首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presettlement tree cover (1831–33) of 3 townships in a southern Wisconsin landscape was analyzed using original survey records. Four forest types were identified: closed forest, open forest, savanna, and prairie. Comparisons of vegetation types and landscape pattern were made between the east and west sides of the Pecatonica River, which bisects the landscape and could have acted as a natural fire barrier. West of the river, presettlement tree species richness and diversity were lower and trees were smaller in diameter and less dense than to the east. The major vegetation types to the west were prairie (42% of landscape) and savanna (40%), both fire-susceptible types. Prairie was more common on gentle slopes than on other landforms. To the east, the landscape was 70% forested (closed plus open forest). Here, prairie was more frequent on steep dry sites. These vegetation differences, including the contrasting landscape placement of prairie, are attributed to distinct site characteristics and to disturbance (fire) regimes, with the west likely having more frequent fires. In terms of the four vegetation types, the east landscape was more homogeneous, being dominated by closed forest (50%). West of the Pecatonica River, the landscape was more heterogeneous because of the high proportion of both prairie and savanna; however, in terms of flammability of vegetation, the west was essentially homogeneous (82% prairie plus savanna).  相似文献   

2.
Late-Holocene climatic conditions in the upper Great Lakes region have changed sufficiently to produce significant changes in vegetation and fire regimes. The objective of this study was to determine how the vegetation mosaic and fire regimes on an oak (Quercus spp.)- and pine (Pinus spp.)-dominated sand plain in northwestern Wisconsin responded to climatic changes of the past 1,200 years. We used pollen and charcoal records from a network of sites to investigate the range of natural variability of vegetation on a 1,500-km2 landscape on the southern part of the sand plain. A major vegetation shift from jack pine (Pinus banksiana) and red pine (P. resinosa) to increased abundance of white pine (P. strobus) occurred between 700 and 600 calendar years before present (cal yr BP), apparently corresponding to more mesic conditions regionally. A decrease in charcoal accumulation rate also occurred at most sites but was not synchronous with the vegetation change. At some sites there were further changes in vegetation and fire regimes occurring ~500–300 cal yr BP, but these changes were not as strong or unidirectional as those that occurred 700–600 cal yr BP. Our results suggest that both the composition and the distribution of vegetation of the southern part of the sand plain have been sensitive to relatively small climatic changes, and that the vegetation at the time of European settlement was a transitory phenomenon, rather than a long-term stable condition.  相似文献   

3.
Landscape Ecology - We investigated the question “Is there a relationship between seasonality in precipitation and vegetative cover in Pole Canyon, NM?” GIS and statistical methods were...  相似文献   

4.
A long line of inquiry on the notion of ecological convergence has compared ecosystem structure and function between areas that are evolutionarily unrelated but under the same climate regime. Much of this literature has focused on quantifying the degree to which animal morphology or plant physiognomy is alike between disjunct areas. An important property of ecosystems is their behavior following disturbance. Yet, this aspect of ecosystems has not been investigated in a comparative study of convergence. If different ecosystems are under similar environmental controls, then one would predict that the rates and patterns of response to disturbance would also be similar. The objective of this study is to compare landscape dynamics following disturbance using spatiotemporal models to quantify vegetation change in Mediterranean ecosystems found in California and Israel. We model the process of tree and shrub regeneration at the landscape scale in two similar study sites in Israel (Mount Meron) and California (Hasting Nature Reserve). During the periods studied (1964-1992 for Israel and 1971-1995 for California), average annual change in tree cover was 5 times larger in Israel than in California. Based on multiple regression models, differences were found in the relative importance of specific variables predicting vegetation change. In Hastings (California), initial tree cover accounted for most of the explained variability in 1995 tree cover (partial R2 = 0.71), while in Meron (Israel), grazing type and intensity, topography indices, and initial vegetation each accounted for about a third of the explained variability. These findings support the notion that traits such as regeneration pattern and rate, both at the individual level and at the landscape level, were largely affected by the human land use history of the region.  相似文献   

5.
为了解塞罕坝地区不同植被地表土壤动物群落特征,分别以白桦林、阔叶混交林、落叶松林、针阔混交林、云杉林、草甸为研究对象,于2017年7月采用陷阱法采集不同植被土壤动物并对其群落组成、结构及多样性进行分析。结果显示,6种植被样地中共获得土壤动物8 351头,隶属5纲19目96科186种,优势类群为盲蛛目、弹尾目、膜翅目、鞘翅目和双翅目。白桦林、落叶松林、阔叶混交林和针阔混交林土壤动物类群数均显著高于草甸和云杉林;落叶松林土壤动物个体数显著高于其他林分。各植被类型之间土壤动物Shannon-Wiener多样性指数和均匀度指数无显著差异。主成分分析和相关分析显示不同植被地表土壤动物的空间分布差异显著,且土壤动物个体数与林分内凋落物生物量、厚度、全氮、全磷、全碳含量及土壤容重呈极显著正相关。可见,塞罕坝地区不同植被类地表土壤动物群落组成和分布存在一定差异,地表环境因子是影响其组成的重要因素。  相似文献   

6.
Context

Forest management and disturbances cause habitat fragmentation for saproxylic species living on old-growth attributes. The degree of habitat spatiotemporal continuity required by these species is a key question for designing biodiversity-friendly forestry, and it strongly depends on species’ dispersal. The “stability–dispersal” model predicts that species using stable habitats should have lower dispersal abilities than species associated with ephemeral habitat and thus respond to habitat availability at smaller scales.

Objectives

We aimed at testing the stability–dispersal model by comparing the spatial scales at which saproxylic beetle guilds using substrates with contrasted stability (from stable to ephemeral: cavicolous, fungicolous, saproxylophagous and xylophagous guilds) are affected by landscape structure (i.e. habitat amount and aggregation).

Methods

We sampled saproxylic beetles using a spatially nested design (plots within landscape windows). We quantified habitat availability (tree cavities, polypores and deadwood) in 1-ha plots, 26-ha buffers around plots and 506-ha windows, and analyzed their effect on the abundance and diversity of associated guilds.

Results

The habitat amount within plots and buffers positively affected the abundance of the cavicolous and the fungicolous guilds whereas saproxylophagous and xylophagous did not respond at these scales. The habitat aggregation within windows only positively affected the saproxylophagous species richness within plots and also on the similarity in species composition among plots.

Conclusions

Beetle guilds specialized on more stable habitat were affected by landscape structure at smaller spatial scales, which corroborated the stability–dispersal model. In managed forests, the spatial grain of conservation efforts should therefore be adapted to the target habitat lifetime.

  相似文献   

7.
We formulated and tested models of relationships among determinants of vegetation cover in two agroforested landscapes of eastern North America (Haut Saint-Laurent, Quebec, Canada) that differed by the spatial arrangement of their geomorphic features and intensity of agricultural activities. Our landscape model compared the woody plots of each landscape in terms of the relative influence of environmental attributes, land use history (1958 – 1997), and spatial context (i.e., proximity of similar or contrasting land cover). Our vegetation model evaluated the relative contribution of the same sets of variables to the distributions of herbs, trees, and shrubs. Relationships were assessed using partial Mantel tests and path analyses. Significant environmental and contextual differences were found between the vegetation plots of the two landscapes, but disturbance history was similar. Our vegetation model confirms the dominant effect of historical factors on vegetation patterns. Whereas land-use history overrides environmental and contextual control for trees, herbaceous and shrub species are more sensitive to environmental conditions. Context is determinant only for understory species in older, less-disturbed plots. Results are discussed in relevance to vegetation dynamics in a landscape perspective that integrates interactions between environmental and human influences.  相似文献   

8.
Landscape structure can influence the fine-scale movement behavior of dispersing animals, which ultimately may influence ecological patterns and processes at broader scales. Functional grain refers to the finest scale at which an organism responds to spatial heterogeneity among patches and extends to the limits of its perceptual range. To determine the functional grain of a model insect, red flour beetle (Tribolium castaneum), we examined its movement behavior in response to experimental flour landscapes. Landscape structure was varied by manipulating habitat abundance (0%, 10%, 30%, and 100%) and grain size of patches (fine-2 × 2 cm, intermediate-5 × 5 cm, and coarse-10 × 10 cm) in 50 × 50 cm landscapes. Pathway metrics indicated that beetles used a similar proportion of all landscape types. Several pathway metrics indicated a graded response from the fine to the coarse grain landscape. Lacunarity analysis of beetle pathways indicated a non-linear change in space use between the fine and intermediate landscapes and the coarse-grained landscape. Beetles moved more slowly and tortuously (with many turns), and remained longer in both the overall landscape and individual patches, in fine-grained compared to coarse-grained landscapes. Our research demonstrates how detailed examination of movement pathways and measures of lacunarity can be useful in determining functional grain. Spatially explicit, organism-centered studies focusing on behavioral responses to different habitat configurations can serve as an important first step to identify behavioral rules of movement that may ultimately lead to more accurate predictions of space use in landscapes.  相似文献   

9.

Context

In the interior Northwest, debate over restoring mixed-conifer forests after a century of fire exclusion is hampered by poor understanding of the pattern and causes of spatial variation in historical fire regimes.

Objectives

To identify the roles of topography, landscape structure, and forest type in driving spatial variation in historical fire regimes in mixed-conifer forests of central Oregon.

Methods

We used tree rings to reconstruct multicentury fire and forest histories at 105 plots over 10,393 ha. We classified fire regimes into four types and assessed whether they varied with topography, the location of fuel-limited pumice basins that inhibit fire spread, and an updated classification of forest type.

Results

We identified four fire-regime types and six forest types. Although surface fires were frequent and often extensive, severe fires were rare in all four types. Fire regimes varied with some aspects of topography (elevation), but not others (slope or aspect) and with the distribution of pumice basins. Fire regimes did not strictly co-vary with mixed-conifer forest types.

Conclusions

Our work reveals the persistent influence of landscape structure on spatial variation in historical fire regimes and can help inform discussions about appropriate restoration of fire-excluded forests in the interior Northwest. Where the goal is to restore historical fire regimes at landscape scales, managers may want to consider the influence of topoedaphic and vegetation patch types that could affect fire spread and ignition frequency.
  相似文献   

10.
Fine-scale vegetation patches (<5 m in width) are critically important in many landscapes because they function to obstruct surface flows of water and wind. These obstructions increase the infiltration of runoff and the capture of nutrients in runoff sediments and in wind-blown soil and litter. The importance of redistribution of runoff into runon patches from spaces between patches (fetches) is likely to be greater in drier than in wetter environments. In this paper we examine the hypothesis that the ratio of fetch to patch decreases as rainfall increases, and that this trend will be most evident on intermediate-textured soils because these soils are more prone to runoff. We measured fine-scale patches on 38 sites with sand, loam or clay soils. Sites were located along a 1000-mm rainfall gradient in the savannas of northern Australia. The width and intercept length of patches and the fetch between patches was measuring along line transects of 100–120 m oriented down slope. We found that the ratio of fetch to patch area did not decrease with decreasing rainfall, but increased on both sand and loam soils. This result was because with increasing rainfall mean spacing between patches disproportionally increased while mean patch size and cover declined. The cover of patches was negatively correlated with tree canopy cover, which significantly increased with rainfall. This negative correlation suggests that in higher rainfall savannas the size and spacing of ground-layer patches is controlled by the tree layer, and that as rainfall decreases this control decreases and runoff-runon processes increasingly structure the landscape. For savannas on clay soils these trends were not significant except that on the highest rainfall sites the cover of ground-layer patches was nearly 100% while trees were absent.  相似文献   

11.
Landscape dynamics result from forestry and farming practices, both of which are expected to have diverse impacts on ecosystem services (ES). In this study, we investigated this general statement for regulating and supporting services via an assessment of ecosystem functions: climate regulation via carbon sequestration in soil and plant biomass, water cycle and soil erosion regulation via water infiltration in soil, and support for primary production via soil chemical quality and water storage. We tested the hypothesis that patterns of land-cover composition and structure significantly alter ES metrics at two different scales. We surveyed 54 farms in two Amazonian regions of Brazil and Colombia and assessed land-cover composition and structure from remote sensing data (farm scale) from 1990 to 2007. Simple and well-established methods were used to characterize soil and vegetation from five points in each farm (plot scale). Most ES metrics were significantly correlated with land-use (plot scale) and land-cover (farm scale) classifications; however, spatial variability in inherent soil properties, alone or in interaction with land-use or land-cover changes, contributed greatly to variability in ES metrics. Carbon stock in above-ground plant biomass and water infiltration rate decreased from forest to pasture land covers, whereas soil chemical quality and plant-available water storage capacity increased. Land-cover classifications based on structure metrics explained significantly less ES metric variation than those based on composition metrics. Land-cover composition dynamics explained 45 % (P < 0.001) of ES metric variance, 15 % by itself and 30 % in interaction with inherent soil properties. This study describes how ES evolve with landscape changes, specifying the contribution of spatial variability in the physical environment and highlighting trade-offs and synergies among ES.  相似文献   

12.
Ecological theory predicting the impact of fire on ecological communities is typically focused on post-disturbance recovery processes or on disturbance-diversity dynamics. Yet the established relationship between vegetation structure and animal diversity could provide a foundation to predict the short-term effects of fire on biodiversity, but has rarely been explored. We tested the hypothesis that fire effects on bird assemblages would be moderated by increasing vegetation structure. We examined bird assemblages in burnt and unburnt sites at 1 and 6 years after a wildfire, and compared richness and composition responses among and within three structurally distinct vegetation types in the same landscape: heath, woodland and forest. We found that short-term changes in bird assemblage composition were largest in simple heath vegetation and smallest in complex forest vegetation. The short-term change in species richness was larger in forest than in heath. We also found that among-site assemblage variability was greater shortly after fire in heath and woodland vegetation compared with forest vegetation. Our results indicate that complexity in vegetation structure, particularly overstorey cover, can act as an important moderator of fire effects on bird assemblages. Mechanisms for this response include a greater loss of structure in vegetation characterised by a single low stratum, and a proportionally greater change in bird species composition despite a smaller absolute change in species richness. We discuss our results in the context of a new conceptual model that predicts contrasting richness and composition responses of bird assemblages following disturbance along a gradient of increasing vegetation structure. This model brings a different perspective to current theories of disturbance, and has implications for understanding and managing the effects of fire on biodiversity in heterogeneous landscapes.  相似文献   

13.
Context

Lack of quantitative observations of extent, frequency, and severity of large historical fires constrains awareness of departure of contemporary conditions from those that demonstrated resistance and resilience to frequent fire and recurring drought.

Objectives

Compare historical and contemporary fire and forest conditions for a dry forest landscape with few barriers to fire spread.

Methods

Quantify differences in (1) historical (1700–1918) and contemporary (1985–2015) fire extent, fire rotation, and stand-replacing fire and (2) historical (1914–1924) and contemporary (2012) forest structure and composition. Data include 85,750-ha tree-ring reconstruction of fire frequency and extent; >?375,000-ha timber inventory following >?78,900-ha fires in 1918; and remotely-sensed maps of contemporary fire effects and forest conditions.

Results

Historically, fires?>?20,000 ha occurred every 9.5 years; fire rotation was 14.9 years; seven fires?>?40,469 ha occurred during extreme drought (PDSI <?? 4.0); and stand-replacing fire occurred primarily in lodgepole (Pinus contorta var. murrayana). In contemporary fires, only 5% of the ecoregion burned in 30 years, and stand-replacing fire occurred primarily in ponderosa (Pinus ponderosa) and mixed-conifer. Historically, density of conifers?>?15 cm dbh exceeded 120 trees/ha on?<?5% of the area compared to 95% currently.

Conclusions

Frequent, large, low-severity fires historically maintained open-canopy ponderosa and mixed-conifer forests in which large fire- and drought-tolerant trees were prevalent. Stand-replacing patches in ponderosa and mixed-conifer were rare, even in fires >?40,469 ha (minimum size of contemporary “megafires”) during extreme drought. In this frequent-fire landscape, mixed-severity fire historically influenced lodgepole and adjacent forests. Lack of large, frequent, low-severity fires degrades contemporary forest ecosystems.

  相似文献   

14.
For some time, ecologists have known that spatial patterns of forest structure reflected disturbance and recovery history, disturbance severity and underlying influences of environmental gradients. In spite of this awareness, historical forest structure has been little used to expand knowledge of historical fire severity. Here, we used forest structure to predict pre-management era fire severity across three biogeoclimatic zones in eastern Washington State, USA, that contained extensive mixed conifer forests. We randomly selected 10% of the subwatersheds in each zone, delineated patch boundaries, and photo-interpreted the vegetation attributes of every patch in each subwatershed using the oldest available stereo-aerial photography. We statistically reconstructed the vegetation of any patch showing evidence of early selective harvesting, and then classified them as to their most recent fire severity. Classification used published percent canopy mortality definitions and a dichotomized procedure that considered the overstory and understory canopy cover and size class attributes of a patch, and the fire tolerance of its cover type. Mixed severity fires were most prevalent, regardless of forest type. The structure of mixed conifer patches, in particular, was formed by a mix of disturbance severities. In moist mixed conifer, stand replacement effects were more widespread in patches than surface fire effects, while in dry mixed conifer, surface fire effects were more widespread by nearly 2:1. However, evidence for low severity fires as the primary influence, or of abundant old park-like patches, was lacking in both the dry and moist mixed conifer forests. The relatively low abundance of old, park-like or similar forest patches, high abundance of young and intermediate-aged patches, and widespread evidence of partial stand and stand-replacing fire suggested that variable fire severity and non-equilibrium patch dynamics were primarily at work.  相似文献   

15.
We hypothesized that the spatial configuration and dynamics of periurban forest patches in Barcelona (NE of Spain) played a minor role in determining plant species richness and assemblage compared to site conditions, and particularly to both direct (measured at plot level) and potential (inferred from landscape metrics) human-associated site disturbance. The presence of all understory vascular plants was recorded on 252 plots of 100 m2 randomly selected within forest patches ranging in size from 0.25 ha to 218 ha. Species were divided into 6 groups, according to their ecology and conservation status. Site condition was assessed at plot level and included physical attributes, human-induced disturbance and Quercus spp. tree cover. Landscape structure and dynamics were assessed from patch metrics and patch history. We also calculated a set of landscape metrics related to potential human accessibility to forests. Results of multiple linear regressions indicated that the variance explained for non-forest species groups was higher than for forest species richness. Most of the main correlates corresponded to site disturbance variables related to direct human alteration, or to landscape variables associated to indirect human effects on forests: Quercus tree cover (a proxy for successional status) was the most important correlate of non-forest species richness, which decreased when Quercus tree cover increased. Human-induced disturbance was an important correlate of synanthropic and total species richness, which were higher in recently managed and in highly frequented forests. Potential human accessibility also affected the richness of most species groups. In contrast, patch size, patch shape and connectivity played a minor role, as did patch history. We conclude that human influence on species richness in periurban forests takes place on a small scale, whereas large-scale effects attributable to landscape structure and fragmentation are comparatively less important. Implications of these results for the conservation of plant species in periurban forests are discussed.  相似文献   

16.
The parameters referring to landscape structure are essential in any evaluation for conservation because of the relationship that exists between the landscape structure and the ecological processes. This paper presents a study of the relationships between landscape structure and species diversity distribution (estimated in terms of richness of birds, amphibians, reptiles and butterflies) in the region of Madrid, Spain. The results show that the response of species richness to landscape heterogeneity varies depending on the group of species considered. For birds and lepidopterans, the most important factor affecting the distribution of richness of species is landscape heterogeneity, while other factors, such as the specific composition of land use, play a secondary role at this scale. On the other hand, richness of amphibians and reptiles is more closely related to the abundance of certain land-use types. The study highlights the importance of heterogeneity in Mediterranean landscapes as a criterion for landscape planning and for definition of management directives in order to maintain biodiversity.  相似文献   

17.

Context

Fires and insect outbreaks are important agents of forest landscape change, but the classification and distribution of these combined processes remain unstudied aspects of forest disturbance regimes.

Objectives

We sought to map areas of land characterized by homogenous fire regime (HFR) attributes and by distinctive combinations of fire, bark beetles and defoliating insect outbreaks, and how their distribution might change should current climatic trends continue.

Methods

We used a 41-year history of mapped fires and forest insect outbreaks to classify HFRs and combined fire and insect disturbance regimes (HDRs). Spatially constrained cluster analysis of 2524 20-km grid cells used mean annual area burned, ignition Julian date, fire size and fire frequency to delineate HFR zones. Mean annual areas burned, affected by bark beetles, and affected by defoliators were used to delineate HDR zones. Random forests classification used climate associations of HDRs to project likely changes in their distribution.

Results

Eighteen HFR zones accounted for 30% of variance, compared to 27 HDR zones accounting for 59% of variance. Fire regime designation had low predictive power in explaining 23 homogenous insect outbreak regimes or the 27 HDRs. Climate change projections indicate a northward migration of current HDR zones. Conditions suitable for defoliator outbreaks are projected to increase, resulting in a projected increase in the total rate of forest disturbance.

Conclusions

When describing forest disturbance regimes, it is important to consider the combined and possibly interacting agents of tree mortality, which can result in emergent properties not predictable from any single agent.
  相似文献   

18.
As part of the forest landscape, roadside trees are susceptible to multiple stressors that increase potential for tree damage during storm events and contribute to power outages. In exurban areas, decision-making related to the roadside forest is divided among many land ownerships and management entities with diverse objectives. Our objectives were to (1) identify general forest and roadside vegetation management objectives and challenges, (2) identify forest stressors and assess perceived severity and level of concern for forest stressor impacts to the roadside forest, and (3) evaluate manager interrelationships based on management objectives and challenges. We conducted semi-structured interviews with thirty-nine members of the forest management community who manage non-residential and non-industrial tracts of forest land in Connecticut, USA. Improving overall forest health and resilience, wildlife habitat, and forest products were the three most common general forest objectives. The two most frequently identified roadside objectives were public safety and mitigating hazardous conditions. The most common general forest management challenges included workforce limitations, financial constraints, and public perceptions. Support and satisfaction among the public and other stakeholders was the most frequently mentioned roadside forest management challenge. Although participants recognized the importance of roadside vegetation management, many avoided active management along roadsides. Immediate roadside vegetation issues such as public safety were prioritized rather than long-term planning. Stakeholders are constantly orchestrating a balance of numerous objectives as they integrate roadside vegetation considerations into broader forest management.  相似文献   

19.
Kibale National Park, within the Albertine Rift, is known for its rich biodiversity. High human population density and agricultural conversion in the surrounding landscape have created enormous resource pressure on forest fragments outside the park. Kibale presents a complex protected forest landscape comprising intact forest inside the park, logged areas inside the park, a game corridor with degraded forest, and forest fragments in the landscape surrounding the park. To explore the effect of these different levels of forest management and protection over time, we assessed forest change over the previous three decades, using both discrete and continuous data analyses of satellite imagery. Park boundaries have remained fairly intact and forest cover has been maintained or increased inside the park, while there has been a high level of deforestation in the landscape surrounding the park. While absolute changes in land cover are important changes in vegetation productivity, within land cover classes are often more telling of longer term changes and future directions of change. The park has lower Normalized Difference Vegetation Index (NDVI) values than the forest fragments outside the park and the formerly logged area—probably due to forest regeneration and early succession stage. The corridor region has lower productivity, which is surprising given this is also a newer regrowth region and so should be similar to the logged and forest fragments. Overall, concern can be raised for the future trajectory of this park. Although forest cover has been maintained, forest health may be an issue, which for future management, climate change, biodiversity, and increased human pressure may signify troubling signs.  相似文献   

20.
Mediterranean landscapes are dynamic systems that undergo temporal changes in composition and structure in response to disturbances, such as fire. Neither landscape patterns nor driving factors that affect them are evenly distributed in space. Accordingly, disturbances and biophysical factors interact in space through time. The aim of this paper is to assess the relative influence of topography and fire on the landscape patterns of a large forested area located in Sierra de Gredos (Central Spain) through time. A series of Landsat MSS images from 1975 to 1990, and a digital elevation model (DEM) were used to map fires, assess topographical complexity and evaluate changes in landscape composition and structure. Functional regions across the entire landscape were identified using different classification criteria (i.e., percentage burned area and topographic properties) to model topographic and fire impacts at regional scales. A canonical variance partition method, with a time series split-plot design, quantified the relative influence and co-variation of topography and fire on land cover patterns through time. Main results indicated that analyzing portions of the landscape under similar environmental conditions and fire histories, the effects of different fire regimes on the spatio-temporal dynamics of main land covers can be highlighted. However, the impact of fire on landscape patterns was high variable among regions due to the different regeneration abilities of main land covers, the topographic constraints and the fire histories of each region. Hence, broad patterns of fire related variance and co-variation with topography emerged across the entire area due to the different conditions of each landscape portion in which this large Mediterranean landscape was divided. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号