首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Context

The roosting habits of many temperate zone bats are well documented at microhabitat scales, but fewer studies have included multi-scale assessments of landscape patterns in bat roost site selection.

Objectives

To identify and assess at the landscape-scale the location of spring and early season maternity roosts of female northern long-eared bats (Myotis septentrionalis) from 2015 to 2016 at Mammoth Cave National Park (MACA), Kentucky, USA.

Methods

We used mist-nets and radiotelemetry to catch and track bats to roost trees across the landscape of MACA. Data on roosting sites were evaluated using spatial point pattern analysis to examine distributional trends of roosts. A variety of spatial covariates were used to model the effect of landscape pattern, including: forest type, elevation, and proximity to hibernacula, water, and road corridors.

Results

Data indicate that roost locations of female northern long-eared bats in MACA were typically situated within 2000 m of known winter hibernacula, occurring more often at higher elevations in mesic upland deciduous forests, and in close proximity to water sources and roads. We present hypotheses to account for the patterns observed in relation to landscape features and habitat resources in the Park.

Conclusions

Our data indicate that a more comprehensive understanding of habitat requirements which includes empirically-based, landscape-scale patterns, and not solely considerations at stand or local levels, could lead to better informed management policies targeting conservation of maternity habitat of forest-dwelling bats, including the northern long-eared bat, a species in decline throughout much of its distribution in North America.
  相似文献   

2.

Context

Context Bats are considered as an ecological indicator of habitat quality due to their sensitivity to human-induced ecosystem changes. Hence, we will focus the study on two indicator species of bats as a proxy to evaluate structure and composition of the landscape to analyze anthropic pressures driving changes in patterns.

Objectives

This study develops a spatially-explicit model to highlight key habitat nodes and corridors which are integral for maintaining functional landscape connectivity for bat movement. We focus on a complex mountain landscape and two bat species: greater (Rhinolophus ferrumequinum) and lesser (Rhinolophus hipposideros) horseshoe bats which are known to be sensitive to landscape composition and configuration.

Methods

Species distribution models are used to delineate high-quality foraging habitat for each species using opportunistic ultrasonic bat data. We then performed connectivity analysis combining (modelled) suitable foraging habitat and (known) roost sites. We use graph-theory and the deviation in the probability of connectivity to quantify resilience of the landscape connectivity to perturbations.

Results

Both species were confined to lowlands (<1000 m elevation) and avoided areas with high road densities. Greater horseshoe bats were more generalist than lesser horseshoe bats which tended to be associated with broadleaved and mixed forests.

Conclusions

The spatially-explicit models obtained were proven crucial for prioritizing foraging habitats, roost sites and key corridors for conservation. Hence, our results are being used by key stakeholders to help integrate conservation measures into forest management and conservation planning at the regional level. The approach used can be integrated into conservation initiatives elsewhere.
  相似文献   

3.

Context

The conversion of natural environments into agricultural land has profound effects on the composition of the landscape, often resulting in a mosaic of human-altered and natural habitats. The response to these changes may however vary among organisms. Bats are highly vagile, and their requirements often imply the use of distinct habitats, which they select responding to both landscape and local features.

Objectives

We aimed to identify which features influence bat richness and activity within Baixo Vouga Lagunar, a heterogeneous landscape located on the Central-North Portuguese coast, and to investigate if that influence varies across a gradient of focal scales.

Methods

We sampled bats acoustically, while simultaneously sampling insects with light traps. We assessed the relationships between species richness, bat activity, and activity of eco-morphological guilds with landscape and local features, across four scales.

Results

Our results revealed both scale- and guild-dependent responses of bats to landscape and local features. At broader scales we found positive associations between open-space foraging bats and habitat heterogeneity and between edge-space foraging bats and greater edge lengths. Woodland cover and water availability at an intermediate scale and weather conditions and insect abundance at a local scale were the factors that mostly influenced the response variables.

Conclusions

Globally, our results suggest that bats are sensitive to local resource availability and distribution, while simultaneously reacting to landscape features acting at coarser scales. Finally, our results suggest that the responses given by bats are guild-dependent, and some habitats act as keystone structures for bats within this mosaic.
  相似文献   

4.
Context

Conservation for the Indiana bat (Myotis sodalis), a federally endangered species in the United States of America, is typically focused on local maternity sites; however, the species is a regional migrant, interacting with the environment at multiple spatial scales. Hierarchical levels of management may be necessary, but we have limited knowledge of landscape-level ecology, distribution, and connectivity of suitable areas in complex landscapes.

Objectives

We sought to (1) identify factors influencing M. sodalis maternity colony distribution in a mosaic landscape, (2) map suitable maternity habitat, and (3) quantify connectivity importance of patches to direct conservation action.

Methods

Using 3 decades of occurrence data, we tested a priori, hypothesis-driven habitat suitability models. We mapped suitable areas and quantified connectivity importance of habitat patches with probabilistic habitat availability metrics.

Results

Factors improving landscape-scale suitability included limited agriculture, more forest cover, forest edge, proximity to medium-sized water bodies, lower elevations, and limited urban development. Areas closer to hibernacula and rivers were suitable. Binary maps showed that 30% of the study area was suitable for M. sodalis and 29% was important for connectivity. Most suitable patches were important for intra-patch connectivity and far fewer contributed to inter-patch connectivity.

Conclusions

While simple models may be effective for small, homogenous landscapes, complex models are needed to explain habitat suitability in large, mixed landscapes. Suitability modeling identified factors that made sites attractive as maternity areas. Connectivity analysis improved our understanding of important areas for bats and prioritized areas to target for restoration.

  相似文献   

5.
Habitat loss is known to be the main cause of the current global decline in biodiversity, and roads are thought to affect the persistence of many species by restricting movement between habitat patches. However, measuring the effects of roads and habitat loss separately means that the configuration of habitat relative to roads is not considered. We present a new measure of the combined effects of roads and habitat amount: accessible habitat. We define accessible habitat as the amount of habitat that can be reached from a focal habitat patch without crossing a road, and make available a GIS tool to calculate accessible habitat. We hypothesize that accessible habitat will be the best predictor of the effects of habitat loss and roads for any species for which roads are a major barrier to movement. We conducted a case study of the utility of the accessible habitat concept using a data set of anuran species richness from 27 ponds near a motorway. We defined habitat as forest in this example. We found that accessible habitat was not only a better predictor of species richness than total habitat in the landscape or distance to the motorway, but also that by failing to consider accessible habitat we would have incorrectly concluded that there was no effect of habitat amount on species richness.  相似文献   

6.
Understanding interactions between roadways and population structure and movements of wildlife is key to mitigating “road effects” associated with increasing urbanization of the landscape. Aquatic turtles are a useful focal group because (1) population persistence is sensitive to mortality of individuals upon roads; (2) turtles frequently move among wetlands and encounter roads, and (3) turtles are an important component of vertebrate biomass in aquatic ecosystems. From 2005 to 2007, we examined the effects of urbanization on local- and landscape-scale populations of turtles. To do so, we sampled and marked turtles in 15 ponds arranged along a steep, urban–rural gradient in central New York State. We captured 494 turtles, representing 327 individuals, the majority of which were common snapping turtles Chelydra serpentina (n = 191) and eastern painted turtles Chrysemys picta picta (n = 122). At the local population (pond) scale, a higher proportion of female snapping turtles in ponds was associated with lower road densities within 500 m of ponds. The mean size of both species of turtle increased in ponds with a lower density of roads within 100 m. At the landscape-level, we observed fewer turtles dispersing through urbanized habitat than forested, and fewer movements through areas with a higher density of roads. Our study suggests that roads alter both local- and landscape-level turtle populations through a loss of female turtles, and by reducing movement between ponds. By extension, the study targets key landscape features upon which to focus mitigation efforts.  相似文献   

7.

Context

Scale dependence of bat habitat selection is poorly known with few studies evaluating relationships among landscape metrics such as class versus landscape, or metrics that measure composition or configuration. This knowledge can inform conservation approaches to mitigate habitat loss and fragmentation.

Objectives

We evaluated scale dependence of habitat associations and scaling patterns of landscape metrics in relation to bat occurrence or capture rate in forests of southwestern Nicaragua.

Methods

We captured 1537 bats at 35 locations and measured landscape and class metrics across 10 spatial scales (100–1000 m) surrounding capture locations. We conducted univariate scaling across the 10 scales and identified scales and variables most related to bat occurrence or capture rate.

Results

Edge and patch density, at both landscape and class levels, were the most important variables across species. Feeding guilds varied in their response to metrics. Certain landscape and configuration metrics were most influential at fine (100 m) and/or broad (1000 m) spatial scales while most class and composition metrics were influential at intermediate scales.

Conclusions

These results provide insight into the scale dependence of habitat associations of bat species and the influence of fine and broad scales on habitat associations. The effects of scale, examined in our study and others from fine (100 m) to broad (5 km) indicate habitat relationships for bats may be more informative at larger scales. Our results suggest there could be general differences in scale relationships for different groups of landscape metrics, which deserves further evaluation in other taxonomic groups.
  相似文献   

8.

Context

In heterogeneous landscapes, habitat complementation is a key process underlying the distribution of mobile species able to exploit non-substitutable resources over large home ranges. For instance, insectivorous bats need to forage in a diversity of habitat patches offering varied compositions and structures within forest landscape mosaics to fulfill their life cycle requirements.

Objectives

We aimed at analyzing the effects of forest structure and composition measured at the stand and landscape scales on bat species richness, abundance and community composition in pine plantation forests of south-western France.

Methods

We sampled bat communities at different periods of the summer season using automatic ultrasound recorders along a tree composition gradient from pine monocultures to pure oak stands. We analyzed bat species activity (as a proxy for bat abundance) and species richness with linear mixed models. Distance-based constrained ordinations were used to partition the spatio-temporal variation in bat communities.

Results

Deciduous tree cover increased bat activity and modified community composition at both stand and landscape scales. Changes in bat communities were mostly driven by landscape-scale variables while bat activity responded more to stand-scale predictors.

Conclusions

The maintenance of deciduous trees at both stand and landscape scales is likely critical for bat communities living in fast-growing conifer plantations, by increasing the availability and diversity of prey and roosting sites. Our study suggests that bats respond to forest composition at both stand and landscape scales in mosaic plantation landscapes, mainly through a resource complementation process.
  相似文献   

9.
In mobile animals, movement behavior can maximize fitness by optimizing access to critical resources and minimizing risk of predation. We sought to evaluate several hypotheses regarding the effects of landscape structure on American marten foraging path selection in a landscape experiencing forest perforation by patchcut logging. We hypothesized that in the uncut pre-treatment landscape marten would choose foraging paths to maximize access to cover types that support the highest density of prey. In contrast, in the post-treatment landscapes we hypothesized marten would choose paths primarily to avoid crossing openings, and that this would limit their ability to optimally select paths to maximize foraging success. Our limiting factor analysis shows that different resistant models may be supported under changing landscape conditions due to threshold effects, even when a species’ response to landscape variables is constant. Our results support previous work showing forest harvest strongly affects marten movement behavior. The most important result of our study, however, is that the influence of these features changes dramatically depending on the degree to which timber harvest limits available movement paths. Marten choose foraging paths in uncut landscapes to maximize time spent in cover types providing the highest density of prey species. In contrast, following landscape perforation by patchcuts, marten strongly select paths to avoid crossing unforested areas. This strong response to patch cutting reduces their ability to optimize foraging paths to vegetation type. Marten likely avoid non-forested areas in fragmented landscapes to reduce risk of predation and to benefit thermoregulation in winter, but in doing so they may suffer a secondary cost of decreased foraging efficiency.  相似文献   

10.
Habitat fragmentation is expected to disrupt dispersal, and thus we explored how patch metrics of landscape structure, such as percolation thresholds used to define landscape connectivity, corresponded with dispersal success on neutral landscapes. We simulated dispersal as either a purely random process (random direction and random step lengths) or as an area-limited random walk (random direction, but movement limited to an adjacent cell at each dispersal step) and quantified dispersal success for 1000 individuals on random and fractal landscape maps across a range of habitat abundance and fragmentation. Dispersal success increased with the number of cells a disperser could search (m), but poor dispersers (m<5) searching via area-limited dispersal on fractal landscapes were more successful at locating suitable habitat than random dispersers on either random or fractal landscapes. Dispersal success was enhanced on fractal landscapes relative to random ones because of the greater spatial contagion of habitat. Dispersal success decreased proportionate to habitat loss for poor dispersers (m=1) on random landscapes, but exhibited an abrupt threshold at low levels of habitat abundance (p<0.1) for area-limited dispersers (m<10) on fractal landscapes. Conventional metrics of patch structure, including percolation, did not exhibit threshold behavior in the region of the dispersal threshold. A lacunarity analysis of the gap structure of landscape patterns, however, revealed a strong threshold in the variability of gap sizes at low levels of habitat abundance (p<0.1) in fractal landscapes, the same region in which abrupt declines in dispersal success were observed. The interpatch distances or gaps across which dispersers must move in search of suitable habitat should influence dispersal success, and our results suggest that there is a critical gap-size structure to fractal landscapes that interferes with the ability of dispersers to locate suitable habitat when habitat is rare. We suggest that the gap structure of landscapes is a more important determinant of dispersal than patch structure, although both are ultimately required to predict the ecological consequences of habitat fragmentation.  相似文献   

11.
While studies have found that bat abundance is positively related to the amount of forest cover in a landscape, the effects of forest fragmentation (breaking apart of forest, independent of amount) are less certain, with some indirect evidence for positive effects of fragmentation. However, in most of these studies, the variables used to quantify fragmentation are confounded with forest amount, making it difficult to interpret the results. The purpose of this study was to examine how forest amount and forest fragmentation independently affect bat abundance. We conducted acoustic bat surveys at the centers of 22 landscapes throughout eastern Ontario, Canada, where landscapes were chosen to avoid a correlation between forest amount and forest fragmentation (number of patches) at multiple spatial scales, while simultaneously controlling for other variables that could affect bat activity. We found that the effects of forest amount on bat relative abundance were mixed across species (positive for Lasiurus borealis, negative for Perimyotis subflavus and Lasionycteris noctivagans). When there was evidence for an effect of forest fragmentation, independent of forest amount, on bat relative abundance, the effect was positive (Myotis septentrionalis, Myotis lucifugus and Lasiurus borealis). We suggest that the mechanism driving the positive responses to fragmentation is higher landscape complementation in more fragmented landscapes; that is, increased access to both foraging and roosting sites for these bat species. We conclude that fragmented landscapes that maximize complementation between roosting and foraging sites should support a higher diversity and abundance of bats.  相似文献   

12.
Efforts in isolating the relative effects of resources and disturbances on animal-distribution patterns remain hindered by the difficulty of accounting for multiple scales of resource selection by animals with seasonally dynamic drivers. We developed multi-scale, seasonal models to explore how local resource selection by the threatened forest-dwelling woodland caribou (Rangifer tarandus caribou) was influenced by both broad-scale landscape context and local resource heterogeneity in the intensively managed region of Charlevoix, Québec, Canada, located on the southern border of the North American caribou range. We estimated resource selection functions using 23 GPS-collared caribou monitored from 2004 to 2006 and landscape data on vegetation classes, terrain conditions, and roads. We found evidence of thresholds in road “proximity” effects (up to 1.25 km), which underscores the importance of including landscape context variables in addition to locally measured variables, and of fitting seasonal-specific models given temporal variation in the magnitude of selection and optimal scale of measurement. Open lichen woodlands were an important cover type for caribou during winter and spring, whereas deciduous forests, wetlands, and even young disturbed stands became important during calving and summer. Caribou consistently avoided roads and rugged terrain conditions at both local and landscape levels. Landscape context fundamentally constrains the choices available to animals, and we showed that failing to consider landscape context, or arbitrarily choosing an inappropriate scale for measuring covariates, may provide biased inferences with respect to habitat selection patterns. Effective habitat management for rare or declining species should carefully consider the hierarchical nature of habitat selection.  相似文献   

13.
The relation between two species of bats, the pipistrelle (Pipistrellus pipistrellus (Schreber, 1774)) and the serotine (Eptesicus serotinus (Schreber, 1774)) and linear landscape elements such as hedgerows, tree lines and tree lanes was studied in an agricultural area in The Netherlands. The pipistrelle was observed almost entirely close to landscape elements, while serotines more frequently crossed fields and meadows. Serotine activity in these open areas was, however, negatively related to the distance to a landscape element and to windspeed. On a landscape scale the results indicate a more than proportional positive relation between the density of serotine bats and the density of linear landscape elements, whereas this relation was only proportional in the case of the pipistrelle. It is argued, that landscapes with a high density of linear elements have a surplus value for serotine bats. Three possible functions of linear elements for bats (orientation clues, foraging habitat and shelter from wind and/or predators) are discussed. Any of these may explain the results of this study.  相似文献   

14.
Many organisms persist in fragmented habitat where movement between patches is essential for long-term demographic and genetic stability. In the absence of direct observation of movement, connectivity or isolation metrics are useful to characterize potential patch-level connectivity. However, multiple metrics exist at varying levels of complexity, and empirical data on species distribution are rarely used to compare performance of metrics. We compared 12 connectivity metrics of varying degrees of complexity to determine which metric best predicts the distribution of prairie dog colonies along an urban gradient of 385 isolated habitat patches in Denver, Colorado, USA. We found that a modified version of the incidence function model including area-weighting of patches and a cost-weighted distance surface best predicted occupancy, where we assumed roads were fairly impermeable to movement, and low-lying drainages provided dispersal corridors. We also found this result to be robust to a range of cost weight parameters. Our results suggest that metrics should incorporate both patch area and the composition of the surrounding matrix. These results provide guidance for improved landscape habitat modeling in fragmented landscapes and can help identify target habitat for conservation and management of prairie dogs in urban systems.  相似文献   

15.
In this study, we sought to understand how landscape structure affects roe deer movements within their home-range in a heterogeneous and fragmented agricultural system of south-western France. We analysed the movements of 20 roe deer fitted with GPS collars which recorded their locations every 2–6 h over several months (mean = 9 months). Based on empirical observations and previous studies of roe deer habitat use, we hypothesised that roe deer should avoid buildings and roads, move preferentially along valley bottoms and through the more wooded areas of the landscape. To test these hypotheses we paired each observed movement step with 10 random ones. Using conditional logistic regression, we modelled a step selection function, which represents the probability of selecting a given step as a function of these landscape variables. The selected model indicated that movements were influenced by all the tested landscape features, but not always in the predicted direction: our results suggested that roe deer tend to avoid buildings, roads, valley bottoms and possibly the more wooded areas (although the latter result should be interpreted with caution, as it may be influenced by a bias in the rate of GPS fix acquisition in woods). The distances to buildings and to roads were the most influential variables in the model, suggesting that the avoidance of potential sources of disturbance may be a key factor in determining ranging behaviour of roe deer in human dominated landscapes.  相似文献   

16.
As the concepts of landscape ecology have been incorporated into otherdisciplines, the influence of spatial patterns on animal abundance anddistribution has attracted considerable attention. However, there remains asignificant gap in the application of landscape ecology theories and techniquesto wildlife research. By combining landscape ecology techniques withtraditionalwildlife habitat analysis methods, we defined an organism-centeredperspectivefor breeding bald eagles (Haliaeetus leucocephalus) alongthe Hudson River, New York, USA. We intensively monitored four pairs ofbreedingeagles during the 1999 and 2000 breeding seasons, and collected detailedinformation on perch and forage locations. Our analysis focused on threecritical habitat elements: available perch trees, access to foraging areas, andfreedom from human disturbance. We hypothesized that eagle habitat selectionrelative to each of these elementswould vary with the spatial scale of analysis, and that these scalingrelationships would vary among habitat elements. We investigated two elementsofspatial scale: grain and local extent. Grain was defined as the minimum mappingunit; local extent was defined by the size of an analysis window placed aroundeach focal point. For each habitat element, we quantified habitat use over arange of spatial scales. Eagles displayed scale-dependent patterns of habitatuse in relation to all habitat features, including multi-scale andthreshold-like patterns. This information supports the existence ofscale-dependant relationships in wildlife habitat use and allowed for a moreaccurate and biologically relevant evaluation of Hudson River breeding eagle habitat.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

17.
For early-successional species, road and powerline cuts through forests provide refugia and source populations for invading adjacent forest gaps. Within an 800 km2 forest matrix in South Carolina, we determined if width, disturbance frequency or linear features of road and powerline cuts influenced the mound distribution of the red imported fire ant, Solenopsis invicta Buren. For each of five linear habitat types, differing in width and disturbance frequency, we mapped all mounds located within ten 500 m segments. Mean mound density was lowest in narrow, infrequently-disturbed closed-canopy dirt road habitats (8.8 mounds/ha). For types with an opening in the forest canopy (i.e., open dirt road, gravel road, paved road and powerline cut), mean mound density was highest in narrow habitats where disturbance was intermediate (open dirt roads, 86.5 mounds/ha). It was lowest in wide habitats where disturbance was infrequent (powerline cuts, 27.6 mounds/ha). Mean mound size was greater in infrequently-disturbed powerline cuts than in frequently-disturbed paved roads. Mounds were located significantly closer to road or forest edges than expected by random. In all types except dirt roads, mounds were more common toward northern edges, and more so as the orientation of the linear habitat changed from north/south to east/west. These data suggest that narrow, disturbed habitats are more suitable for fire ant establishment and success than wider ones, and that the distribution of fire ants in linear habitats is not as uniform as it has been shown to be in pastures. A decrease in roadside disturbance and an increase in shade, especially along the northern edge, may result in lower fire ant mound density in these linear habitats.  相似文献   

18.
Size of a forest patch is a useful predictor of density and reproductive success of Neotropical migratory birds in much of eastern North America. Within these forested landscapes, large forest tracts appear to be sources – fragments in which surpluses of offspring are produced and can potentially colonize new fragments including woodlot sinks where reproduction fails to balance adult mortality. Within agricultural landscapes of the midwestern U.S., where forests are severely fragmented, high levels of brood parasitism by brown-headed cowbirds (Molothrus ater) and intense predation on nests generally result in low reproductive success for Neotropical migrants regardless of forest size. In some midwestern U.S. landscapes, however, the variation in reproductive success among forest fragments suggests that `source' habitat could still exist for Neotropical migrants. We used vegetation, fragment and landscape metrics to develop multivariate models that attempt to explain the variation in abundance and reproductive success of Neotropical migrants nesting in an agricultural landscape in northern Indiana, USA. We produced models that reasonably described the pattern of species richness of Neotropical migrants and the abundance of wood thrushes (Hylocichla mustelina) and several other Neotropical migrant species within 14 forest fragments. In contrast, we were unable to produce useful models of the reproductive success of wood thrushes breeding in the same forest fragments. Our results suggest that (1) abundance patterns of Neotropical migrants are probably influenced by both landscape- and fragment-scale factors; (2) multivariate analyses of Neotropical migrant abundance are not useful in modeling the corresponding patterns of reproductive success; and (3) the location of any remaining `source' habitat for Neotropical migrants breeding within agricultural landscapes in North America will be difficult to predict with indirect measures such as vegetation composition or landscape context. As a result, the potential for developing conservation strategies for Neotropical migrants will be limited without labor-intensive, direct measurements of demographic parameters.  相似文献   

19.

Context

Habitat loss, fragmentation and degradation are widespread drivers of biodiversity decline. Understanding how habitat quality interacts with landscape context, and how they jointly affect species in human-modified landscapes, is of great importance for informing conservation and management.

Objectives

We used a whole-ecosystem manipulation experiment in the Brazilian Amazon to investigate the relative roles of local and landscape attributes in affecting bat assemblages at an interior-edge-matrix disturbance gradient.

Methods

We surveyed bats in 39 sites, comprising continuous forest (CF), fragments, forest edges and intervening secondary regrowth. For each site, we assessed vegetation structure (local-scale variable) and, for five focal scales, quantified habitat amount and four landscape configuration metrics.

Results

Smaller fragments, edges and regrowth sites had fewer species and higher levels of dominance than CF. Regardless of the landscape scale analysed, species richness and evenness were mostly related to the amount of forest cover. Vegetation structure and configurational metrics were important predictors of abundance, whereby the magnitude and direction of response to configurational metrics were scale-dependent. Responses were ensemble-specific with local-scale vegetation structure being more important for frugivorous than for gleaning animalivorous bats.

Conclusions

Our study indicates that scale-sensitive measures of landscape structure are needed for a more comprehensive understanding of the effects of fragmentation on tropical biota. Although forest fragments and regrowth habitats can be of conservation significance for tropical bats our results further emphasize that primary forest is of irreplaceable value, underlining that their conservation can only be achieved by the preservation of large expanses of pristine habitat.
  相似文献   

20.
While several studies have demonstrated that roads can act as barriers to small mammal movement, the relationship between road density and small mammal abundance has not yet been investigated. In southeastern Ontario, Peromyscus leucopus (white-footed mice) suffer high over-winter mortality rates, resulting in small springtime populations and frequent local extinctions. Peromyscus leucopus movement is known to be inhibited by roads, which should result in lower rates of immigration into and recolonization of habitats in landscapes with high road density. We tested two predictions: (1) Forest sites situated in landscapes with high road densities have a higher chance of P. leucopus being absent during the early spring than forest sites situated in landscapes with low road densities and (2) P. leucopus populations during the summer are smaller in forest sites situated in landscapes with high road densities than in landscapes with low road densities. We sampled P. leucopus in focal patches within nineteen landscapes (7 rural, low-road-density landscapes; 7 rural, high-road-density landscapes; 5 urban landscapes). There was no significant relationship between road density and the presence/absence of P. leucopus during the early spring. We found a significant positive effect of road density on P. leucopus relative abundance during the summer, even when we excluded the urban landscapes and based the analysis on only the 14 rural landscapes. Our results suggest that any negative effect of roads on P. leucopus populations, created by their inhibition to moving across roads, is far outweighed by some positive effect of roads on P. leucopus abundance. We suggest that the two most likely explanations are that roads are positively correlated with an important as-yet-undetermined component of habitat quality, or that roads positively affect P. leucopus by negatively affecting their predators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号