首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Monitoring biodiversity at the level of habitats and landscape is becoming widespread in Europe and elsewhere as countries establish international and national habitat conservation policies and monitoring systems. Earth Observation (EO) data offers a potential solution to long-term biodiversity monitoring through direct mapping of habitats or by integrating Land Cover/Use (LC/LU) maps with contextual spatial information and in situ data. Therefore, it appears necessary to develop an automatic/semi-automatic translation framework of LC/LU classes to habitat classes, but also challenging due to discrepancies in domain definitions. In the context of the FP7 BIO_SOS (www.biosos.eu) project, the authors demonstrated the feasibility of the Food and Agricultural Organization Land Cover Classification System (LCCS) taxonomy to habitat class translation. They also developed a framework to automatically translate LCCS classes into the recently proposed General Habitat Categories classification system, able to provide an exhaustive typology of habitat types, ranging from natural ecosystems to urban areas around the globe. However discrepancies in terminology, plant height criteria and basic principles between the two mapping domains inducing a number of one-to-many and many-to-many relations were identified, revealing the need of additional ecological expert knowledge to resolve the ambiguities. This paper illustrates how class phenology, class topological arrangement in the landscape, class spectral signature from multi-temporal Very High spatial Resolution (VHR) satellite imagery and plant height measurements can be used to resolve such ambiguities. Concerning plant height, this paper also compares the mapping results obtained by using accurate values extracted from LIght Detection And Ranging (LIDAR) data and by exploiting EO data texture features (i.e. entropy) as a proxy of plant height information, when LIDAR data are not available. An application for two Natura 2000 coastal sites in Southern Italy is discussed.  相似文献   

2.

Context

Current shifts in biodiversity are driven by multiple processes of environmental and landscape change. Particularly, land use/land cover (LU/LC) dynamics are among the major drivers of biodiversity loss worldwide.

Objectives

In this study we aim to explore the applicability of a new modelling framework to predict top predators’ responses to LU/LC changes.

Methods

The framework integrates remote-sensing based predictors, statistical inference, stochastic-dynamic simulations and spatial projections in a common and interactive approach. From an ecological modelling perspective, the main innovation of our approach lies on the integration of (1) biomass of birds of prey as an upper trophic indicator of the community characteristics that emerge from the habitat quality across multiple scales of organization and (2) fine-scale biophysical attributes to add a new level of understanding about the role of local LU/LC drivers influencing those emergent biodiversity patterns.

Results

Based on species data from published atlases this approach allowed transposing species biomass to finer resolutions, overcoming the lack of detailed information for the study area. Our demonstrative case study revealed a disruptive effect of ongoing LU/LC changes in the spatio-temporal distribution of top predators’ biomass, suggesting the possibility of an emergent disturbance pattern in habitat suitability and community stability. Comparative analysis between simulations and independent field data revealed a promising model performance.

Conclusions

Our modelling approach highlights the importance of integrating local LU/LC functional dynamics to predict key trophic’ responses, considered as pertinent ecological indicators for biodiversity management under realistic' future changing regional scenarios.
  相似文献   

3.

Context

Land-use/land-cover (LU/LC) dynamics is one of the main drivers of global environmental change. In the last years, aerial and satellite imagery have been increasingly used to monitor the spatial extent of changes in LU/LC, deriving relevant biophysical parameters (i.e. primary productivity, climate and habitat structure) that have clear implications in determining spatial and temporal patterns of biodiversity, landscape composition and ecosystem services.

Objectives

An innovative hierarchical modelling framework was developed in order to address the influence of nested attributes of LU/LC on community-based ecological indicators.

Methods

Founded in the principles of the spatially explicit stochastic dynamic methodology (StDM), the proposed methodological advances are supported by the added value of integrating bottom-up interactions between multi-scaled drivers.

Results

The dynamics of biophysical multi-attributes of fine-scale subsystem properties are incorporated to inform dynamic patterns at upper hierarchical levels. Since the most relevant trends associated with LU/LC changes are explicitly modelled within the StDM framework, the ecological indicators’ response can be predicted under different social-economic scenarios and site-specific management actions. A demonstrative application is described to illustrate the framework methodological steps, supporting the theoretic principles previously presented.

Conclusions

We outline the proposed multi-model framework as a promising tool to integrate relevant biophysical information to support ecosystem management and decision-making.
  相似文献   

4.
Dead wood is a critical resource for biodiversity in boreal forests. We analysed the persistence of five model species inhabiting dead wood. By parameterising a metapopulation model (the incidence function model), the model species were all assigned characteristics that makes it likely that they have disappeared from some (20%) forest landscapes with a long history of forest management. In the metapopulation model, a forest stand (5 ha) was regarded as a habitat patch. The amount of habitat in each patch was obtained from models of dead wood dynamics of Norway spruce in central Sweden. Dead wood generated by altered management over the entire landscape was found to be less efficient in reducing extinction risks in comparison to the same amount of dead wood generated by protecting reserves. Because generation of dead wood by altered management is often less expensive than setting aside reserves, it is difficult to determine which conservation measure is most cost-efficient. In a landscape subjected to forestry for the first time, it was better to preserve a few large reserves than many small ones. However, in a managed, highly fragmented forest landscape it was better to set aside many small reserves. The reason for this was that small plots with high habitat quality could be selected, while large reserves originally contained habitats both of high and low quality, and the rate of habitat quality increase was low. A strategy for biodiversity conservation in a managed forest landscape should include information about the history of the landscape, the current amount and spatial distribution of forest habitats, and the potential for rapid restoration of forest habitats, both on managed and unmanaged forest land.  相似文献   

5.
The importance of the spatial as well as the temporal structure of habitat patches for urban biodiversity has been recognised, but rarely quantified. In dynamic environments the rate of habitat destruction and recreation (i.e. the landscape turnover rate), the minimum amount of potential habitat, its spatial configuration as well as the environmental conditions determining habitat quality are crucial factors for species occurrence. We analysed species responses to environmental parameters and to the spatio-temporal configuration of urban brownfield habitats in a multi-species approach (37 plant and 43 insect species). Species presence/absence data and soil parameters, site age, vegetation structure and landscape context were recorded by random stratified sampling at 133 study plots in industrial areas in the city of Bremen (Germany). Based on the field data, we predicted species occurrences by species distribution models using a multi-model inference approach. Predicted species communities were driven by successional age both at the scale of a single building lot and at the landscape scale. Minimum average succession time of brownfield habitats required to support all and especially regionally rare species depended on the proportion of available open space; the larger the potential habitat area the faster the acceptable turnover. Most plant, grasshopper, and leafhopper species modelled could be maintained at an intermediate turnover rate (mean age of 10–15 years) and a proportion of open sites of at least 40%. Our modelling approach provides the opportunity of inferring optimal spatio-temporal landscape configurations for urban conservation management from patch scale species-environment relationships. The results indicate that urban planning should incorporate land use dynamics into the management of urban biodiversity. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
The “land sharing versus land sparing” concept provides a framework for comparing potential land use patterns in terms of trade-offs between biodiversity conservation and agricultural yields at a landscape scale. Here, we raise two additional aspects to be considered in the sparing/sharing debate, supported by a review of available literature. First, beta and gamma (instead of alpha) diversity measures capture landscape scale variance in biodiversity in response to land use changes and should be considered for the long-term management of agricultural landscapes. Moreover, beta and gamma diversity may better account for comparisons of biodiversity between spared and shared land use options. Second, land use history has a pronounced influence on the complexity and variance in agricultural habitat niches at a landscape scale, which in turn may determine the relevance of sparing or sharing land use options. Appropriate and comparable biodiversity metrics and the recognition of landscape history are two vital preconditions in aligning biological conservation goals with maximized yields within the sparing/sharing framework.  相似文献   

7.
As an important carrier of biodiversity, green infrastructure (GI) is significantly affected by changes in urban land use in the process of urbanization. In this study, habitat services from GI were used to represent biodiversity support services, and geographic information system (GIS), remote sensing and statistical analysis were combined to analyze the changes in urban land use compactness and GI habitat services in Wuhan in 2005, 2013 and 2018. Seven indices for land use compactness mainly covering three aspects (land use morphology, land use intensity and land function layout) were selected to explore the correlation and regression relationships between urban land use compactness and habitat services on a grid scale. The results show that: i) The urban land use in Wuhan presents a compact development trend except for the degree of integration; and habitat services decrease along with increasing land use compactness. ii) Relative to land use morphology and land function layout, land use intensity is a more prominent factor affecting habitat services, with construction land density and residential land density always being significant indicators for the habitat pattern. iii) Urban areas with different degrees of land use compactness tend to have different indices that affect the habitat services. Therefore, differential urban development strategies should be formulated based on the regional characteristics of land use compactness levels, so as to coordinate urban compact land use and biodiversity conservation.  相似文献   

8.
Urbanisation is an important driver of biodiversity loss, also contributing to habitat loss and fragmentation of grasslands at the urban-rural interface. While urban green spaces are known to include many grassland habitats, it is uncertain to what extent urban land use types harbour grasslands of special conservation interest and whether patch characteristics and connectivity of these differ from grasslands on agricultural land. By relating the city-wide biotope mapping to the land use mapping of Berlin, Germany, we assessed (1) to which specific urban land use types the major grassland biotope types belong, (2) differences in patch characteristics and connectivity, and (3) the conservation value of grassland patches at a typological level by means of their legal protection status. Grasslands cover 5% of Berlin's surface, and 43% of that area is assigned to legally protected grassland types. The majority of legally protected grassland (71%) lies on urban land opposed to 29% on agricultural land. Airports and historic parks, which only cover 2% of land in Berlin, contain one-third of all protected dry grasslands. Wet grassland is more confined to agricultural land. In airports and agricultural areas, grassland patches are larger but of a more complex shape than those in historic parks. In airports, grassland patches show greater connectivity as they are situated in grassland-dominated surroundings. Grassland in historic parks appears to be more vulnerable due to smaller patch sizes and higher fragmentation. The example of Berlin demonstrates that the urban green infrastructure can clearly contribute to grassland conservation and may thus partially compensate for the decline of traditional grasslands in cultural landscapes. It will be important to involve residents and landowners in urban grassland conservation and management because most grassland of special conservation interest (57%) was found outside of conservation areas.  相似文献   

9.
We test a hypothesis about the spatial coincidence of human population density and species richness, and analyze effects of land conversion and ecosystem use on species richness and landscape diversity in human dominated Central European country, the Czech Republic. We calculated fraction of aboveground net primary productivity appropriated by humans and compared it to the species richness of vertebrate, invertebrate and plant groups and to landscape diversity index in 560 mapping grid squares with grid size approximately 130?km2. Spatial correlations and regressions were established between human population density, appropriation of net primary production, land cover and biodiversity. We found positive spatial coincidence between human population density and species richness. Although the amount of net primary production was not related to species richness in general, we found significant negative spatial relationship between ecosystem use intensity and landscape diversity. As the area of the Czech Republic exhibits relatively high land use intensities, spatial patterns of human impacts have important implications for land management and biodiversity conservation in a cultural landscape.  相似文献   

10.
Land cover data for landscape ecological studies are frequently obtained by field survey. In the United Kingdom, temporally separated field surveys have been used to identify the locations and magnitudes of recent changes in land cover. However, such map data contain errors which may seriously hinder the identification of land cover change and the extent and locations of rare landscape features. This paper investigates the extent of the differences between two sets of maps derived from field surveys within the Northumberland National Park in 1991 and 1992. The method used in each survey was the Phase 1 approach of the Nature Conservancy Council of Great Britain. Differences between maps were greatest for the land cover types with the smallest areas. Overall spatial correspondence between maps was found to be only 44.4%. A maximum of 14.4% of the total area surveyed was found to have undergone genuine land cover change. The remaining discrepancies, equivalent to 41.2% of the total survey area, were attributed primarily to differences of land cover interpretation between surveyors (classification error). Differences in boundary locations (positional error) were also noted, but were found to be a relatively minor source of error. The implications for the detection of land cover change and habitat mapping are discussed.  相似文献   

11.
We present extensions to the agent-based agricultural policy simulator (AgriPoliS) model that make it possible to simulate the consequences of agricultural policy reform on farmers?? land use decisions and concomitant impacts on landscape mosaic, biodiversity and ecosystem services in a real agricultural region. An observed population of farms is modelled as a multi-agent system where individual farm-agent behaviour and their interactions??principally competition for land??are defined through an optimization framework with land use and landscape impacts resulting as emergent properties of the system. The model is calibrated to real data on the farms and the landscape to be studied. We illustrate the utility of the model by evaluating the potential impacts of three alternative frameworks for the European Union Common Agricultural Policy (CAP) on landscape values in two marginal agricultural regions. Mosaic value was found to be sensitive to the choice of policy scheme in one of the landscapes, whereas significant trade-offs were shown to occur in terms of species richness by habitat and species composition at the landscape scale in both regions. The relationship between food production and other ecosystem services was found to be multifaceted. Thus illustrating the difficulty of achieving landscape goals in a particular region with simple or general land management rules (such as the current rules attached to CAPs direct payments). Given the scarcity of funding for conservation, the level and conditions for allocating direct payments are, potentially, of great importance for preserving landscape values in marginal agricultural regions (subject to levels of other support).  相似文献   

12.
In eastern North America, large forest patches have been the primary target of biodiversity conservation. This conservation strategy ignores land units that combine to form the complex emergent rural landscapes typical of this region. In addition, many studies have focussed on one wildlife group at a single spatial scale. In this paper, studies of avian and anuran populations at regional and landscape scales have been integrated to assess the ecological value of agricultural mosaics in southern Ontario on the basis of the maintenance of faunal biodiversity. Field surveys of avian and anuran populations were conducted between 2001 and 2004 at the watershed and sub-watershed levels. The ecological values of land units were based on a combination of several components including species richness, species of conservation concern (rarity), abundance, and landscape parameters (patch size and connectivity). It was determined that habitats such as thicket swamps, coniferous plantations and cultural savannas can play an important role in the overall biodiversity and ecological value of the agricultural landscape. Thicket swamps at the edge of agricultural fields or roads provided excellent breeding habitat for anurans. Coniferous plantations and cultural savannas attracted many birds of conservation concern. In many cases, the land units that provided high ecological value for birds did not score well for frogs. Higher scores for avian and anuran populations were recorded along the Niagara Escarpment and other protected areas as expected. However, some private land areas scored high, some spatially connected to the protected areas and therefore providing an opportunity for private land owners to enter into a management arrangement with the local agencies.  相似文献   

13.
In densely urbanized areas, small pockets of vegetated areas such as street verges, vacant lots, and walls can be rich in biodiversity. In spite of their small size, these ‘informal urban greenspaces’ can provide critical ecosystem services to urban residents. Maintaining and enhancing the provisioning of ecosystem services requires a systematic understanding of biodiversity patterns and drivers in informal urban green spaces. The ‘environmental filtering’ (a process of certain species selected by specific environmental conditions) concept in community ecology theory may serve as a useful tool for this goal. We tested a multi-scale filtering framework by examining the spontaneous plant diversity patterns (from 83 surveyed sites) on the vertical surfaces of the ancient city wall of Nanjing, China. We found that the variables representing local-habitat filtering (e.g., wall substrates and aspect) and landscape filtering (including spatial configuration of urban land cover, and nighttime light intensity surrounding the local habitats) can jointly explain substantial fractions of variations in taxonomic diversity (up to ca. 60%) and functional diversity (up to ca. 40%). The explanatory power was stronger in the repaired wall habitats than in the unrepaired counterparts, in line with the prediction that environmental filtering is more pronounced during the early stages of community assembly. While the strength of landscape filtering showed clear scale-dependency, its relative importance consistently outweighs local-habitat filtering across all study scales of 200–1600 m, suggesting that configuration of neighboring landscape context can play an important role in shaping local-scale biodiversity of informal urban green spaces. Our results have useful implications for the study, design, and management of informal urban green spaces. Well-tailored multi-scale filtering frameworks may contribute to understanding urban biodiversity patterns in a systematic way.  相似文献   

14.

Context

Landscape heterogeneity (the composition and configuration of matrix habitats) plays a major role in shaping species communities in wooded-agricultural landscapes. However, few studies consider the influence of different types of semi-natural and linear habitats in the matrix, despite their known ecological value for biodiversity.

Objective

To investigate the importance of the composition and configuration of matrix habitats for woodland carabid communities and identify whether specific landscape features can help to maintain long-term populations in wooded-agricultural environments.

Methods

Carabids were sampled from woodlands in 36 tetrads of 4 km2 across southern Britain. Landscape heterogeneity including an innovative representation of linear habitats was quantified for each tetrad. Carabid community response was analysed using ordination methods combined with variation partitioning and additional response trait analyses.

Results

Woodland carabid community response was trait-specific and better explained by simultaneously considering the composition and configuration of matrix habitats. Semi-natural and linear features provided significant refuge habitat and functional connectivity. Mature hedgerows were essential for slow-dispersing carabids in fragmented landscapes. Species commonly associated with heathland were correlated with inland water and woodland patches despite widespread heathland conversion to agricultural land, suggesting that species may persist for some decades when elements representative of the original habitat are retained following landscape modification.

Conclusions

Semi-natural and linear habitats have high biodiversity value. Landowners should identify features that can provide additional resources or functional connectivity for species relative to other habitat types in the landscape matrix. Agri-environment options should consider landscape heterogeneity to identify the most efficacious changes for biodiversity.
  相似文献   

15.
Context

Human appropriation of net primary productivity (HANPP) is employed as a measure of human pressures on biodiversity, though largely at global and national scales rather than landscape to regional scales where many conservation decisions take place. Though gaining in familiarity, HANPP is not widely utilized by conservation professionals.

Objectives

This study, encompassing the US side of the Great Lakes basin, examines how regional distributions of HANPP relate to landscape-based biodiversity proxy metrics used by conservation professionals. Our objectives were (1) to quantify the HANPP of managed lands at the county scale; and (2) to assess spatial patterns of HANPP in comparison to landscape diversity and local habitat connectedness to determine if the metric can provide useful information to conservation professionals.

Methods

We aggregated forest and cropland NPP data between 2005 and 2015 and coupled it with previously published potential vegetation maps to quantify the HANPP of each county in the study region. We mapped the outputs at 500 m resolution to analyze spatial relationships between HANPP and landscape metrics of biodiversity potential.

Results

Area-weighted HANPP across our study region averaged 45% of NPP, down to 4.9% in forest-dominated counties. Greater HANPP correlated with reduced landscape diversity (p?<?0.001, r2?=?0.28) and reduced local habitat connectedness (p?<?0.001, r2?=?0.36).

Conclusion

HANPP could be used as an additional tool for conservation professionals during regional-scale land use planning or conservation decision-making, particularly in mixed-use landscapes that both support important biodiversity and have high levels of primary production harvest.

  相似文献   

16.

Context

Landscape modification is an important driver of biodiversity declines, yet we lack insight into how ongoing landscape change and legacies of historical land use together shape biodiversity.

Objectives

We examined how a history of agricultural land use and current forest fragmentation influence the abundance of red-backed salamanders (Plethodon cinereus). We hypothesized that historical agriculture and fragmentation cause changes in habitat quality and landscape structure that limit abundance.

Methods

We measured salamander abundance at 95 forested sites in New York, USA, and we determined whether sites were agricultural fields within the last five decades. We used a structural equation model to estimate relationships between historical agriculture and salamander abundance mediated by changes in forest vegetation, microclimate, and landscape structure.

Results

Historical agriculture affected salamander abundance by altering forest vegetation at a local scale and forest cover at a landscape scale. Abundance was lowest at post-agricultural sites with low woody vegetation, leaf litter depth, and canopy cover. Post-agricultural sites had limited forest cover in the surrounding landscape historically, and salamander abundance was positively related to historical forest cover, suggesting that connectivity to source populations affects colonization of regenerating forests. Abundance was also negatively related to current forest fragmentation.

Conclusions

Historical land use can have legacy effects on animal abundance on par with effects of ongoing landscape change. We showed that associations between animal abundance and historical land use can be driven by altered site conditions and surrounding habitat area, indicating that restoration efforts should consider local site conditions and landscape context.
  相似文献   

17.
This study develops a quantitative approach to evaluate the application of design concepts that link landscape ecology theory to landscape planning. Landscape ecology principles were used to develop spatial concepts for creating an armature of open space in areas subject to rapid urbanization. It focuses on the predicted urban expansion of Damascus, Oregon, as a case study. An alternative futures study was used to test three open space spatial concepts for patches, corridors and networks contrasted with compact and dispersed urban development patterns. Eight scenarios of land use and land cover, over 50 years, were defined based on different spatial design concepts to evaluate their effects on habitat quantity and quality and analyze the tradeoffs between urban development and conservation of three focal wildlife species: red-legged frog, western meadowlark, and Douglas squirrel. Open space spatial concepts highly influenced habitat quantity and quality differences among scenarios. Development patterns showed lower influence on those variables. Scenarios with no landscape ecological spatial concept provided the most land for urban development but reduced habitat quantity and quality. Greenway scenarios presented increases of habitats, but failed to provide sufficient habitats for western meadowlark. Park system scenarios also presented an increase on the amount of habitats, but high-quality habitats for western meadowlark and red-legged frog decreased. Network scenarios presented the best overall amount of habitats and increase of high-quality habitats for the three species, but constrained urban development options.  相似文献   

18.
Landscape ecology as a theoretical basis for nature conservation   总被引:1,自引:0,他引:1  
Conservation of representative biotopes, single species populations or biodiversity usually embraces two or more biotopes, and is often affected by surrounding croplands. The conclusions from landscape ecological studies can, therefore, offer important contributions to conservation, especially at early levels of landscape change or habitat fragmentation. Indicator and keystone species are useful for monitoring and managing fragmented biotopes, respectively. Communities as well as single species are affected by the juxtaposition of successional and climax biotopes, which influence climatic equability, seasonality, productivity and dispersal. Low levels of fragmentation may result in ill-functioning communities, and greater fragmentation may result in species losses and ultimately in the loss of whole communities. Fragmented habitats retain species with high reproductive and dispersal rates and generalized habitat selection. New combinations of interacting species will lead to trivialization of earlier habitat-specific interactions. Validation of these concepts was made with data from a Swedish research program on fragmented biotopes in production landscapes. General reserve selection and methods of management for preserving climax communities, single specialized species and high biodiversity are suggested.  相似文献   

19.
Studies dealing with community similarity are necessary to understand large scale ecological processes causing biodiversity loss and to improve landscape and regional planning. Here, we study landscape variables influencing patterns of community similarity in fragmented and continuous forest landscapes in the Atlantic forest of South America, isolating the effects of forest loss, fragmentation and patterns of land use. Using a grid design, we surveyed birds in 41 square cells of 100 km2 using the point count method. We used multivariate, regression analyses and lagged predictor autoregressive models to examine the relative influence of landscape variables on community similarity. Forest cover was the primary variable explaining patterns of bird community similarity. Similarity showed a sudden decline between 20 and 40% of forest cover. Patterns of land use had a second order effect; native bird communities were less affected by forest loss in landscapes dominated by tree plantations (the most suitable habitat for native species) than in landscapes dominated by annual crops or cattle pastures. The effects of fragmentation were inconclusive. The trade-off between local extinctions and the invasion of extra-regional species using recently created habitats is probably the mechanism generating the observed patterns of community similarity. Limiting forest loss to 30–40% of the landscape cover and improving the suitability of human-modified habitats will contribute to maintain the structure and composition of the native forest bird community in the Atlantic forest.  相似文献   

20.

Context

Traditionally, studies of habitat fragmentation have focused on spatial isolation of habitats. Meanwhile, the role of fragmentation of land ownership and hence of parcelization of habitats remains, particularly in relation to management of semi-natural grasslands, not well understood.

Objective

We propose that, especially in a Danish context, fragmentation of land ownership leads to parcelization of semi-natural grassland habitats. This results in small parcel sizes, obstructing cost effective management in terms of grazing and mowing and consequently leads to encroachment of scrubs, threatening biodiversity.

Methods

We applied national, spatially explicit information about land ownership, management, semi-natural grasslands and vegetation height to examine the relationships between parcel size, management and the proportion of scrubs on semi-natural grasslands.

Results

Results from a regression analysis show that parcel size is significantly negatively related to proportion of scrubs; i.e. small parcels are associated with higher proportions of scrubs compared to large parcels. The results also show that the size of ownership parcels has a stronger explanatory power for the proportion of scrub compared to the size of habitat parcels, where ownership boundaries are not taken into account. Furthermore, parcels, with legal obligations for management, have significantly lower proportion of scrubs compared to parcels without management obligations.

Conclusions

Efforts for conservation of and improvement of biodiversity on semi-natural grassland should pay increasing attention towards the importance of fragmentation of land ownership and parcelization of habitats. Our results point at the need for cross-farm cooperation to secure continuous grassland management to prevent scrub encroachment.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号