共查询到20条相似文献,搜索用时 0 毫秒
1.
The biodegradability of dissolved organic carbon (DOC) in different fractions from the forest floor was studied. Soil leachate (SL, the soil solution in macropores which is freely drained from forest floor after rainfall), the soil matrix solution (SMS, the soil solution in meso-/micropores of the soil matrix), and soil water extracts (SWE) from two different beech forest floors were compared. Zero-tension and tension lysimeters were used to collect SL and SMS, respectively. Loss of DOC (during 21 days) and respiration of CO2-C (during 7 days) were used as conventional measures of the availability of DOC. Bacterial production, measured using the leucine incorporation technique, and bacterial growth efficiency were also estimated. All methods were used to study differences in biodegradability between plots with and without ground flora (Deschampsia flexuosa or Anemone nemorosa) and different type of forest floor (with an organic (O) horizon or a mull (A) horizon). There were no differences in bioavailability of DOC from soil solutions extracted from plots with and without ground flora. The bioavailability of DOC in the different collected soil solutions varied, however. DOC in SWE was the most available, with a mean of 39% of DOC-loss in 21 days, and 18% of DOC being respired in 7 days. DOC in soil matrix solution was the least available of the soil solutions (7% respired), significantly less than DOC in soil leachate (11% respired). The methods measuring biodegradation of DOC, DOC-loss and CO2-C respiration gave similar results and were comparable to bacterial production and bacterial growth efficiency, with the exception of SWE from the O-horizon at the D. flexuosa site, which had low bacterial production and bacterial growth efficiency, indicating a limitation of the bacterial growth. This study is one of the first to use bacterial production and bacterial growth efficiency for measuring bioavailability in terrestrial environments, giving an extra dimension for the process of biodegradation of DOC. 相似文献
2.
The phosphorus composition of soil solutions and soil leachates: Influence of soil:solution ratio 总被引:2,自引:0,他引:2
Compositional differences between soil solutions obtained by different methods have frequently been reported; variations in the soi1: solution ratio may explain these results. In this study we compared the amount and composition of phosphorus (P) in soil leachates and soil solutions from a temperate grassland soil in northeast Scotland and determined the influence of soi1:solution ratio on P fractions in soil water extracts. Leachates were collected from intact soil cores over 6 months, the cores were then destructively sampled, and soil solutions obtained by centrifuging. Molybdate reactive P (MRP) represented 71% of the total dissolved P (TDP) in soil leachates but only 54% in soil solutions. The MRP component in soil water extracts increased from 71% to 92% as the soi1:solution ratio increased from 1:15 to 1:15·4, while the dissolved organic P (DOP) component decreased from 26% to 6%. As the soil:solution ratio increased the amount of MRP extracted increased; by contrast the amount of DOP and dissolved condensed P (DCP) extracted remained constant. While the MRP component is regulated by soil sorption processes, the supply and amount of DOP and DCP is probably related to biological activity. Dissolved organic carbon (DOC) extracted at wide soi1:solution ratios contained a smaller proportion of P than that extracted at narrower ratios. The results indicate differences in the behaviour of P fractions in the soil at various soi1:solution ratios and that these are reflected in the P composition of soil solution and leachate. 相似文献
3.
Tapasya Babu Lawrence Datnoff Payton Dupree Brandon White 《Journal of plant nutrition》2018,41(3):273-287
Adequate silicon nutrition in plants has shown positive effects on the growth and yield of the crop and physico-chemical properties of the soil. Hence, this study was initiated to survey the plant-available silicon in the agricultural soils of different parishes of Louisiana. Soil samples were collected from 212 representative agricultural fields of 27 agrarian parishes of Louisiana. Poor correlations between deionized water, calcium chloride, and other extractants suggest that the unbuffered calcium chloride extraction may reflect only a transient status of soil soluble silicon similar to deionized water extraction procedure. Also, acetic acid-2 extraction procedure may reflect the net effects of the sorption/desorption reactions by extracting the readily as well as the slowly releasable silicon that control solubility, thus giving a true measure of current availability. Compared to the previously established critical soil silicon levels, several agricultural fields of Louisiana were deemed to be low in plant-available silicon. 相似文献
4.
Ashok K. Alva Siva Paramasivam Kenneth S. Sajwan 《Archives of Agronomy and Soil Science》2013,59(3):321-331
Abstract A sandy soil was amended with various rates (20 – 320 g air-dry weight basis of the amendments per kg of air-dry soil) of chicken manure (CM), sewage sludge (SS), and incinerated sewage sludge (ISS) and incubated for 100 days in a greenhouse at 15% (wt/wt) soil water content. At the beginning of incubation, NH4-N concentrations varied from 50 – 280 mg kg?1 in the CM amended soil with negligible amounts of NO3-N. Subsequently, the concentration of NH4-N decreased while that of NO3-N increased rapidly. In soil amended with SS at 20 – 80 g kg?1 rates, the NO3-N concentration increased sharply during the first 20 days, followed by a slow rate of increase over the rest of the incubation period. However, at a 160 g kg?1 SS rate, there were three distinct phases of NO3-N release which lasted for160 days. In the ISS amended soil, the nitrification process was completed during the initial 30 days, and the concentrations of NH4-N and NO3-N were lower than those for the other treatments. The mineralized N across different rates accounted for 20 – 36%, 16 – 40%, and 26 – 50% of the total N applied as CM, SS, and ISS, respectively. 相似文献
5.
Mahboub Saffari Najafali Karimian Abdolmajid Ronaghi Jafar Yasrebi Reza Ghasemi-Fasaei 《Archives of Agronomy and Soil Science》2016,62(3):317-337
The effect of different kinds of amendments including coal fly ash (CFA), municipal solid waste compost (MSWC), rice husk biochars prepared at 300°C (B300) and 600°C (B600), zero valent iron (Fe°) and zero valent manganese (Mn°) were evaluated to determine their ability to stabilize lead (Pb) in Pb-spiked soil. The Pb-spiked soils were separately incubated with amendments at the rates of 2 and 5% (W/W) for 45 and 90 days at 25°C. The efficacy of amendments treatment was evaluated by desorption kinetic experiment and sequential extraction producer. According to the results, with increasing time, considerable changes in distribution of chemical forms of Pb occurred and carbonate-bound fraction significantly decreased, while amorphous Fe-bound fraction significantly increased. The applied treatments efficiently decreased the mobility factor of Pb compared to control treatment. Application of Mn°, Fe°, CFA, MSWC, and B600 in soils significantly decreased Pb desorption rate with respect to control treatment. Biphasic pattern of Pb desorption kinetic was fitted well by the model of two ?rst-order reactions. In general, present study showed that from the practical point of view, all applied amendments (except for B300) were effective in Pb immobilization; however, application of Mn° at 5% (W/W) rate was the best treatment to immobilize Pb, so it can be recommended for the immobilization of Pb in calcareous polluted soil. 相似文献
6.
Keke Hua Zhibin Guo 《Acta Agriculturae Scandinavica, Section B - Plant Soil Science》2018,68(6):505-514
Current understanding of the effects of long-term application of various organic amendments on soil particulate organic matter (POM) storage and chemical stabilisation remains limited. Therefore, we collected soil samples from the soil profile (0–100?cm) under six treatments in a 31-year long-term fertilisation experiment: no fertiliser (CK), mineral fertilisers (NPK), mineral fertilisers plus 3.8 or 7.5?t?ha?1?year?1 (fresh base) the amount of wheat straw (1/2SNPK and SNPK) and mineral fertilisers plus swine or cattle manure (PMNPK and CMNPK). Long-term incorporation of wheat straw and livestock manure amendments significantly (p?<?0.05) increased crop yield and sustainable yield index, and POM storage compared with CK and NPK treatments. The mole ratios of H/C in the POM under organic amendment treatments significantly (p?<?0.05) decreased by 13.8% and 37.1%, respectively, compared with the NPK treatment. Similarly, solid state NMR spectroscopy showed that the O–alkyl carbon content of POM was greatly decreased, whereas aromatic carbon contents and alkyl to O–alkyl carbon ratios were substantially increased under PMNPK and CMNPK treatments. In conclusion, we recommend long-term livestock manure application as a preferred strategy for enhancing POM quantity and quality (chemical stability), and crop yield of vertisol soil in northern China. 相似文献
7.
《Communications in Soil Science and Plant Analysis》2012,43(18-20):2947-2971
Abstract The trace element pollution hazard of the continuous and large scale application of fertilizers and other amendments to soils depends in part on the chemical composition of these materials. Complete sample dissolution is generally required prior to total elemental analyses. The objectives of this study were to evaluate closed vessel microwave digestion procedures, using HNO3, HF, H2O2, and H3BO3, for the total dissolution of fertilizers and soil amendments and to develop a general digestion guide for individual samples. Twenty‐six materials, including commercial fertilizers, rock phosphate, liming materials, organic sources, and a soil sample were studied. More than 99.5% of each of these materials could be dissolved. Commercial nitrogen (N) fertilizers, most of the ammonium phosphates, and a potassium chloride sample could be completely dissolved using exclusively HNO3. The other samples required HNO3 and HF, used either in mixtures or consecutively in a stepwise procedure. The sewage sludge materials, the soil sample, and one of the rock phosphates were the only samples that could not be totally dissolved. No improvement in the digestions was observed by including H2O2. No significant contamination was evident during the digestions and satisfactory recoveries of 14 trace elements were obtained in digests of 2 standard reference materials. The proposed dissolution procedures are simple and safe. The usual quickness of microwave procedures was partially sacrificed to obtain a more complete dissolution of the samples. Digests obtained with these procedures could be potentially analyzed for other analytes, with the obvious exceptions of N, fluorine (F), and boron (B). 相似文献
8.
It is estimated that nearly 20 kg of SiO2 is removed from the soil by rice plants for producing 100 kg brown rice (Takahashi 1987). Although there is a large amount of silicon in soil, little is available to the rice plant. To supply a sufficient amount of silicon to the rice plant for healthy growth, therefore, it is nccessary to supply various silicon materials to the soil. Rice straw application to the soil is one of the means. 相似文献
9.
Evolution of C2H4 from soils under anaerobic conditions was stimulated by amendment with cereal straw, but hay had little effect. Temporary restoration of aerobic conditions resulted in large increases in C3 and C4 hydrocarbons, with both straw and hay amendments. Several known products of the fermentative degradation of carbohydrate increased the evolution of hydrocarbons under anaerobic, and to a greater extent, under aerobic conditions. In particular, ethanol and butyric acid promoted the formation of C2H4 and propylene, respectively. The association between degradation products and C2H4 suggests that both may be implicated when root growth is adversely affected by the anaerobic decomposition of plant residues. 相似文献
10.
《Communications in Soil Science and Plant Analysis》2012,43(13-14):2295-2308
Abstract Rapid, methanol‐extraction techniques for fluometuron (N, N‐dimethyl‐N'‐[3‐(trifluoromethyl) phenyl] urea) and norflurazon (4‐chloro‐5‐(methylamino)‐2‐(3‐(trifluoromethyl)phenyl)‐3(2(H)‐pyridazinone) from fortified soils have been reported to attain >90% recoveries. Analytical methods involving chromatographic separation coupled with fluorescence detection have also been described. The objectives of this study were to describe an analytical method for the simultaneous detection of fluometuron and norflurazon using ultraviolet spectro‐scopy in soil leachates and extracts and to examine the influence of residence time on herbicide recovery from fortified soil. The analytical method requires a gradient HPLC system, a reverse‐phase C‐18 column, and ultraviolet spectroscopy at a wavelength of 240 nm. The method is characterized by high reproducibility (spike recovery and diluted sample results are generally within 10% of the expected herbicide concentrations), low limits of detection (less than 1 (μg/L in soil leachates and 20 μg/L in soil extracts, depending on organic carbon content), and an applicable concentration range of more than two orders of magnitude. The recovery of fluometuron and norflurazon from fortified soils was significantly influenced by equilibration time, loading rate, and soil type (assuming zero chemical degradation). Most significantly, as herbicide contact time with the soil increased, recovery decreased. Thus, herbicide recoveries determined in the laboratory may not provide a true measure of herbicide recoveries from field soils. 相似文献
11.
Soybean [Glycine max (L.) Merr. cv. ‘Ransom'] root elongation under varying concentrations of solution hydrogen (H) and aluminum (Al) was investigated in a vertical split‐root system. Roots extending from a limed and fertilized soil compartment grew for 12 days into a subsurface compartment with solutions adjusted to either different pH values from 3.7 to 5.5 or a factorial combination of pH (4.0,4.6, and 5.2) and Al (0,7.5, 15, and 30 μM) levels. Ionic forms of Al were estimated with GEOCHEM and solution Al was determined with ferron. Boron (B) (18.5 μM) and zinc (Zn) (0.5 μM) were supplied to all solution treatments, in addition to 2000 μM Ca, after preliminary studies at pH 5.2 without Al indicated that their omission inhibited length of tap roots and their laterals in the subsurface compartment. Both H+ and Al inhibited the length of lateral roots more than tap roots. Lateral roots failed to develop on tap roots at pH<4.3 or in treatments with 30 μM Al. Relative tap root length (RRL) among treatments receiving Al correlated with Al as measured by reaction with ferron for 30s. Ferron‐reactive Al was correlated to GEOCHEM‐predicted Al3+ activity (r=0.99). A 50% reduction in RRL occurred with either 2.1 μM Al3+ activity or 4.9 uM ferron‐reactive Al. The absence of shoot and soil‐root biomass differences among solution treatments in the split‐root system indicated that differences in root growth in the subsurface compartment were not directly confounded with differences in top growth. 相似文献
12.
Advancing conservation agriculture depends on understanding nutrient dynamics of organic matter amendments (OMA) on no-till soil. This field incubation study compared surface-applied composted dairy manure (CM), green waste compost (GWC) and an unamended control from March to September in 2015 and 2016 using a RCBD in a California almond (Prunus dulcis) orchard. Measurements included OMA nutrient release rates, changes in soil organic carbon (SOC), total N (TN) and inorganic N, P and K availability using in-season soil sampling and collection of ion exchange resin (IER) membranes from 0 to 10 cm depth, and cumulative N and P availability using soil IER cores from 0 to 50 cm depth. We hypothesized OMA sources with a lower initial C:N increase soil N availability, greater soluble phosphorus (P) and potassium (K) concentrations increase P and K availability, and all OMA sources increase SOC with the greatest N recovery in the TN pool. No differences were observed in C, N and P release rates, while the K release rate was the greatest. In-season N availability showed no effect but P and K availability differed as evidenced by greater IER adsorption and soil extractable P and K. Both OMA sources significantly increased in SOC and TN. Net N mineralization from OMA sources ranged from 0.7% to 8.0% of applied N and total N recovery in TN and inorganic N pools increased based on the initial C:N. These results advance our understanding of nutrient dynamics while conserving the soil due to the no-till practice of surface-applied OMA. 相似文献
13.
《Communications in Soil Science and Plant Analysis》2012,43(19-20):3175-3180
Abstract Changes in pH values during 12 weeks incubation in soils treated with acidified sawdust (ACD‐SD)‐treated soils ranged from 5.03 to 5.89, from 9.88 to 10.35 in soil treated with alkalized sawdust (ALK‐SD), and ranged from pH 6.88 to 7.35 in untreated sawdust‐amended soil. In unamended soil, pH values were 6.80 to 7.35. Bacterial populations over the 12 weeks in ACD‐SD‐treated soils increased from 5×106 to 167×106 colonies while bacterial populations in ALK‐SD‐treated soils increased from 2×106 to 54×106. Fungal populations increased from 6×104 to 11,333×104 colonies per gram soil in ACD‐SD treated soils over the 12 week incubation. Untreated sawdust and control soil did not result in any significant changes in the fungal populations. 相似文献
14.
Michael J. Webb Barbara E. Dinkelaker Robin D. Graham 《Biology and Fertility of Soils》1993,15(1):9-15
Summary The effect of length of dry storage period and subsequent moist incubation on the availability of Mn was examined in a calcareous soil. Increasing the time of dry storage (for up to 4 years) generally increased the availability of Mn as determined by plant growth and Mn concentration in wheat and barley. Moist incubation of stored soil had variable effects on Mn availability depending on how long the soil had been stored before use and on the method used to assess Mn availability. When assessed by Mn concentration in plant tissues, increasing the moist incubation time (from 0 to 30 days) of soil stored dry for 4 years increased Mn availability in soil initially and thereafter decreased it. However, incubation time had little effect on Mn availability in soil stored for only 1 year or soil used fresh from the field. When Mn availability was assessed using a chemical extractant (DTPA; diethylenetriaminepentaacetic acid), both soils showed an initial increase in Mn availability immediately on wetting. However, Mn availability in the soil stored for only 1 year decreased rapidly and remained consistently below that of soil stored for 4 years. In the latter soil, Mn availability also decreased but only after a few days. Microbial studies indicated that there was a decrease in the ratio of Mn oxidising to Mn reducing microorganisms with increasing storage time. Inoculation of one soil with another suggested that the factor responsible for the low Mn availability in soils stored for a short period could be transferred to soils stored for a longer period. These results suggest that the change in Mn availability in a calcareous soil with dry storage is a result of changes in microbial populations that cannot be fully restored by moist incubation. 相似文献
15.
Soilborne plant pathogens are among the most important limiting factors for the productivity of agro-ecosystems. Identifying reliable and effective control methods is crucial for efficient biological control. Soil fungistasis is the capability of soils to inhibit the germination and growth of soil-borne fungi in presence of optimal abiotic conditions. The aim of this study is to clarify the relationships between soil amendments with plant residues spanning a wide variety of biochemical quality and soil fungistasis. Microcosms experiments were performed with 42 different plant residues and the effect on soil fungistasis was assessed by using four different fungi (Aspergillus niger, Botrytis cinerea, Pyrenochaeta lycoperici and Trichoderma harzianum). We measured soil respiration and FDA enzymatic activity and compared classic litter proximate chemical analysis with 13C-CPMAS NMR spectroscopy. Results showed that quality of organic amendments is a major controlling factor of soil fungistasis. The dramatic relief of soil fungistasis when soil was amended with lignin poor, but labile C rich, substrates gives strong support to the competition-based hypothesis. The positive correlation between soil respiration and fungal growth further supports the competition hypothesis. Finally, 13C NMR results showed a relationship between soil fungistasis and the biochemical quality of plant residues, and provided a quantitative assessment of the time required for fungistasis restoration after organic materials application. 相似文献
16.
This experiment aimed to immobilize Cu in polluted agricultural soils via the application of agrochemicals to reduce its bioavailability to plants. A greenhouse pot experiment was established using a Cu contaminated vineyard topsoil collected from a farm in Greece. The soil was mixed with inorganic [i.e., zeolite (Z), Al‐oxide (AX), Mn‐oxide (MX), and phosphate rock (PR)] as well as organic amendments [i.e., activated charcoal (AC), commercial peat soil material (CP), and compost from olive oil processing wastes (COW)] with an application rate of 2.5% and cultivated by corn (Zea maize). After plant harvesting, Cu was measured separately in the aboveground biomass and roots, respectively, whereas the soil samples were analyzed for DTPA‐extractable and geochemical fractions of Cu (soluble + exchangeable fraction, sorbed and carbonate fraction, Fe‐/Mn‐oxides fraction, and organic fraction). The immobilizing agents, except MX, reduced the soluble plus exchangeable Cu in the treated soil. The lowest concentrations of the soluble plus exchangeable Cu occurred in the soil amended with AC followed by CP, AX, COW, PR, and Z, respectively. The amendments decreased the uptake of Cu by corn. Concentrations of Cu were between 11 and 38% lower in the above ground biomass and 19 and 48% lower in the roots than the control. The organic amendments were more effective than the inorganic additives. The AC was the most effective organic additive and AX was the most effective inorganic amendment. 相似文献
17.
Variability and relationships between Pb,Cu, and Zn concentrations in soil solutions and forest floor leachates at heavily polluted sites 下载免费PDF全文
Seasonal variability of Cu, Pb, and Zn concentrations in litter leachates and soil solutions was examined in an afforested zone surrounding a copper smelter in SW Poland. Litter leachates (with zero‐tension lysimeters) and soil solutions (with MacroRhizon suction‐cup samplers, installed at a depth of 25–30 cm) were collected monthly at three sites differing in contamination levels in the years 2009 and 2010 (total Cu: 2380, 439, and 200 mg kg–1, respectively). Concentrations of Cu in the litter leachate were correlated with dissolved organic C (DOC), whereas Zn and Pb were mainly related to leachate pH. Metal concentrations in the soil solution were weakly influenced by their total content in soils and the monthly fluctuations reached 300, 600, and 700% for Cu, Pb, and Zn, respectively. Metal concentrations in soil solutions (Cu 110–460 μg L–1; Zn 20–1190 μg L–1; Pb 0.5–36 μg L–1) were correlated with their contents in the litter leachates. Chemical speciation, using Visual Minteq 3.0, proved organically‐complexed forms even though the correlations between metal concentrations and soil solution pH and DOC were statistically insignificant. The flux of organically‐complexed metals from contaminated forest floors is believed to be a direct and crucial factor affecting the actual heavy metal concentrations and their forms in the soil solutions of the upper mineral soil horizons. 相似文献
18.
Agricultural soil contamination by cadmium (Cd) is becoming one of the most serious environmental issues and public concerns. In this study, factorial arrangements of treatments were designed to explore the effects of two soil amendments, sodium sulfide-biofuel ash (SSBA) and lime (0.1%), and three foliar applications, silicon (Si, 2.5 mmol L-1), selenium (Se, 40 mg L-1), and their combination (SS), on Cd reduction in rice (Oryza sativa L.) in a pot experiment, which were then verified in a field experiment. Compared with the control without amendment but with spraying of deionized water, both SSBA and lime significantly reduced concentrations of CaCl2-extractable Cd in soil by 30%-39% and 31%-40% and Cd in brown rice by 44%-63% and 53%-72% in the pot and field experiments, respectively. Foliar Si, Se, and SS applications significantly reduced Cd accumulation in brown rice by 62%-64%, 72%-83%, and 39%-73%, respectively, increased rice grain yield, and improved antioxidant enzyme activities in rice leaves but with different trends in the pot and field experiments. Combinations of SSBA and lime with Si, Se, and SS had a non-significant synergistic effect on Cd reduction in brown rice compared to only foliar spraying or soil amendment in both pot and field experiments, although SSBA + Se and SSBA + Si reduced Cd concentration in brown rice by 16%-34% and 14%-24% compared to only foliar Si and Se and soil SSBA applications, respectively. Soil lime application and foliar Si spraying were the most cost-effective strategies to reduce Cd accumulation in brown rice in the field and pot experiments, respectively. Although soil amendments and foliar treatments were individually effective, their combinations failed to generate a significant synergistic reduction of Cd concentration in brown rice. 相似文献
19.
Response of soil microbial communities to compost amendments 总被引:1,自引:0,他引:1
Ana Pérez-Piqueres 《Soil biology & biochemistry》2006,38(3):460-470
Soil organic matter is considered as a major component of soil quality because it contributes directly or indirectly to many physical, chemical and biological properties. Thus, soil amendment with composts is an agricultural practice commonly used to improve soil quality and also to manage organic wastes. We evaluated in laboratory scale experiments the response of the soilborne microflora to the newly created soil environments resulting from the addition of three different composts in two different agricultural soils under controlled conditions. At a global level, total microbial densities were determined by classical plate count methods and global microbial activities were assessed by measuring basal respiration and substrate induced respiration (SIR). Soil suppressiveness to Rhizoctonia solani diseases was measured through bioassays performed in greenhouses. At a community level, the modifications of the metabolic and molecular structures of bacterial and fungal communities were assessed. Bacterial community level physiological profiles (CLPP) were determined using Biolog™ GN microtiter plates. Bacterial and fungal community structures were investigated using terminal restriction fragment length polymorphism (T-RFLP) fingerprinting. Data sets were analyzed using analysis of variance and ordination methods of multivariate data. The impact of organic amendments on soil characteristics differed with the nature of the composts and the soil types. French and English spent mushroom composts altered all the biological parameters evaluated in the clayey soil and/or in the sandy silty clay soil, while green waste compost did not modify either bacterial and fungal densities, SIR values nor soil suppressiveness in any of the soils. The changes in bacterial T-RFLP fingerprints caused by compost amendments were not related to the changes in CLPP, suggesting the functional redundancy of soil microorganisms. Assessing the density, the activity and the structure of the soil microflora allowed us not only to detect the impact of compost amendment on soil microorganisms, but also to evaluate its effect at a functional level through the variation of soil disease suppressiveness. Differences in disease suppressiveness were related to differences in chemical composition, in availability of nutrients at short term and in microbial composition due to both incorporation and stimulation of microorganisms by the compost amendments. 相似文献
20.
Michelle N. Miller Catherine E. Dandie Bernie J. Zebarth David L. Burton Claudia Goyer Jack T. Trevors 《Geoderma》2012
It is known that carbon (C) amendments increase microbial activity in anoxic soil microcosm studies, however the effects on abundance of total and denitrifier bacterial communities is uncertain. Quantitative PCR was used to target the 16S rRNA gene for the total bacterial community, the nosZ functional gene to reflect a broad denitrifier community, and functional genes from narrow denitrifier communities represented by Pseudomonas mandelii and related species (cnorBP) and Bosea/Bradyrhizobium/Ensifer spp. (cnorBB). Repacked soil cores were amended with varying amounts of glucose and red clover plant tissue (0–1000 mg C kg? 1 of soil) and incubated for 96 h. Carbon amendment significantly increased respiration as measured by cumulative CO2 emissions. Inputs of red clover or glucose at 1000 mg C kg? 1 of soil caused increased abundance in the total bacteria under the conditions used. There was about an approximate 2-fold increase in the abundance of bacteria bearing the nosZ gene, but only in treatments receiving 500 or 1000 mg C kg? 1 of soil of glucose or red clover, respectively. Additions of ≥ 500 mg C kg? 1 soil of red clover and ≥ 250 mg C kg? 1 of glucose increased cnorBP-gene bearing denitrifiers. Changes in abundance of the targeted communities were related to C availability in soil, as indicated by soil respiration, regardless of C source. Applications of C amendments at rates that would occur in agricultural soils not only increase microbial activity, but can also induce changes in abundance of total bacterial and denitrifier communities in studies of anoxic soil microcosms. 相似文献