首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
ABSTRACT

To research soil organic carbon (SOC) in a typical small karst basin of western Guizhou in southwest China, data from the second national soil resource survey (1980) and data analysed in the laboratory in 2015 were used. This paper examines the changes in soil organic carbon density (SOCD) and soil organic carbon stock (SOCS) in the topsoil (0–20 cm) over the past 35 years based on soil types, and the primary influencing factors are also discussed. The SOCD and SOCS slightly increased over this period. The SOCD increased from 4.91 kg m?2 to 5.13 kg m?2, and the SOCS increased from 368.27 × 103 t to 385.09 × 103 t. The basin sequestered a low level of carbon during this time. Paddy fields were the key contributor to the increases, and the SOCD and SOCS of paddy fields increased by 1.61 kg m?2 and 32.39 × 103 t, respectively. Generally, the SOCD and SOCS in the soils from the southern part of Houzhai Basin increased considerably, and those from the northern part of the basin decreased significantly. The spatial variation of SOCD in the Houzhai Basin was mainly due to natural factors. However, the temporal change of SOC was primary caused by human activities.  相似文献   

2.
Understanding the vertical and lateral distribution of soil organic carbon (SOC) and soil organic carbon density (SOCD) is indispensable for soil use and environmental management because of their vital role in soil quality assessments. Primarily, they are needed in calculating soil organic carbon storage (SOCS). The objective of this research was to provide digital maps of SOC and SOCD variation as well as their uncertainties at multiple standardized depths (H1: 0–5, H2: 5–15, H3: 15–30, H4: 30–60 and H5: 60–100 cm) using a parsimonious model with optimized terrain-related attributes and satellite-derived data. SOCS were evaluated at soil subgroup levels. An area of about 808 km2 with varying elevation, plant cover and lithology from the Miandoab region, West Azerbaijan Province, Iran was selected as a case study area. A total of 386 soil samples were collected from 104 profiles comprising various soil genetic horizons. A continuous spline function was then fitted to the target properties in advance of creating a dataset at five standard depth intervals (following the GlobalSoilMap project). These were then grouped into three classes including top (H1), middle (H2, H3 and H4) and bottom (H5) depths to ease interpretation. Static and dynamic covariates (30-m resolution) were derived from a digital elevation model (DEM) and a suite of Landsat-8 spectral imageries, respectively. Four candidate models including stepwise multiple linear regression (SMLR), random forest (RF), cubist (CU) and extreme gradient boosting (XGBoost) Tree were tested in this study. Finally, the digital maps at 30-m resolution of SOC and SOCD and their uncertainties were prepared using the best-fit model and the bootstrapping method, respectively. Four soil subgroups (Gypsic Haploxerepts, Typic Calcixerepts, Typic Haploxerepts and Xeric Haplocalcids) were identified across the study area. The covariates had variable contributions on the evaluated models. The XGBoost Tree model generally outperformed other models for prediction of SOC and SOCD (R2 = 0.60, on average). Regardless of soil subgroups, the uncertainty analysis showed that the SOCD map had a low prediction interval range value indicating high accuracy. Additionally, the highest SOCS and SOCD was observed at the top followed by middle and bottom depths in the study area. All subgroups exhibited a decreasing trend of SOCD with increasing depth. A similar trend was also observed for SOCS. The highest SOCD (on average) was observed in Gypsic Haploxerepts (4.71 kg C/m2) followed by Typic Calcixerepts (4.46 kg C/m2), Typic Haploxerepts (4.45 kg C/m2) and Xeric Haplocalcids (4.40 kg C/m2). Overall, the SOCS normalized by area within soil order boundaries was greater in Inceptisols than Aridisols across the study area. The findings of this study provide critical information for sustainable management of soil resources in the area for agricultural production and environmental health in the Miandoab region of Iran.  相似文献   

3.
耕地土壤碳库是全球碳库中最为活跃的部分,其变化对全球气候变化产生重要影响。目前对耕地土壤有机碳估算多采用中、小系列比例尺的土壤数据库,较少结合遥感影像与大比例尺土壤数据库进行估算。基于此,本研究采用Landsat遥感影像和1∶50 000高精度土壤数据库,以福建省福州市为例,基于遥感与碳循环过程模型对1987年和2016年耕地土壤有机碳动态变化进行研究。结果表明,利用Landsat影像反演得到的耕地土壤基础呼吸与土壤有机碳相关性强,建立的1987年和2016年模型R2分别为0.637和0.752。研究期间,全市耕地土壤有机碳密度从东部沿海向西部内陆地区递增,整体发挥着“碳汇”作用,有机碳密度和储量分别增加0.20 kg·m-2和2.946×105 t。从不同土壤类型比较得出,黄壤、红壤和水稻土是“碳汇”,有机碳密度分别增加0.70 kg·m-2、0.40 kg·m-2和0.19 kg·m-2;其他土类为“碳源”,其中,水稻土碳储量最大,两期在全市总碳储量中占比均超过90%。从不同行政区比较得出,仓山区、长乐区、马尾区和连江县为“碳源区”,其他地区为“碳汇区”,其中,仓山区碳储量一直为全市最低,两期占比均不足0.5%,而福清市则一直居于全市首位,占比均高于20%。总体而言,福州市耕地土壤有机碳30年间空间动态变化显著,在不同土类和行政区间存在差异,今后应根据不同耕地土壤类型和行政区的有机碳情况有针对性进行耕地管理。  相似文献   

4.
Nie  Xiuqing  Peng  Yunfeng  Li  Fan  Yang  Lucun  Xiong  Feng  Li  Changbin  Zhou  Guoying 《Journal of Soils and Sediments》2019,19(1):322-331
Purpose

Although large amounts of soil organic carbon (SOC) stored in the shrublands, information about SOC storage was little on the Tibetan Plateau. This study aims to evaluate the spatial patterns and storage of SOC in the shrublands and the relationships of climatic variables and soil pH on the Tibetan Plateau.

Materials and methods

We used 177 profiles of soil samples obtained from 59 shrubland sites on the northeast Tibetan Plateau from 2011 to 2013. Ordinary least squares regressions, curve estimation, and multiple linear regressions were used to evaluate controlling factors on SOC stock. Kriging interpolation was used to upscale sit-level measurements to the whole study area.

Results and discussion

We found that SOC storage in the northeast Tibetan shrublands was 1.36 Pg C in the top 1 m with an average SOC stock of 12.38 kg m?2. SOC stock decreased from east to west and south to north but generally increased significantly with the mean annual temperature (MAT) and the mean annual precipitation (MAP), and tended to decrease with soil pH. Although similar relationships were also observed in alpine shrublands, the trends among SOC stock, MAP, and MAT were not observed in desert shrublands. Our results indicate that a reduction in soil pH accelerates the C sequestration potential. Furthermore, global warming contributed to C sequestration in alpine shrublands, specifically, SOC stock increased 8.44 kg m?2 with an increased unit of MAT in alpine shrublands just considering temperature effects. Meanwhile, the C sequestration was different among different regions due to the uneven increases in precipitation. However, in desert shrublands, MAP and MAT did not significantly affect SOC stock.

Conclusions

The results indicate that though a reduction in soil pH could contribute to C sequestration, MAT and MAP have different effects on SOC stock in different Tibetan Plateau shrublands. Increased MAT and MAP were 0.05 °C and 1.67 mm every year on the Tibetan Plateau, which will increase C sequestration in alpine shrublands, but might have limited impacts on desert shrublands, which help us comprehend soil C cycling in the global climate change scenario.

  相似文献   

5.
五台山高山林线典型植被土壤有机碳特征   总被引:3,自引:1,他引:2  
刘楠  韩进斌  赵建儒  刘敏 《土壤》2019,51(5):970-978
在全球变暖背景下,土壤有机碳(SOC)已经成为全球碳循环和全球变化生态学研究热点,特别是高山林线生态交错带这一气候变化敏感区。对五台山高山林线附近亚高山草甸(CD)、华北落叶松林(HL)和云杉×华北落叶松混交林(YH)SOC含量与土壤有机碳密度(SOCD)进行探讨,结果表明:3种植被SOC含量随土壤深度增加而减少,SOCD则与之相反,且其SOC和SOCD分布均具有"表聚效应"。五台山亚高山森林(HL、YH)土壤SOC总含量和总SOCD都高于亚高山草甸(CD),与中国亚高山土壤一致,但与亚洲以外的世界各大洲不同;且五台山亚高山土壤总SOC含量和SOCD与中国亚高山土壤均值近似,大于其他各大洲均值。显著影响五台山SOC的因素(P0.05)与世界尺度亚高山土壤不同,且土壤厚度和气候因子(P0.05)对世界尺度亚高山森林SOC的影响比亚高山草甸/草原土壤(P0.05)显著。因此,五台山亚高山森林土壤固碳能力比亚高山草甸强,其亚高山土壤的SOC总含量和总SOCD在全国范围内处于平均水平,而中国亚高山土壤碳库在世界范围内占据领先地位,但仍需进一步探讨来减少多尺度研究的不确定性。  相似文献   

6.
Zhu  Meng  Feng  Qi  Zhang  Mengxu  Liu  Wei  Qin  Yanyan  Deo  Ravinesh C.  Zhang  Chengqi 《Journal of Soils and Sediments》2019,19(4):1640-1650
Purpose

Soil organic carbon (SOC) in mountainous regions is characterized by strong topography-induced heterogeneity, which may contribute to large uncertainties in regional SOC stock estimation. However, the quantitative effects of topography on SOC stocks in semiarid alpine grasslands are currently not well understood. Therefore, the purpose of this research study is to determine the role of topography in shaping the spatial patterns of SOC stocks.

Materials and methods

Soils from the summit, shoulder, backslope, footslope, and toeslope positions along nine toposequences within three elevation-dependent grassland types (i.e., montane desert steppe at ~?2450 m, montane steppe at ~?2900 m, and subalpine meadow at ~?3350 m) are sampled at four depths (0–10, 10–20, 20–40, and 40–60 cm). SOC content, bulk density, soil texture, soil water content, and grassland biomass are determined. The general linear model (GLM) is employed to quantify the effects of topography on the SOC stocks. Ordinary least squares regressions are performed to explore the underlying relationships between SOC stocks and the other edaphic factors.

Results and discussion

In accordance with the present results, the SOC stocks at 0–60 cm show an increasing trend in respect to the elevation zone, with the highest stock being approximately 37.70 g m?2 in the subalpine meadow, about 2.07 and 3.41 times larger than that in the montane steppe and montane desert steppe, respectively. Along the toposequences, it is revealed the SOC stocks are maximal at toeslope, reaching to 14.98, 31.76, and 49.52 kg m?2, which are also significantly larger than those at the shoulder by a factor of 1.38, 2.31, and 1.44, in montane desert steppe, montane steppe, and subalpine meadow, respectively. Topography totally is seen to explain about 84% of the overall variation in SOC stocks, of which 70.61 and 9.74% are attributed to elevation zone and slope position, while the slope aspect and slope gradient are seen to plausibly explain only about 1.84 and 0.01%, respectively.

Conclusions

The elevation zone and the slope position are seen to markedly shape the spatial patterns of the SOC stocks, and thus, they may be considered as key indicating factors in constructing the optimal SOC estimation model in such semiarid alpine grasslands.

  相似文献   

7.
Purpose

The purposes of present study were to display the vertical distribution of soil organic carbon (SOC), nitrogen (N), and phosphorus (P) stoichiometry; identify the biogeographic characteristics of SOC, N, and P stoichiometry along an aridity gradient across the desert ecosystem of Hexi Corridor; and determine how biogeographic distribution patterns of SOC, N, and P stoichiometry are related to vegetation, soil texture, geography, and climate.

Materials and methods

We investigated the distribution and characteristics of SOC, N, and P stoichiometry based on samples collected from Hexi Corridor during 2011–2012 with total 400 plots of 80 sites. This region presents a precipitation gradient from about 250 mm in the east to less than 50 mm in the west. The measured variables included belowground and aboveground biomass, pH, bulk density, sand, clay, silt, SOC, N, and P contents. ANOVA analysis, reduced major axis, redundancy analysis, Person’s correlation, and regression analysis were used to analysis the variation of SOC, N, and P stoichiometry and related biogeographic factors.

Results and discussion

In present study, SOC, N, and P contents decreased significantly with increasing soil depth. C/N did not change significantly, while C/P and N/P decreased significantly. SOC and N, SOC and P, and N and P were well constrained within 0–100 cm. SOC, N, and P contents in 0–20 cm were higher than them in other studies. Vegetation, soil texture, climate, and geography could explain 91.6% of the total variance of soil stoichiometry. The impact of latitude and longitude on SOC, N, and P stoichiometry was mainly caused by the redistribution of precipitation, while the impact of altitude mainly resulted from the variation of temperature. With increasing aridity, SOC, N, and P contents and C/N/P ratios reduced consistently with inconsistent decrease rates.

Conclusions

Our results suggested that the interaction of vegetation structure, soil condition, and shortage of precipitation should be the main driver for the lower contents and much shallower distributions of SOC, N, and P of Hexi Corridor. The increasing aridity should be the critical factor that is responsible for the decrease of SOC, N, and P contents and C/N/P ratios. This study contributes to the understanding of soil stoichiometry in the desert ecosystem.

  相似文献   

8.
To assess the topsoil carbon sequestration potential (CSP) of China's cropland, two different estimates were made: (i) a biophysical potential (BP) using a saturation limit approach based on soil organic carbon (SOC) accumulation dynamics and a storage restoration approach from the cultivation‐induced SOC loss, and (ii) a technically attainable potential (TAP) with a scenario estimation approach using SOC increases under best management practices (BMPs) in agriculture. Thus, the BP is projected to be the gap in recent SOC storage to either the saturation capacity or to the SOC storage of uncultivated soil, while the TAP is the overall increase over the current SOC storage that could be achieved with the extension of BMPs. The recent mean SOC density of China's cropland was estimated to be 36.44 t/ha, with a BP estimate of 2.21 Pg C by a saturation approach and 2.95 Pg C by the storage restoration method. An overall TAP of 0.62 Pg C and 0.98 Pg C was predicted for conservation tillage plus straw return and recommended fertilizer applications, respectively. This TAP is comparable to 40–60% of total CO2 emissions from Chinese energy production in 2007. Therefore, carbon sequestration in China's cropland is recommended for enhancing China's mitigation capacity for climate change. However, priority should be given to the vast dry cropland areas of China, as the CSP of China is based predominantly on the dry cropland.  相似文献   

9.
Purpose

Characterizations of soil aggregates and soil organic carbon (SOC) losses affected by different water erosion patterns at the hillslope scale are poorly understood. Therefore, the objective of this study was to quantify how sheet and rill erosion affect soil aggregates and soil organic carbon losses for a Mollisol hillslope in Northeast China under indoor simulated rainfall.

Materials and methods

The soil used in this study was a Mollisol (USDA Taxonomy), collected from a maize field (0–20 cm depth) in Northeast China. A soil pan with dimensions 8 m long, 1.5 m wide and 0.6 m deep was subjected to rainfall intensities of 50 and 100 mm h?1. The experimental treatments included sheet erosion dominated (SED) and rill erosion dominated (RED) treatments. Runoff with sediment samples was collected during each experimental run, and then the samples were separated into six aggregate fractions (0–0.25, 0.25–0.5, 0.5–1, 1–2, 2–5, >?5 mm) to determine the soil aggregate and SOC losses.

Results and discussion

At rainfall intensities of 50 and 100 mm h?1, soil losses from the RED treatment were 1.4 and 3.5 times higher than those from the SED treatment, and SOC losses were 1.7 and 3.8 times greater than those from the SED treatment, respectively. However, the SOC enrichment ratio in sediment from the SED treatment was 1.15 on average and higher than that from the RED treatment. Furthermore, the loss of <?0.25 mm aggregates occupied 41.1 to 73.1% of the total sediment aggregates for the SED treatment, whereas the loss of >?0.25 mm aggregates occupied 53.2 to 67.3% of the total sediment aggregates for the RED treatment. For the organic carbon loss among the six aggregate fractions, the loss of 0–0.25 mm aggregate organic carbon dominated for both treatments. When rainfall intensity increased from 50 to 100 mm h?1, aggregate organic carbon loss increased from 1.04 to 5.87 times for six aggregate fractions under the SED treatment, whereas the loss increased from 3.82 to 27.84 times for six aggregate fractions under the RED treatment.

Conclusions

This study highlights the effects of sheet and rill erosion on soil and carbon losses at the hillslope scale, and further study should quantify the effects of erosion patterns on SOC loss at a larger scale to accurately estimate agricultural ecosystem carbon flux.

  相似文献   

10.
Zhu  Meng  Feng  Qi  Zhang  Mengxu  Liu  Wei  Deo  Ravinesh C.  Zhang  Chengqi  Yang  Linshan 《Journal of Soils and Sediments》2019,19(10):3427-3441
Purpose

Soil organic carbon (SOC) in alpine regions is characterized by a strong local heterogeneity, which may contribute to relatively large uncertainties in regional SOC stock estimation. However, the patterns, stock, and environmental controls of SOC in semiarid alpine regions are still less understood. Therefore, the purpose of this study is to comprehensively quantify the stock and controls of SOC in semiarid alpine regions.

Materials and methods

Soils from 138 study sites across a typical semiarid alpine basin (1755–5051 m, ~1?×?104 km2) are sampled at 0–10, 10–20, 20–40, and 40–60 cm. SOC content, bulk density, soil texture, and soil pH are determined. Both a classical statistical model (i.e., a multiple linear regression, MLR) and a machine learning technique (i.e., a random forest, RF) are applied to estimate the SOC stock at a basin scale. The study further quantifies the environmental controls of SOC based on a general linear model (GLM) coupled with the structural equation modeling (SEM).

Results and discussion

SOC density varies significantly with topographic factors, with the highest values occurring at an elevation zone of ~3400 m. The results show that the SOC is more accurately estimated by the RF compared to the MLR model, with a total stock of 219.33 Tg C and an average density of 21.25 kg C m?2 at 0–60 cm across the study basin. The GLM approach reveals that the topography is seen to explain about 58.11% of the total variation in SOC density at 0–10 cm, of which the largest two proportions are attributable to the elevation (44.32%) and the aspect factor (11.25%). The SEM approach further indicates that, of the climatic, vegetative, and edaphic factors examined, the mean annual temperature, which is mainly shaped by topography, exerts the most significant control on SOC, mainly through its direct effect, and also, through indirect effect as delivered by vegetation type.

Conclusions

The results of this study highlight the presence of high stocks of organic carbon in soils of semiarid alpine regions, indicating a fundamental role played by topography in affecting the overall SOC, which is mainly attained through its effects on the mean annual temperature.

  相似文献   

11.
The soil organic carbon (SOC) pool of the Northern Hemisphere contains about half of the global SOC stored in soils. As the Arctic is exceptionally sensitive to global warming, temperature rise and prolonged summer lead to deeper thawing of permafrost‐affected soils and might contribute to increasing greenhouse gas emissions progressively. To assess the overall feedback of soil organic carbon stocks (SOCS) to global warming in permafrost‐affected regions the spatial variation in SOCS at different environmental scales is of great interest. However, sparse and unequally distributed soil data sets at various scales in such regions result in highly uncertain estimations of SOCS of the Northern Hemisphere and here particularly in Greenland. The objectives of this study are to compare and evaluate three controlling factors for SOCS distribution (vegetation, landscape, aspect) at two different scales (local, regional). The regional scale reflects the different environmental conditions between the two study areas at the coast and the ice margin. On the local scale, characteristics of each controlling factor in form of defined units (vegetation units, landscape units, aspect units) are used to describe the variation in the SOCS over short distances within each study area, where the variation in SOCS is high. On a regional scale, we investigate the variation in SOCS by comparing the same units between the study areas. The results show for both study areas that SOCS are with 8 kg m?2 in the uppermost 25 cm and 16 kg m?2 in the first 100 cm of the soil, i.e., 3 to 6 kg m?2 (37.5%) higher than existing large scale estimations of SOCS in West Greenland. Our approach allows to rank the scale‐dependent importance of the controlling factors within and between the study areas. However, vegetation and aspect better explain variations in SOCS than landscape units. Therefore, we recommend vegetation and aspect for determining the variation in SOCS in West Greenland on both scales.  相似文献   

12.
He  Huan  Xia  Guotong  Yang  Wenjin  Zhu  Yunpeng  Wang  Guodong  Shen  Weibo 《Journal of Soils and Sediments》2019,19(12):3954-3968
Purpose

Wetlands in Mu Us Desert have severely been threatened by grasslandification over the past decades. Therefore, we studied the impacts of grasslandification on soil carbon (C):nitrogen (N):phosphorus (P) stoichiometry, soil organic carbon (SOC) stock, and release in wetland-grassland transitional zone in Mu Us Desert.

Materials and methods

From wetland to grassland, the transition zone was divided into five different successional stages according to plant communities and soil water conditions. At every stage, soil physical and chemical properties were determined and C:N:P ratios were calculated. SOC stock and soil respirations were also determined to assess soil carbon storage and release.

Results and discussion

After grasslandification, SOC contents of top soils (0–10 cm) decreased from 100.2 to 31.79 g kg?1 in June and from 103.7 to 32.5 g kg?1 in October; total nitrogen (TN) contents of top soils (0–10 cm) decreased from 3.65 to 1.85 g kg?1 in June and from 6.43 to 3.36 g kg?1 in October; and total phosphorus (TP) contents of top soils (0–10 cm) decreased from 179.4 to 117.4 mg kg?1 in June and from 368.6 to 227.8 mg kg?1 in October. From stages Typha angustifolia wetland (TAW) to Phalaris arundinacea L. (PAL), in the top soil (0–10 cm), C:N ratios decreased from 32.2 to 16.9 in June and from 19.0 to 11.8 in October; C:P ratios decreased from 1519.2 to 580.5 in June and from 19.0 to 11.8 in October; and N:P ratios decreased from 46.9 to 34.8 in June and changed from 34.9 to 34.0 in October. SOC stock decreased and soil respiration increased with grasslandification. The decrease of SOC, TN, and TP contents was attributed to the reduction of aboveground biomass and mineralization of SOM, and the decrease of soil C:N, C:P, and N:P ratios was mainly attributed to the faster decreasing speeds of SOC than TN and TP. The reduction of aboveground biomass and increased SOC release led by enhanced soil respiration were the main reasons of SOC stock decrease.

Conclusions

Grasslandification led to lowers levels of SOC, TN, TP, and soil C:N, C:P, and N:P ratios. Grasslandification also led to higher SOC loss, and increased soil respiration was the main reason. Since it is difficult to restore grassland to original wetland, efficient practices should be conducted to reduce water drainage from wetland to prevent grasslandification.

  相似文献   

13.
Abstract

Limited information is available for understanding factors controlled dynamics of soil organic carbon (SOC) and total nitrogen (TN) affected by long-term conventional cultivation in seasonally frozen soils. A 19-year observation in this study was conducted in north-eastern China to evaluate effects and relative importance of potential factors. SOC variation extent was greater relative to global average as per unit of annual mean air temperature and precipitation changed. Increased carbon sequestration was observed in meadow lessive, while slight to moderate declines occurred in meadow-boggy soil and meadow soil. However, no differences in TN were found across soil types. At sites with low slope, carbon and nitrogen sequestration increased, largely due to water movement. Increased biomass with introducing 1-year oilseed rape/fallow in crop rotations could promote SOC and TN accumulation in the long run. Planting proportion of crops could also regulate carbon and nitrogen levels at a farm scale; the optimal ratio was observed in the range of 0.8–1.4. High crop yield was associated with lower carbon and nitrogen levels, and nutrient thresholds of yielding increment were observed as 25.7 g kg?1 for carbon and 2.6 g kg?1 for nitrogen. The length of frost-free period or cultivation period could not help sequestrating carbon and nitrogen. Chemical fertilizer with crop residues provoked SOC and TN increments compared with no chemical fertilizer plus little organic manure. Different factors exerted different tendentious influences, leading to subtle differences in SOC and TN variation rates. Accordingly, optimal cultivation strategies could be developed to reduce nutrient losses and mitigate greenhouse gas emissions.  相似文献   

14.
Xu  Xiangru  Pei  Jiubo  Xu  Yingde  Wang  Jingkuan 《Journal of Soils and Sediments》2020,20(3):1173-1181
Purpose

Mollisols are the most fertile, high-yielding soils in the world. During the past several decades, Mollisols have lost about 50% of their antecedent organic carbon (C) pool due to soil erosion, degradation, and other unsuitable human activities. Therefore, restoring soil organic C (SOC) to Mollisols via reasonable management is crucial to sustainable development and is important for environmental stability. However, the existing literature on SOC and soil quality has focused on one soil type or on a given region where Mollisols occur, and the degree of SOC depletion and stabilization in Mollisols have not been comprehensively evaluated. Overall, we propose to develop an optimum scheme for managing Mollisols, and we outline specific issues concerning SOC restoration and prevention of SOC depletion.

Materials and methods

In this review, we identify the uncertainties involved in analyses of SOC in Mollisols as related to management practices. According to the existing literature on SOC in Mollisols at the global scale, we analyzed the results of SOC depletion research to assess management practices and to estimate the C amount stabilized in Mollisols.

Results and discussion

The review shows that the SOC stocks in Mollisols in North America under cropped systems had 51?±?4 (equiv. mass) Mg ha?1 in the top 30 cm soil layer. The SOC contents in Northeast China decreased from 52 to 24 g kg?1 (46%) after 150 years of cultivation management. All of the Mollisols regions in the world are facing the challenge of SOC loss, and this trend could have a negative influence on global climate change. Hence, it is very important to take proper measures to maintain and enhance organic C contents in Mollisols.

Conclusions

We concluded that reasonable management practices, including no-tillage, manure and compost fertilization, crop straw returning, and mulching cultivation, are the recommended technologies. The C restoration in Mollisols is a truly win-win strategy for ensuring the security of food and soil resources while effectively mitigating global climate change. Thus, more attention should be given to protective management and land use for its impacts on SOC dynamics and soil properties in Mollisols regions.

  相似文献   

15.
Wang Genxu  Li Yuanshou  Wang Yibo  Wu Qingbo 《Geoderma》2008,143(1-2):143-152
Bearing a total organic carbon (TOC) content of 9.3–10.7 kg C/m2, alpine grassland soils of the Qinghai–Tibet plateau's permafrost region bear a greater organic carbon pool than do grassland soils in other regions of China or than tropical savannah soils. The easily released light fraction organic carbon (LFOC) accounts for 34–54% of the TOC and is particularly enriched in the topsoil (0–0.10 m). The LFOC in the organic carbon pool of alpine cold meadow and alpine cold steppe soils decreased at exponential and quadratic rates, respectively, as the vegetative cover decreased. When the vegetative cover of alpine cold meadows decreased from > 80 dm2/m2 to 60 dm2/m2, the topsoil TOC and LFOC dropped by 20.4% and 38.4%, respectively. Similarly, when the vegetative cover of alpine cold meadow decreased from 50 dm2/m2 to 30 dm2/m2 and < 15 dm2/m2, the topsoil LFOC content dropped by 60% and 86.7%, respectively. Under climatic warming, the degradation of permafrost and vegetation have resulted in serious soil organic carbon (SOC) loss from the carbon pool. Land cover changes that occurred between 1986 and 2000 are estimated to have resulted in a 1.8 Gg C (120 Mg C/yr) loss in SOC, and a concomitant 65% decrease in the LFOC, in the 0–0.30 m soil layer in the Qinghai–Tibet plateau's permafrost regions. Since the region's ecosystems are quite sensitive to global climate changes, if global warming persists, alpine cold grassland ecosystems are expected to further degrade. Hence, the influence of global climatic change on soil carbon emissions from alpine grasslands should receive more attention.  相似文献   

16.
Soil organic carbon tends to respond more sensitively to climate change and land use intensification in ecologically fragile and economically marginal regions of mountainous areas. This study aims to evaluate the soil organic carbon stock dynamic across various land uses at different altitudes in the Bagrot valley, Northern Karakoram, Gilgit-Baltistan, Pakistan. Soil samples from 0–20, 20–40 and 40–60 cm depth were collected from three land uses: pasture, forest, and adjacently located arable land at different altitude (ranging from 2100–4163 m). The variables investigated were soil bulk density (BD), soil organic carbon concentration (SOC), soil organic carbon stock (SOCS) and pH. A significant variation in all tested variables were found across the land uses and altitudes. Likewise, soil under forest had significantly higher values of SOCS (59.35?Mg ha?1) than pasture (42.48?Mg ha?1) and arable land (23.63?Mg ha?1). Similarly, SOCS increased with increasing altitude and decreased with soil depth in all land uses. In addition, SOCS had a negative relationship with BD and pH. Overall results indicated that the land use intensification and climate change (increase in temperature and decrease in precipitation) were associated with declining SOCS. These results suggest restoration of degraded agricultural land to the forest, especially at higher altitude, and decrease in intensity of land use could increase SOCS in the study area as well as other similar mountainous regions.  相似文献   

17.
Zheng  Xiangzhou  Lin  Cheng  Guo  Baoling  Yu  Juhua  Ding  Hong  Peng  Shaoyun  Zhang  Jinbo  Ireland  Eric  Chen  Deli  Müller  Christoph  Zhang  Yushu 《Journal of Soils and Sediments》2020,20(4):1897-1905
Purpose

Nitrogen (N) is an important nutrient for re-vegetation during ecosystem restoration, but the effects of cover restoration on soil N transformations are not fully understood. This study was conducted to investigate N transformations in soils with different cover restoration ages in Eastern China.

Materials and methods

Soil samples were collected from four degraded and subsequently restored lands with restoration ages of 7, 17, 23, and 35 years along with an adjacent control of degraded land. A 15N tracing technique was used to quantify gross N transformation rates.

Results and discussion

Compared with degraded land, soil organic carbon (SOC) and total N (TN) increased by 1.60–3.97 and 2.49–5.36 times in restoration land. Cover restoration increased ammonium and nitrate immobilization, and dissimilatory nitrate reduction to ammonium (DNRA) by 0.56–0.96, 0.34–2.10, and 0.79–3.45 times, respectively, indicating that restoration was beneficial for N retention. There were positive correlations between SOC content and ammonium and nitrate immobilization and DNRA, indicating that the increase in soil N retention capacity may be ascribed to increasing SOC concentrations. The stimulating effect of SOC on ammonium immobilization was greater than its effect on organic N mineralization, so while SOC and TN increased, inorganic N supply did not increase. Autotrophic and heterotrophic nitrification increased with increasing SOC and TN concentrations. Notably, heterotrophic nitrification was an important source of NO3??N production, accounting for 47–67% of NO3??N production among all restoration ages.

Conclusions

The capacity of N retention was improved by cover restoration, leading to an increase in soil organic carbon and total N over time, but inorganic N supply capacity did not change with cover restoration age.

  相似文献   

18.

Purpose  

Climate factors, considered significant factors in regulating soil organic carbon (SOC), are not equally important at all spatial scales. However, the scale which provides the optimal relationship between climate and SOC and how that relationship varies at multiple scales are still unclear. Thus, it is crucial to study the relationship between climate factors and SOC at multiple scales when attempting to accurately predict the SOC pool and evaluate the influence of climate change on global carbon cycling. The objective of this research is to examine the scale effect of climate factors on SOC content in the Uplands of Northeast China.  相似文献   

19.
Abstract

The issue of soil organic carbon (SOC) is of increasing concern. Because SOC, as an important soil component in farming systems, is essential for improving soil quality, sustaining food production and quality, and maintaining water quality and as a major part of the terrestrial carbon reservoir, it plays an important role in the global carbon cycle. In this paper, a total of 665 soil samples from different depths were collected randomly in the autumn of 2007, and the spatial variability of SOC content at a small catchment of the Loess Plateau was analysed using classical statistics and geo-statistical analysis. In nonsampled areas classical kriging was utilized for interpolation of SOC estimation. The classic statistical analysis revealed moderate spatial variability with all five layers of SOC-content. In addition, the average SOC content decreased with soil depth and the relationship can be modelled by an exponential equation (y=3.1795x ?1.2015, R 2=0.9866) and all of the SOC-content data in the different depth were normally distributed. The geo-statistical analysis indicated a moderate spatial dependence in 0–60 cm, while in the 60–80 cm depth spatial dependence was strong. The semi-variogram could be fitted by an exponential model for 0–10 cm depth; by a spherical model for 10–20 cm depth and 60–80 cm depth; and by a Gaussian model for 20–60 cm depth. The range increases with increasing depth. In addition, classical kriging could successfully interpolate SOC content in the catchment. In general, the geo-statistics method on a watershed scale could be accurately used to evaluate spatial variability of the SOC content in the Loess Plateau, China.  相似文献   

20.
The industrial emission of carbon (C) in China in 2000 was about 1 Pg yr−1, which may surpass that of the United States (1ċ84 Pg C) by 2020. China's large land area, similar in size to that of the United States, comprises 124 Mha of cropland, 400 Mha of grazing land and 134 Mha of forestland. Terrestrial C pool of China comprises about 35–60 Pg in the forest and 120–186 Pg in soils. Soil degradation is a major issue affecting 145 Mha by different degradative processes, of which 126 Mha are prone to accelerated soil erosion. Total annual loss by erosion is estimated at 5ċ5 Pg of soil and 15ċ9 Tg of soil organic carbon (SOC). Erosion‐induced emission of C into the atmosphere may be 32–64 Tg yr−1. The SOC pool progressively declined from the 1930s to 1980s in soils of northern China and slightly increased in those of southern China because of change in land use. Management practices that lead to depletion of the SOC stock are cultivation of upland soils, negative nutrient balance in cropland, residue removal, and soil degradation by accelerated soil erosion and salinization and the like. Agricultural practices that enhance the SOC stock include conversion of upland to rice paddies, integrated nutrient management based on liberal use of biosolids and compost, crop rotations that return large quantities of biomass, and conservation‐effective systems. Adoption of recommended management practices can increase SOC concentration in puddled soil, red soil, loess soils, and salt‐affected soils. In addition, soil restoration has a potential to sequester SOC. Total potential of soil C sequestration in China is 105–198 Tg C yr−1 of SOC and 7–138 Tg C yr−1 for soil inorganic carbon (SIC). The accumulative potential of soil C sequestration of 11 Pg at an average rate of 224 Tg yr−1 may be realized by 2050. Soil C sequestration potential can offset about 20 per cent of the annual industrial emissions in China. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号