首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
为提高农业车辆导航路径自动跟踪精度,提出一种基于线性时变模型预测控制的路径跟踪方法。该方法将农业车辆非线性运动学模型线性化和离散化处理,作为控制器预测方程;建立以系统控制增量为状态量的目标函数,为防止无可行解,引入松弛因子;设计系统控制量、控制增量和状态量约束条件,并将目标函数求解转为带约束的二次规划问题;采用内点法进行求解,将求得的控制输入增量第一个元素作用于系统;重复以上过程,实现优化控制。基于Matlab/Simulink平台进行了模型预测控制器设计,并分别进行了导航坐标系下的直线和圆形路径跟踪试验。结果表明,所设计的控制器能够实现直线路径的完全跟踪(误差始终为0);跟踪圆形路径时,1 m/s时的横向平均跟踪误差为7.5 cm,3 m/s时的横向平均跟踪误差为10 cm;整个跟踪过程,前轮转角始终被限定在约束范围内。不同控制器参数下的仿真结果表明,增大预测时域和控制周期能够减小跟踪误差和前轮转角变化幅度,控制时域的变化对控制器路径跟踪响应速度影响较小。同时基于设计的模型预测控制器进行了场地试验。结果表明,试验小车以1m/s的速度跟踪直线路径时,横向最大误差均值为1.622 cm,横向平均误差均值为0.865 cm;跟踪圆形路径时,当行走速度低于1 m/s时,横向最大误差小于10 cm。  相似文献   

2.
针对现有单边制动履带车辆跟踪控制算法同周期内并行控制难、跟踪精度低、转向控制次数较多等问题,该研究以电控化改装后江苏筑水农机 3B55 型履带运输车为试验平台,开展单边制动履带车辆路径跟踪控制算法研究。通过单边制动履带车辆运动学分析,构建车辆预瞄跟踪模型,提出一种预瞄跟踪模糊控制算法,将横向偏差与航向偏差作为多输入输出模糊控制器输入参数,实现车辆同一控制周期内转向与直线行驶的并行控制。为了优化车辆路径跟踪精度与转向控制次数,提出改进麻雀搜索算法(sparrow search algorithm, SSA)的自适应前视距求解算法,考虑车辆的横向偏差和转向路径角度约束,解析较优前视距离,通过仿真和田间试验对算法进行跟踪精度与转向控制次数综合评价。仿真结果表明:基于自适应预瞄跟踪模糊控制算法跟踪多角度规划路径时,车辆转向控制次数为89次,误差面积为1.74 m2。田间作业路况下,由于试验路面起伏不平,并且随速度增加车辆跟踪精度下降,但跟踪精度及转向控制次数随前视距离的变化规律与仿真结果一致,当车辆分别以0.14、0.47和0.83 m/s跟踪路径时,自适应预瞄跟踪模糊控制算法相对于固定前视距离预瞄跟踪模糊控制算法车辆转向控制次数分别减少13.59%、9.87%和11.25%,误差面积分别减少19.93%、48.48%和54.59%,验证了算法的有效性。研究结果可为单边制动履带车辆的农机自动导航技术提供创新思路与技术支撑。  相似文献   

3.
基于自主导航和全方位转向的农用机器人设计   总被引:9,自引:6,他引:3  
为了提高农业作业的自动化程度,在对传感器技术、信息技术、自动导航技术等进行研究的基础上,设计了一种自动导航农用轮式移动机器人.针对目前农业机器人存在的操纵、路径跟踪等技术问题,机器人采用四轮全方位转向,操纵灵活;利用CAN总线使导航、控制等模块的通讯效率得以改善;选用模糊控制模仿人在路径跟踪控制时的控制策略,提高了移动机器人的智能化程度.仿真和试验表明机器人有较好的转向性能且在速度为1 m/s时跟踪路径的偏差为0.1 m左右.  相似文献   

4.
为提高无人驾驶履带式花生收获机沙地作业路径跟踪精度,以4HBL-2型自走式花生联合收获机为研究对象,开展了履带式收获机无人驾驶路径跟踪控制研究。建立了履带式收获机运动学模型与虚拟转向角函数关系;以航向偏差值作为观测量、阿克曼模型推算角速度作为测量值,设计卡尔曼融合算法,获得基于阿克曼模型的虚拟转向角度;根据虚拟转向角度对PID路径跟踪算法进行改进,提出了基于预瞄跟踪的双PID路径跟踪控制方法;通过脉冲宽度控制器实现了履带式花生收获机路径跟踪精准控制。仿真试验结果表明:基于预瞄跟踪双PID的路径跟踪控制方法能够进行路径跟踪控制,具有控制平滑和稳态误差小等特点。田间试验表明:花生收获机在沙地以0.6m/s的速度作业时,系统直线跟踪平均绝对误差为2.23 cm,最大偏差为4.14 cm,相对于PD路径跟踪控制器分别提高了56.12%和66.07%。上线试验中,初始偏差分别是0.5、1.0和1.5 m时,上线时间分别为11.00、12.92和13.78 s,上线距离为6.60、7.75和8.26 m;最大超调量分别为5.68%、5.84%和8.06%,相较于轮式收获机,上线距离分别减小了1.9...  相似文献   

5.
雷沃ZP9500高地隙喷雾机的GNSS自动导航作业系统设计   总被引:16,自引:14,他引:2  
为减少农药喷雾作业对人体造成的化学损害,该研究以雷沃高地隙喷杆喷雾机为平台,基于GNSS开发了自动导航作业系统,实现喷雾机在极少人工干预情况下的自动导航作业。通过对平台的机-电-液改造,实现了喷雾机作业系统的电气化控制。基于简化的二自由度车辆转向模型设计了以位置偏差和航向偏差为状态变量的直线路径跟踪控制算法,基于纯追踪模型设计了曲线路径跟踪控制算法。根据喷雾机田间作业需要设计了喷雾机一体化自动导航作业控制方法,使系统能够自动控制喷雾机完成直线、地头转弯行驶和喷雾作业,油门调节以及车辆启停控制。在1.3 m/s左右的前进速度条件下,分别在水泥路面、旱田、水田环境中进行了试验,测试结果表明:水泥路面车身横滚在–1.6?~1.5?范围,直线路径跟踪误差最大值为3.9 cm,平均值为-0.15 cm,标准差为1.0 cm;旱田地块车身横滚在–1.4?~3.3?范围,跟踪误差最大值为9.8 cm,平均值为1.3 cm,标准差为3.3 cm;水田环境车身横滚在–2.4?~5.2?范围,跟踪误差最大值为17.5 cm,平均值为2.2 cm,标准差为4.4 cm。试验数据表明,所设计的自动导航作业系统初始上线快速、地头转弯对行平顺、各设计功能执行可靠;导航系统具有良好的稳定性和控制精度,能够满足水田、旱田环境下的喷雾作业要求。  相似文献   

6.
为了实现铰接式车辆无人驾驶技术。针对路径跟踪问题,该文提出了基于模糊双曲正切模型的铰接式车辆路径跟踪控制算法。首先根据实地试验测得铰接式车辆的横向偏差、横向偏差变化率、航向角偏差、航向角偏差变化率和转向角的样本数据,建立其模糊双曲正切模型。在此基础上,采用改进的自适应反向传播(back propagation,BP)神经网络对模型进行参数辨识,并推导了基于Cauchy鲁棒误差估计器的权系数调解率公式。然后设计基于极点配置方法的控制器,得到转角的反馈控制率。从试验数据可以看出:车辆横向位置偏差、航向角偏差、转角控制量分别控制在0.008 m、0.07 rad(0.5°)、0.21 rad(12°)附近,各向偏差均稳定,误差控制在1%以内。该种路径跟踪控制算法的研究可为铰接式车辆无人驾驶提供参考。  相似文献   

7.
拖拉机自动导航变曲度路径跟踪控制   总被引:2,自引:2,他引:0  
针对当前拖拉机自动导航曲线跟踪控制精度不能满足生产需要的问题,该研究提出一种基于前轮转角前馈补偿策略的变曲度路径跟踪控制方法。综合考虑农机作业速度和目标路径曲度对前视距离的影响,通过调整前视区域和计算预瞄点,动态调整前视距离和前轮转角前馈量,在追踪预瞄点的过程中,利用农机与目标路径偏差设计变曲度路径跟踪模糊控制器,通过实时调整拖拉机前轮转角补偿量减小稳态误差。以DF2204无级变速拖拉机为试验平台,设计并研发了自动导航系统,开展21组变曲度路径跟踪控制试验。试验结果表明,拖拉机以1、1.5、2和3 m/s速度行驶时的平均绝对误差的平均值分别为2.7、2.7、3.3和4.0 cm,均方根误差的平均值分别为3.4、3.7、4.6和5.0 cm,满足农业生产需求。所提方法可有效提高农机曲线路径跟踪精度,减少漏耕,提高农田利用率。  相似文献   

8.
为了提高农机路径跟踪系统控制性能对作业速度变化的适应性,该研究提出一种基于预瞄运动学模型的快速预测控制方法。采用预瞄跟随理论建立预瞄航向误差模型,并将其作为输出方程与路径跟踪误差常规状态方程联立,构建预瞄运动学状态空间误差模型,进而运用模型预测控制算法与输入参数化衰减策略设计路径跟踪控制律。仿真试验结果表明,在不同作业速度下,预瞄模型预测控制器的直线路径跟踪横向误差均渐近趋于0,行驶曲线均无超调;当作业速度为1、3与5 m/s时,预瞄模型预测控制器的圆形路径跟踪横向最大绝对误差分别为8.52、10.42和10.82 cm,标准差分别为3.96、5.83和6.17 cm;当控制时域为10、30与60时,预瞄模型预测控制器的运算周期相对常规模型预测控制器分别减小7.5%、43.0%和48.5%;与常规模型预测控制相比,预瞄模型预测控制能够在确保路径跟踪系统控制精度的同时有效改善系统的动态性能和提高系统的实时性,使不同作业速度下的跟踪效果更加均衡。田间测试结果表明,在0.5~5 m/s作业速度范围内,预瞄模型预测控制器对作业速度变化具有较强的适应性,能够使农机快速平稳地跟踪参考路径并具有较高的控制精度,其直线路径跟踪的横向最大绝对误差均值小于5.5 cm、标准差均值小于2.5 cm,圆形路径跟踪的横向最大绝对误差均值小于15.5 cm、标准差均值小于8.5 cm,跟踪效果满足农机实际作业要求,适于复杂作业环境或高速作业场合。  相似文献   

9.
基于Bezier曲线优化的农机自动驾驶避障控制方法   总被引:4,自引:3,他引:1  
动力换挡拖拉机的产生促进农机自动驾驶向着无人化方向发展,农机的自动避障成为需要解决的关键问题。该文针对最短切线路径曲线曲率不连续、跟踪控制精度差及农机运动模型精度低等缺点,采用三阶Bezier曲线优化法形成连续平滑农机避障路径,通过链式控制理论建立农机运动线性控制模型,利用PI控制器进行转角补偿,并进行了控制方法的仿真和犁耕作业试验。仿真结果表明:农机行驶的航向误差角在-0.06~0.06 rad,横向位置误差小于13 cm,前轮转向角变化平缓,没有显著突变,说明该方法控制精度较高,农机能够按预设轨迹行驶。犁耕作业试验结果表明:Bezier曲线部分的避障精度为5.21 cm,曲线路径的跟踪控制效果较好;避障后农机继续沿直线行驶的精度为1.98 cm,说明该方法可保证农机在避障后恢复直线自动驾驶。研究结果表明,该避障路径控制方法在不平整犁耕地中具有较好的鲁棒性和适应性,可满足拖拉机作业的避障要求。  相似文献   

10.
赵翾  杨珏  张文明  曾珺 《农业工程学报》2015,31(10):198-203
针对农用轮式铰接车辆驾驶员工作条件恶劣的问题,该文提出了一种应用于无人驾驶系统的滑模变结构控制铰接车精确轨迹跟踪的方法。首先推导出了铰接车的运动学模型,根据该模型建立实际行驶轨迹与参考轨迹偏差的模型,之后针对偏差模型设计滑模变结构路径跟踪控制器,该控制器使用Ackermann公式设计,控制律采用指数趋近律使系统有较快的响应和较小的抖振,同时,为了进一步抑制滑模控制器固有的抖振问题,将趋近律中的符号函数替换为连续函数,以避免趋近律数值产生阶跃变化,并用Lyapunov函数证明了其稳定性,最后在硬件在环仿真中验证了控制器的实时性和路径跟踪质量。结果表明,该控制器在硬件在环仿真环境下可将横向位置偏差、航向角偏差、曲率偏差分别控制在0.21 rad(12°)、100 mm、0.17rad(1°)、0.005 m-1附近,各向偏差均在10 s内达到平衡,且误差控制在5%以内,铰接车能有效跟踪参考路径。该研究为农用轮式铰接车辆实现无人驾驶提供参考。  相似文献   

11.
拖拉机行驶路线的自动变更研究   总被引:3,自引:3,他引:0  
为了实现拖拉机自动化作业的需要,本研究利用前馈控制和反馈控制相结合的控制方法,设计了拖拉机行驶路线自动变更的非线性反馈控制器。首先,利用非线性最优控制方法,设计了车辆进行行驶路线自动变更的基准轨迹;然后利用LQ最优控制技术,构造了车辆沿着基准轨迹进行行驶路线变更的反馈控制器。最后,利用设计的基准轨迹和反馈控制器进行了实车试验。试验表明,该控制方法具有良好的适应性,所设计的控制器具有良好的响应性和收敛性。  相似文献   

12.
带单轴拖车拖拉机自动倒车行驶的研究   总被引:3,自引:2,他引:1  
该研究中,应用最优控制理论设计了带单轴拖车拖拉机自动倒车行驶的控制方法。首先利用二次变分法设计了车辆自动行驶的轨道;其次,对车辆运动学方程进行了线性化处理;最后应用最优控制理论,设计了车辆沿行驶轨道自动行驶的一种时变线性二次型控制器,利用设计的行驶轨道和控制器进行了实车试验。试验表明,该控制方法能够实现带单轴拖车拖拉机自动倒车行驶控制。  相似文献   

13.
基于虚拟现实的拖拉机双目视觉导航试验   总被引:2,自引:2,他引:0  
针对农机导航系统的传统田间试验方式受作物生长状态的约束性较强,错过适当的作物生长时期将直接导致开发周期延长、成本增加等问题,该文提出了一种基于虚拟现实技术的拖拉机双目视觉导航试验方法。该方法以拖拉机为作业机械,苗期棉花为目标作物,在虚拟现实环境下建立田间作物行场景的三维几何模型,用于模拟田间试验场景;建立虚拟现实环境下的拖拉机物理引擎,根据实车参数及试验场景信息快速、准确地解算拖拉机的动力学参数,并且根据解算所得的状态参数在虚拟试验场景中实时渲染拖拉机的位姿状态;设计路径跟踪控制器,以经过双目视觉方法识别的田间路径为目标路径,根据拖拉机当前行驶路径与目标路径的相对位置关系解算并控制拖拉机前轮转向角度。以某型拖拉机参数为实车参数,采用大小行距方式布置5行曲线形态的苗期棉花作物行场景开展虚拟导航试验。拖拉机以不大于2 m/s的车速跟踪作物行时,平均位置偏差的绝对值不大于0.072 m、位置偏差的标准差不大于0.141 m;平均航向偏差的绝对值不大于2.622°、航向偏差的标准差不大于4.462°。结果表明:该文设计的拖拉机虚拟试验系统能够在虚拟现实环境下,模拟田间作物行环境开展基于双目视觉的导航试验,可为导航控制系统的测试及改进提供理论依据和试验数据。  相似文献   

14.
基于速度自适应的拖拉机自动导航控制方法   总被引:3,自引:3,他引:0  
针对速度因素对拖拉机自动导航系统稳定性的影响,提出了基于横向位置偏差和航向角偏差的双目标联合滑模控制方法,在建立两轮拖拉机-路径动力学模型和直线路径跟踪偏差模型的基础上,应用Matlab/Simulink进行整体系统仿真,验证了控制方法的可靠性;以雷沃TG1254拖拉机为载体搭建了自动导航控制系统田间试验平台,分别在定速和变速条件下,进行了拖拉机直线路径跟踪控制的田间试验;分析了不同速度条件下的动态跟踪控制效果,验证了设计的自动导航控制系统的稳定性和控制精度。试验结果表明:在拖拉机田间作业常见的定速直线行驶工况下,采用基于速度自适应的双目标联合滑模控制方法,拖拉机直线路径跟踪控制的横向位置偏差最大值为10.60 cm,平均绝对偏差在3.50 cm以内;航向角偏差最大值为3.87°,平均绝对偏差在1.70°以内;在进入稳态以后,前轮转向角最大摆动幅度为3°,摆动标准差为0.80°。结论表明,该文提出的基于速度自适应的拖拉机自动导航控制系统,能基本实现不同速度下的直线路径自动跟踪控制。  相似文献   

15.
基于激光导航的果园拖拉机自动控制系统   总被引:10,自引:8,他引:2  
为实现果园作业的自动化,以拖拉机为研究对象,采用激光导航方式实现了果园机械的自动导航。试验以激光扫描仪为检测设备对果树位置信息实时采集,采用最小二乘法规划拖拉机导航路径;拖拉机航向偏差和横向偏差作为比例控制器的输入量,以方向盘电机的转速为输出量,控制拖拉机沿导航路径直线行走;系统实现了拖拉机在果园环境下的直线行走控制功能。拖拉机以0.27 m/s的速度直线行走30 m,最大横向偏差0.15 m。试验结果表明本系统可用于果园机械的自动导航,并具有一定的可靠性。  相似文献   

16.
基于GPS/INS和线控转向的农业机械自动驾驶系统   总被引:9,自引:9,他引:0  
研究旨在设计出一套农用车辆自动导航控制系统,让机器人代替农民进行田间作业,实现农用车辆自动驾驶,从而可以有效提高农业机械的作业精度、生产效率和使用安全性,并且为精细农业研究提供技术支持,改善农业生产的方法。该文通过GPS/INS(global positioning system/inertial navigation system)组合导航技术实时获得载体的导航信息(位置、速度、航向、姿态),根据导航信息与预设轨迹参数计算出载体的目标前轮转向角,并以该目标前轮转向角与当前前轮转角的差值作为控制输入,实现对转向执行电机的精确控制,从而实现载体的路径跟踪控制。同时对整个系统的软硬件进行设计,并对系统控制策略进行仿真和试验验证。最终结果表明,本文所设计的组合导航系统定位精度高,其定位精度可达到0.1~0.5 m;路径跟踪系统误差小,当车速分别为0.5 m/s和1 m/s时,路径跟踪的最大横向误差分别为0.16 m和0.27 m;整个系统响应速度快,可达到0.1s。通过将GPS/INS组合导航技术与线控转向技术相结合,能够实现农用车辆的自动驾驶。  相似文献   

17.
基于超宽带无线定位的农业设施内移动平台路径跟踪研究   总被引:5,自引:4,他引:1  
为实现农业设施内车辆自动导航,提出了一种基于超宽带(ultrawideband,UWB)无线定位的路径跟踪方法。运用4个基站组建UWB无线定位系统,采用加权最小二乘法(weighted least squares, WLS)法解超静定方程组,提高了移动标签的定位精度。重新定义前视距离,根据车体航向与前视直线的夹角界定车体偏差程度,并提出基于动态前视距离的改进型纯追踪模型。在MATLAB 2016a软件环境下的仿真说明该文算法优于采用固定视距的传统纯追踪算法,并进行实车试验。结果显示,在UWB定位系统的引导下,车体在不同初始状态下均能很好地收敛到期望直线,当速度为0.5 m/s时,在4种初始状态下进行直线跟踪,稳态偏差为5.4~8.4 cm,稳态偏差均值为6.3 cm。在矩形路径跟踪时,当横向偏差和航向偏差均为0的初始状态下,全程平均偏差为20.6 cm,跟踪偏差主要出现在90°转向处,最大偏差为85.5 cm,说明改进后的纯追踪算法的路径追踪质量均优于采用固定视距的传统纯追踪模型,能满足农业设施内移动平台自动导航的需求。该方法可为农业设施内车辆导航提供新思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号