the oxygen binding sites. Time-resolved resonance Raman spectroscopy has been used to probe the vibrational degrees of the freedom of the binding site as a function of protein structure. Comparison of the spectra from both equilibrium and transient forms of deoxy hemoglobin from a variety of mammalian, reptilian, and fish hemoglobins reveals that for each quaternary structure there exist two tertiary states stabilized by the presence or absence of an iron-bound ligand. Pulse-probe Raman experiments show that for photodissociated, ligated hemoglobins the local tertiary structure relaxes at a solution-dependent rate extending from tens of nanoseconds to microseconds. In this local environment, the linkage between the iron and the proximal histidine proves to be the single observed structural feature that responds in a systematic and substantial manner to structural changes in the protein. The additional finding of a correlation between the frequency of the iron-proximal histidine stretching motion (nu Fe-His) and various parameters of ligand reactivity, including geminate recombination, implicates the associated localized structural element in the mechanism of protein control of ligand binding. On the basis of these and related finds, a model is presented to account for both coarse and fine control of ligand binding by the protein structure.  相似文献   

12.
Dopamine modulates movement, cognition, and emotion through activation of dopamine G protein-coupled receptors in the brain. The crystal structure of the human dopamine D3 receptor (D3R) in complex with the small molecule D2R/D3R-specific antagonist eticlopride reveals important features of the ligand binding pocket and extracellular loops. On the intracellular side of the receptor, a locked conformation of the ionic lock and two distinctly different conformations of intracellular loop 2 are observed. Docking of R-22, a D3R-selective antagonist, reveals an extracellular extension of the eticlopride binding site that comprises a second binding pocket for the aryl amide of R-22, which differs between the highly homologous D2R and D3R. This difference provides direction to the design of D3R-selective agents for treating drug abuse and other neuropsychiatric indications.  相似文献   

13.
14.
Binding of virus particles to specific host cell surface receptors is known to be an obligatory step in infection even though the molecular basis for these interactions is not well characterized. The crystal structure of the adenovirus fiber knob domain in complex with domain I of its human cellular receptor, coxsackie and adenovirus receptor (CAR), is presented here. Surface-exposed loops on knob contact one face of CAR, forming a high-affinity complex. Topology mismatches between interacting surfaces create interfacial solvent-filled cavities and channels that may be targets for antiviral drug therapy. The structure identifies key determinants of binding specificity, which may suggest ways to modify the tropism of adenovirus-based gene therapy vectors.  相似文献   

15.
Interleukin-3 (IL-3) binds to its receptor with high and low affinities, induces tyrosine phosphorylation, and promotes the proliferation and differentiation of hematopoietic cells. A binding component of the IL-3 receptor was cloned. Fibroblasts transfected with the complementary DNA bound IL-3 with a low affinity [dissociation constant (Kd) of 17.9 +/- 3.6 nM]. No consensus sequence for a tyrosine kinase was present in the cytoplasmic domain. Thus, additional components are required for a functional high affinity IL-3 receptor. A sequence comparison of the IL-3 receptor with other cytokine receptors (erythropoietin, IL-4, IL-6, and the beta chain IL-2 receptor) revealed a common motif of a distinct receptor gene family.  相似文献   

16.
Identification of a putative regulator of early T cell activation genes   总被引:98,自引:0,他引:98  
Molecules involved in the antigen receptor-dependent regulation of early T cell activation genes were investigated with the use of functional sequences of the T cell activation-specific enhancer of interleukin-2 (IL-2). One of these sequences forms a protein complex, NFAT-1, specifically with nuclear extracts of activated T cells. This complex appeared 10 to 25 minutes before the activation of the IL-2 gene. Studies with inhibitors of protein synthesis indicated that the time of synthesis of the activator of the IL-2 gene in Jurkat T cells corresponds to the time of appearance of NFAT-1. NFAT-1, or a very similar protein, bound functional sequences of the long terminal repeat (LTR) of the human immunodeficiency virus type 1; the LTR of this virus is known to be stimulated during early T cell activation. The binding site for this complex activated a linked promoter after transfection into antigen receptor-activated T cells but not other cell types. These characteristics suggest that NFAT-1 transmits signals initiated at the T cell antigen receptor.  相似文献   

17.
18.
Antigen or mitogen-induced activation of resting T cells induces the synthesis of interleukin-2 (IL-2) as well as the expression of specific cell surface receptors for this lymphokine. Failure of the production of either IL-2 or its receptor results in a failure of the T-cell immune response. The receptor is composed of a 33,000-dalton (251-amino acid) peptide precursor that is post-translationally glycosylated into the mature 55,000-dalton form. In contrast to resting T cells, human T-cell lymphotrophic virus I (HTLV-I)-associated adult T-cell leukemia cells constitutively express large numbers of IL-2 receptors. Because IL-2 receptors are present on the malignant T cells but not on normal resting cells, clinical trials have been initiated in which patients with adult T-cell leukemia are treated with a monoclonal antibody that binds to the IL-2 receptor.  相似文献   

19.
Interleukin-1 alpha and -1 beta (IL-1 alpha and IL-1 beta) are cytokines that participate in the regulation of immune responses, inflammatory reactions, and hematopoiesis. A direct expression strategy was used to clone the receptor for IL-1 from mouse T cells. The product of the cloned complementary DNA binds both IL-1 alpha and IL-1 beta in a manner indistinguishable from that of the native T cell IL-1 receptor. The extracellular, IL-1 binding portion of the receptor is 319 amino acids in length and is composed of three immunoglobulin-like domains. The cytoplasmic portion of the receptor is 217 amino acids long.  相似文献   

20.
Interleukin-8 (IL-8) is an inflammatory cytokine that activates neutrophil chemotaxis, degranulation, and the respiratory burst. Neutrophils express receptors for IL-8 that are coupled to guanine nucleotide-binding proteins (G proteins); binding of IL-8 to its receptor induces the mobilization of intracellular calcium stores. A cDNA clone from HL-60 neutrophils, designated p2, has now been isolated that encodes a human IL-8 receptor. When p2 is expressed in oocytes from Xenopus laevis, the oocytes bind 125I-labeled IL-8 specifically and respond to IL-8 by mobilizing calcium stores with an EC50 of 20 nM. This IL-8 receptor has 77% amino acid identity with a second human neutrophil receptor isotype that binds IL-8 with higher affinity. It also exhibits 69% amino acid identity with a protein reported to be an N-formyl peptide receptor from rabbit neutrophils, but less than 30% identity with all other known G protein-coupled receptors, including the human N-formyl peptide receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号