首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The aim of this work was to investigate the influence of the organic matter on copper and lead adsorption in soils with different physiochemical and mineralogical attributes. Suspensions (pH 6.0) of a Latosol, a Neosol and a Vertisol containing increasing amounts of copper or lead were used to obtain sorption isotherms while identical experiments were carried out with the soils previously treated with H2O2 to remove organic matter (OM). For the undisturbed soils, L-type and H-type isotherms were predominant for copper and lead respectively, showing that lead interacts more strongly with adsorption sites. For both metals, the non-linear Freundlich adsorption model revealed higher concentration of adsorption sites for Vertisol due to 2:1 clays. For the OM-removed soils, C-type isotherms were observed for copper with the permanence of less stable and more homogeneous sites. For this metal, a high correlation (R2 = 0.997) was observed between the decrease of adsorbent sites and the loss of organic carbon, evidencing the central role of organic matter on copper complexation, while lead may be able to interact efficiently with both organic matter and soil minerals.  相似文献   

2.
冻融过程会影响土壤团聚体结构及微孔隙,进而影响土壤对阳离子的吸附。然而有关冻融过程对土壤吸附阳离子影响的研究很少。以典型湿地表层有机土壤为对象,通过室内模拟实验,研究了土壤饱和含水量下,冻融过程对有机土吸附低浓度铵根离子的影响。结果表明,冻融作用一般提高了有机土对铵根离子的吸附量,线性方程能较好的拟合低浓度范围氨氮的吸附,而且冻融作用降低了铵根离子吸附量为0时土壤溶液中氨氮的浓度。随着初始氨氮浓度从8.6mg·L-1升高到43.0mg·L-1,冻融条件下氨氮的分配系数从10.3L·kg-1升高到25.6L·kg-1;非冻融对照条件下氨氮的分配系数从7.0L·kg-1升高到19.8L·kg-1。冻融作用导致氨氮的分配系数增加了29.9%~47.3%,但氨氮的分配系数没有出现随冻融次数增加而升高的趋势。  相似文献   

3.
The adsorption of herbicides on soil colloids is a major factor determining their mobility, persistence, and activity in soils. Solvent extraction could be a viable option for removing sorbed contaminants in soils. This study evaluated the extractability of three herbicides: 2,4 dichlorophenoxy-acetic acid (2,4-D), 4-chloro-2-methylphenoxypropanoic acid (mecoprop acid or MCPP), and 3,6-dichloro-2-methoxybenzoic acid (dicamba). Three solvents (water, methanol, and iso-propanol) and three methods of extraction (column, batch, and soxhlet) were compared for their efficiencies in removing the herbicides from three soils (loamy sand, silt loam, and silty clay). Both linear and non-linear Freundlich isotherms were used to predict sorption intensity of herbicides on soils subjected to various extraction methods and conditions. High Kdand Kfr, and low N values were obtained for all herbicides in silty clay soil by batch extraction. Methanol was the best solvent removing approximately 97% of all added herbicides from the loamy sand either by column or soxhlet extraction method. Isopropanol ranked second by removing over 90% of all herbicides by soxhelet extraction from all three soils. However, water was ineffective in removing herbicides from any of the soils using any of the three extracting procedures used in this study. In general, the extent of herbicide removal depended on soil type, herbicide concentration, extraction procedure, solvent type and amount, and extraction time.  相似文献   

4.
不同性质铁铝土对砷酸根吸附特性的比较研究   总被引:4,自引:0,他引:4  
采用批平衡法研究了8种不同性质铁铝土对砷酸根的吸附特性,分别运用Langmuir单表面方程和Langmuir双表面方程对等温吸附数据进行拟合,以较优拟合方程求出土壤对砷的最大吸附量,并采用简单线性相关分析法探讨土壤性质对砷吸附能力的影响。结果显示,铁铝土对砷吸附强烈,吸附等温线均为非线性。双表面方程对吸附等温线的拟合效果优于单表面方程。采用双表面方程预测的吸附量和实测值的决定系数(0.935~0.978)大于采用单表面方程预测获得的决定系数(0.989~0.998)。土壤的砷吸附能力可采用高能表面和低能表面两种吸附位点进行解释。采集于云南昆明的砂页岩母质发育的红壤具有最强的砷吸附能力,根据Langmuir双表面方程计算的最大吸附量为3 498 mg kg-1。土壤的砷吸附能力受到土壤中游离氧化铁、全铝、全铁、黏粒和全磷含量的显著影响,最大吸附量与这几种土壤组成与性质因子呈显著正相关关系。  相似文献   

5.
In vitro biodegradation of trifloxystrobin (TFS) under darkness could best be explained by two-compartment first + first-order rate kinetics with half-lives ranging between 1.8 and 2.3 days. Hydrolysis was found to be the major pathway of degradation resulting in the formation of the acid metabolite, TFS-acid, with an EE conformation. The adsorption rate kinetics of both TFS and TFS-acid followed linear and Freundlich isotherms. The extent of adsorption was directly correlated with organic matter and clay contents, whereas desorption had a negative correlation. The high partition coefficients (KD) indicate strong adsorption of TFS on all of the test soils without any appreciable risk of groundwater contamination. In case of the TFS-acid, however, the adsorption was weaker; hence, if its further degradation is slow, it may contaminate lower soil horizons under worst case conditions. TFS did not cause any adverse effect on the soil microbial population. TFS was susceptible to aquatic photolysis in summer with an environmental half-life of 0.7-1.3 days irrespective of the latitudes.  相似文献   

6.
Atrazine [6-chloro-N-ethyl-N′-(1-methyl)-1,3,5 triazine-2,3-diamine] and alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl) acetamide] are agricultural herbicides used in large quantities and, as a consequence, are common contaminants in groundwater and surface water. The retention of these herbicides in soils and their degradation in aqueous environments is highly dependent upon their adsorption to solid surfaces. The adsorption of atrazine and alachlor was investigated on three typical Kansas and underlying aquifers known to be vulnerable to contamination. More alachlor was adsorbed to the soils and sediments than atrazine. The adsorption coefficients for atrazine were 2 to 5 times higher for soils than for aquifer sediments. For alachlor, the adsorption coefficients were 4 to 20 times higher for soil than for aquifer solids. Both linear and Freundlich isotherms represented the adsorption data well in all cases. The slope of the Freundlich isotherms, 1/n, was close to one, with the exception of alachlor adsorption onto the Topeka aquifer sediment (1/n = 0.67). The K d values found in these studies were comparable to the lower range of those reported in the literature.  相似文献   

7.
STUDIES ON SOIL COPPER   总被引:11,自引:0,他引:11  
Adsorption isotherms were determined for the specific adsorption of copper by soils and soil constituents. Adsorption was found to conform to the Langmuir equation. The Langmuir constants, a (adsorption maximum) and b (bonding term), were calculated. Soils were found to have specific adsorption maxima at pH 5.5 of between 340 and 5780 μg g?1, and a multiple regression analysis revealed that organic matter and free manganese oxides were the dominant constituents contributing towards specific adsorption. Adsorption maxima for soil constituents followed the order manganese oxides > organic matter > iron oxides > clay minerals, which supported the findings for whole soils. The cation exchange capacities (non-specific adsorption) of the test soils were found to be far greater than the specific adsorption maxima. However, evidence suggests that, for the relatively small amounts of copper normally present in soils, specific adsorption is the more important process in controlling the concentration of copper in the soil solution.  相似文献   

8.
Equilibrium adsorption of isoproturon on soil and pure clays   总被引:1,自引:0,他引:1  
The adsorption of isoproturon on soil and pure clay minerals has been investigated as a means of understanding its mobility in soils. Measured adsorption coefficients are correlated with soil and clay mineral properties. Soil organic matter controlled the adsorption of isoproturon at organic carbon contents exceeding 27 g kg?1, whereas at less than this threshold, clay mineral surfaces appeared to control adsorption. The effect of varying temperature suggests that adsorption of isoproturon is a physical process. From the comparison of the fits of linear, Freundlich, and Langmuir adsorption isotherms to the data, the adsorption is best described as a partition process.  相似文献   

9.
人工湿地基质对铵氮的动力学吸附研究   总被引:5,自引:0,他引:5  
Constructed wetlands (CWs) are engineered systems that utilize natural systems including wetland vegetations,soils,and their associated microbial assemblages to assist in treating wastewater.The kinetic adsorption of ammonium nitrogen (NH4+-N) by CW substrate materials such as blast furnace slag (BFS),zeolite,ceramsite,vermiculite,gravel,paddy soil,red soil,and turf,was investigated using batch experiments and kinetic adsorption isotherms.Both Freundlich and Langmuir isotherms could adequately predict the NH4+-N adsorption process.The maximum adsorption capacities of NH4+-N,estimated from the Langmuir isotherm,ranked as:zeolite (33 333.33 mg kg-1) > turf (29 274.01 mg kg-1) > BFS (5 000 mg kg-1) > vermiculite (3 333.33 mg kg-1) > gravel (769.23 mg kg-1) > paddy soil (588.24 mg kg-1) > red soil (555.56 mg kg-1) > ceramsite (107.53 mg kg-1).Some properties of the substrate materials,including bulk density,specific gravity,hydraulic conductivity,uniformity coefficient (K60),curvature coefficient (Cc),organic matter,pH,exchangeable (or active) Cu,Fe,Zn and Mn,total Cu,and Fe,Mn,Zn,Cd,Pb and Ca,had negative correlations with NH4+-N adsorption.Other properties of the substrate materials like particle diameter values of D10,D30 and D60 (the diameters of particle sizes of a substrate material at which 10%,30% and 60%,respectively,of the particles pass through the sieve based on the accumulative frequency),cation exchange capacity (CEC),exchangeable (or active) Ca and Mg,and total K and Mg had positive correlations with NH4+-N adsorption.In addition,active K and Na as well as the total Na had significant positive correlations with NH4+-N adsorption.This information would be useful for selection of suitable substrate materials for CWs.  相似文献   

10.
土壤对铜离子的专性吸附及其特征的研究   总被引:24,自引:4,他引:24  
武玫玲 《土壤学报》1989,26(1):31-41
供试土壤专性吸附铜的等温线均符合Langmuir方程。红壤吸附量最低,砖红腹与黄泥土最大吸附量相近,但在铜浓度低时砖红壤吸铜量远低于黄泥土,而在高浓度则反之。土壤专性吸附铜是在溶液中Na+浓度比Cu2+高8.3—100倍条件下,Na+离子仍不足以与之竞争的那些专性吸附点所吸持的铜。按其解吸条件区分为松结合铜(可为N NH4Cl解吸)和紧结合铜(仅能为0.1 N HCl解吸)两种。紧结合铜受平衡溶液铜浓度影响很小,所占据的吸附点对Cu2+有较强亲和力。松结合铜则随平衡铜溶液浓度增大而增加,符合Langmuir方程。对于砖红壤和黄泥土,在铜浓度低时紧结合铜>松结合铜;浓度高时则反之。红壤专性吸附铜始终以松结合铜为主。三种土壤比较,紧结合铜是砖红壤>黄泥土>红壤;松结合铜则是黄泥土>砖红壤>红壤。造成这些差别的原因可能与土壤性质、氧化物、有机质和粘土矿物组成等不同有关。用平衡法研究三种土壤专性吸附铜在不同浓度NH4Cl和HCl溶液中的解吸表明,可进一步区分为三或四种不同的结合状况。红壤对铜吸附容量最小,且最易解吸。  相似文献   

11.
The sorption and desorption behaviors of four phenoxyalkanoic acid herbicides and their metabolites on four agricultural soils and soil particle size fractions were examined. Generally, there was a trend of increasing adsorption and decreasing desorption in the order mecoprop < MCPA < dichlorprop < 2,4-D. The significant increase in adsorption of the phenolic metabolites can be explained by their lower polarity and enhanced partition in the organic soil matrix. Estimation of sorption distribution coefficients from particle size fraction adsorption data was possible for a sandy soil and a silty Cambisol soil only. It is suggested that increasing steric demand, for example, molecular volume, and slight changes in the polarity of the compounds affect their adsorption properties. Comparison of adsorption and desorption data of structurally similar compounds obtained from a variety of soils allows investigation of structure-induced differences in sorption strength.  相似文献   

12.
Soil adsorption and the effect of four chlorophenols and three chloroanilines on the growth of lettuce (Lactuca sativa) were determined in two soil types differing in organic matter content and pH. Adsorption increased with increasing organic matter content of the soils. Phytotoxicity, based on dosed amounts, was significantly higher in the soil with the low level of organic matter. This difference could be reduced by recalculating the EC50 values for the effect of the test substances on plant growth in mg kg-1 dry soil towards concentrations in mg L-1 pore water using data from soil adsorption experiments. For pentachlorophenol only this recalculation increased rather than decreased the difference between the two soils, however, when the EC50 values for pentachlorophenol were corrected for the difference in soil pH, almost the same values resulted for both soils. Calculated EC50 values on the basis of pore water concentrations appeared to be in good agreement with values determined in nutrient solution tests. These results indicate that, for plants, the toxicity and therefore the bioavailability of organic chemicals in soil mainly depend on the concentration in the soil solution, and can be predicted on the basis of sorption data. Attempts to develop QSARs relating log EC50 values in μmol L?1 pore water with lipophilicity (expressed as the octanol/water partition coefficient: log Kow,) of the test substances resulted in a statistically significant relationship. This relationship was further improved by correcting the chlorophenol data for dissociation effects.  相似文献   

13.
A method was developed for the determination of paraquat (PQ) and diquat (DQ) in high moisture food crops. Samples were digested with 6M HCl, and the herbicides were isolated from the digest using pH-controlled silica solid phase extraction. The analytes were then determined by ion-pairing liquid chromatography with a silica analytical column, sodium chloride as the ion-pairing reagent, and acetonitrile as the organic modifier. A diode array UV absorbance detector was used to simultaneously quantify PQ and DQ at their respective maximum absorbance wavelengths, 257 and 310 nm. Average recoveries of PQ and DQ standards from 4 different crops fortified at 0.01-0.50 ppm levels ranged from 79.3 to 104.8%.  相似文献   

14.
The adsorption of copper by individual soil components (organic matter fractions, oxides and clay minerals) was examined at equilibrium solution concentrations of copper within the range found in natural soils, the distribution of copper between solution and solid phases being measured by means of labelling with radioactive 64Cu. At these low solution concentrations it was found that the copper adsorption isotherms were essentially linear. The oxides and organic materials adsorbed the greatest amounts of copper. The concentration of copper in natural soil solutions will be controlled by these materials to a far greater extent than by the clay minerals, the influence of which may be negligible in some soils. Solution concentrations of copper are relatively unaffected by both the background concentration of major cations and by changes in pH within the ionic strength and pH range found in normal agricultural soils. Copper adsorption studies with humic and fulvic acids showed that total solution copper concentrations could be greatly enhanced above the equilibrium levels for ionic copper by the presence of soluble organic complexes. The importance of taking into account the presence of such copper complexes in soil copper studies is emphasised.  相似文献   

15.
镉与柠檬酸、EDTA在几种典型土壤中交互作用的研究   总被引:28,自引:4,他引:28  
采用批平衡实验方法研究了镉在青黑土 (IB)、黄棕壤 (YB)和红壤 (R)三种土壤上的吸附和解吸过程以及吸附介质酸度、共存有机酸等对此过程的影响。结果表明 :柠檬酸、EDTA的存在明显降低了镉在黄棕壤和青黑土上的吸附 ,同时镉解吸率较在硝酸钠体系要小 ,有机物的存在增加了土壤中镉的相对非饱和吸附点位。而在红壤上有机物的存在对镉的影响则随介质pH的改变而发生显著变化。酸性条件下 ,有机物的存在增加镉在红壤上的吸附 ,而随pH的增加 ,有机物减少镉的吸附。同时镉在硝酸钠体系中的解吸率随总吸附量的增加而呈现峰形的变化规律。土壤类型变化显著影响镉与有机物之间的交互作用过程  相似文献   

16.
At low solution concentrations of copper in the presence of 0.05 M CaCl2, adsorption isotherms for copper on soil samples were essentially linear. Although no direct correlations were found between isotherm gradients and individual soil properties, the gradients were of the same order of magnitude as predictions based on gradients obtained for some specific soil components. The soil components which appear to be most important in copper adsorption and which were used to obtain the predictions were organic matter and iron and manganese oxides. The amounts of adsorbed copper remaining isotopically exchangeable or extractable with EDTA in the short term increased with the amount of copper adsorbed but the proportions of adsorbed copper estimated by each of these techniques remained constant. Concentrations of copper in solution increased (adsorption decreased) at pH values below 4.5 and above 6.5.  相似文献   

17.
The widespread use of sodium p-perfluorous nonenoxybenzene sulfonate(OBS), a typical alternative to perfluorooctane sulfonate, has resulted in potential threats to the environment, but the adsorption behavior of OBS in soils has not yet been reported. In this study, the adsorption behaviors of OBS on five soils with different physicochemical properties were investigated. The rate of OBS adsorption was fast, and most of the OBS uptake was completed within 12 h. The good model fit of OBS adsorption to the pseudo-second-order and Elovich models indicated the occurrence of chemical adsorption. The adsorption isotherms of OBS on the soils were better described by the Freundlich model than by the Langmuir model, suggesting that the OBS adsorption sites on the soils were heterogeneous. This is possibly associated with various adsorption mechanisms including hydrophobic, π-π, hydrogen bonding, and electrostatic interactions,further confirmed by the good model fit to the D-R isotherm. Adsorption of OBS occurred on the soils, and the adsorption process was spontaneous and endothermic. In addition, the soils were more suitable for OBS adsorption at lower pH values due to the stronger electrostatic adsorption. The OBS adsorption on the soils decreased with the increase of soil depth from 0 to 30 cm. Moreover, the presence of organic matter and ammonia nitrogen in the soils was favorable for OBS adsorption, and these parameters decreased with increasing soil depth, making OBS adsorption less prominent in the deeper soil. This study indicates that OBS is easily enriched in surface soils, and that soil organic matter and ammonia nitrogen significantly affect OBS migration in soil.  相似文献   

18.
Abstract

To evaluate contributions of organic matter, oxides, and clay fraction to copper (Cu) adsorption in six characterized soils, adsorption isotherms and distribution coefficients were obtained by a batch experimental method. Copper adsorption isotherms from untreated soil, organic matter removed from samples, and organic‐matter‐ and oxide‐removed samples were compared with curve patterns and correlated to Langmuir and Freundlich models. Copper sorption data on untreated soils described L or H‐curves, whereas in soils deprived of any component, their curves were S‐type. Distribution coefficients allowed knowing Cu adsorption capacity of untreated soil and of organic matter, oxides, and clay fraction. Soil organic matter is the main component that affects Cu adsorption as long as soil pH is near neutrality. At acid pH, oxides are the main component that affects Cu adsorption, although to a much smaller extent than organic matter near neutral conditions. Soil pH is the main soil factor that determines Cu adsorption.  相似文献   

19.
采用批平衡实验,研究绿麦隆在单一及复合污染体系中的吸附-解吸行为。结果表明,无论是单一体系还是复合体系,吸附等温线均可用Freundlich模型进行良好的拟合。随着阿特拉津浓度的增加,土壤对绿麦隆的吸附作用降低,表明绿麦隆和阿特拉津之间存在竞争吸附,这可能与土壤的有机质类型和绿麦隆、阿特拉津的性质、结构有关。解吸实验表明,随着阿特拉津的浓度增加,绿麦隆的解吸作用增加。吸附过程的拟合指数n值大于解吸过程的对应值,即绿麦隆在不同体系中的解吸作用均存在一定的滞后性。应用Freundlich解吸等温线参数对吸附-解吸等温线的滞后作用进行量化,CT、(CT+0.5AT)、(CT+1AT)和(CT+2AT)处理解吸等温线的滞后系数ω分别为165.200,146.132,94.534和85.945,即随阿特拉津浓度增加,绿麦隆解吸等温线的滞后性降低。  相似文献   

20.
Transformation rates of phenylurea herbicides and their products were measured in native soil, sterile soil, soil suspensions, and soil inoculated with pure cultures of microorganisms. In native soil, transformation rates generally increased with decreasing adsorption of the herbicides, but correlations with adsorption coefficients were poor. In sterile soil, substitution patterns of the compounds influenced transformation rates. In soil suspensions, transformation rates increased with lipophilicity of the herbicides. In sterilized soil inoculated with specific microorganisms, transformation was mainly influenced by substrate specificities of the microorganisms to reactive sites of the phenylureas. In all cases, N-demethylation was an important, but not the only, transformation pathway. The data indicate that transformation rates of phenylureas in soils are affected by several parameters, related to the soil, the compounds, and the type of transformation. Although the results were gained in the laboratory under artificial conditions, they form a basis to establish quantitative structure-reactivity relationships and provide explanations for quality and quantity of the formed products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号