首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
[目的]从分子水平上探究青海省唐古拉山牦牛群体的母系遗传多样性、群体遗传结构及其遗传背景。[方法] 对52头唐古拉山牦牛个体mtDNA D-loop区序列进行测定后,使用生物信息学软件分析确定其核苷酸变异位点和单倍型数目,计算单倍型多样度和核苷酸多样度大小,并进行系统发育分析。[结果] 在619 bp唐古拉山牦牛D-loop区序列分析中,排除2处插入(缺失)后共检测到31处多态位点,包括单一多态位点5处和简约信息位点26处。根据序列间核苷酸变异共确定了13种单倍型,单倍型多样度和核苷酸多样度分别为0.821±0.043和0.007±0.004。与我国其他18个家牦牛品种和野牦牛相比,唐古拉山牦牛群体单倍型多样度和核苷酸多样度值均较低,表明该群体遗传变异较为贫乏,母系遗传多样性水平较低。以美洲野牛为外群,邻接法(即NJ法)构建的系统发育树结果显示:唐古拉山牦牛群体13种单倍型分布在A、B、C、D和E五种单倍型组中,且聚为2个大的母系分支(即I和II),支系Ⅰ占比为77%,提示唐古拉山牦牛由2个母系支系组成,拥有2个母系起源且以支系Ⅰ为主。 [结论] 唐古拉山牦牛母系遗传多样性水平较低,由2个母系支系组成,以支系Ⅰ为主,推测其有2个母系起源。  相似文献   

2.
Studies of the molecular biology of lymphoid cells have markedly increased our understanding of how millions of different antibodies can be synthesized by a single animal. To date, the most detailed understanding has been achieved for the mouse, primarily because of the relatively greater experimental availability of this species. These studies, as well as those involving other species, have shown that the complete genes for antibody polypeptide chains are assembled from disparate genetic elements which are originally widely separated in the genome. The assembly process itself, together with the coding information present in the germ line genetic elements, contributes to the diversity of structure (and thus combining specificities) shown by mature antibody molecules. Specifically, the diversity of structure characteristic of antibody variable regions is due to three distinct mechanisms: innate variability of germ line genes; mismatching of individual gene segments during their somatic rearrangement leading to junctional diversity; and somatic mutation in variable region genetic material during or after the rearrangement. These processes lead to the wide array of combining specificities that permit the humoral immune system of a mature animal to interact with essentially any non-self antigen which it encounters. Complex genetic rearrangements are also responsible for the class switching phenomenon long known to be characteristic of the humoral immune response. A form of homologous recombination between constant region genes, possibly mediated by specific "switching" enzymes, is now believed to be involved in this phenomenon. It is also currently believed that the restriction of gene rearrangement processes to one of the two possible chromosomes of a diploid pair in each cell is responsible for the phenomenon of allelic exclusion that has long been associated with the normal functioning of mammalian B-cells.  相似文献   

3.
The study characterized genetic diversity and genetic structure of five indigenous pig populations (Ha Lang, Muong Te, Mong Cai, Lung and Lung Pu), two wild pig populations (Vietnamese and Thai wild pigs) and an exotic pig breed (Yorkshire) using FAO/ISAG recommended 16 microsatellite markers in 236 samples. All estimated loci were very polymorphic indicated by high values of polymorphism information content (from 0.76 in S0225 to 0.92 in Sw2410). Indigenous populations had very high level of genetic diversity (mean He = 0.75); of all indigenous breeds, Lung Pu showed highest mean number of alleles (MNA = 10.1), gene diversity (He = 0.82), allele richness (5.33) and number of private alleles (10). Thirteen percentage of the total genetic variation observed was due to differences among populations. The neighbour‐joining dendrogram obtained from Nei's standard genetic distance differentiated eight populations into four groups including Yorkshire, two wild populations, Mong Cai population and a group of four other indigenous populations. The Bayesian clustering with the admixture model implemented in Structure 2.1 indicated seven possible homogenous clusters among eight populations. From 79% (Ha Lang) to 98% (Mong Cai). individuals in indigenous pigs were assigned to their own populations. The results confirmed high level of genetic diversity and shed a new light on genetic structure of Vietnam indigenous pig populations.  相似文献   

4.
《African Zoology》2013,48(1):137-142
In estimates of population genetic diversity based on allozyme heterozygosity, some enzymes are regularly more variable than others. Evolutionary theory suggests that functionally less important molecules, or parts of molecules, evolve more rapidly than more important ones; the latter enzymes should then theoretically be less polymorphic. In this paper I review most of the published papers on allozyme variability in southern African mammals, and correlate heterozygosity values with enzyme quaternary structure and the perceived importance of enzymes. Results provide support for the hypothesis of a linkage between enzyme quaternary structure and diversity. No association between enzyme function and heterogeneity was, however, observed.  相似文献   

5.
Tropical Animal Health and Production - A vital requirement to design and implement a breeding program is to know the structure and genetic diversity of a population. The aim of this study was to...  相似文献   

6.
应用SSR分子标记,对河南省15个居群共288份狗牙根材料进行遗传多样性及群体遗传结构分析,结果表明,10对引物共扩增出173条条带,其中163条为多态性条带,多态性条带百分率为94.29%,表明河南省狗牙根具有丰富的多态性。15个居群间的遗传分化系数为0.3857,即发生在居群间的遗传变异达到38.57%,大部分的遗传变异发生在居群内部,居群间基因流为0.7964,居群之间存在一定程度的基因交流。不同居群间遗传一致度的变化范围是0.746~0.964,平均为0.767。15个居群间的UPGMA聚类分析结果表明居群间没有完全按照地理来源进行聚类,遗传距离和地理距离矩阵之间的Mantel检验结果表明狗牙根居群间的遗传距离与地理距离之间无相关性。288份狗牙根材料之间的遗传距离为0.0173~0.5205,平均为0.3113,UPGMA聚类结果将所有材料分为3组。基于Structure软件的群体遗传结构分析结果表明,可将288份狗牙根材料分为2个亚群和一个混合型群体,与288份材料的UPGMA聚类结果基本一致,由此可判断两个亚群的遗传背景单一,混合型群体存在一定的种质基因渗透,遗传背景较为复杂。  相似文献   

7.
Between-breed genetic diversity is classically considered as a major criterion to be taken into account when setting priorities for conservation of domestic animal breeds. However, it has been argued that methods based on the between-breed component of genetic diversity may not be optimal because they ignore the within-breed component of variation. The paper considers the most common methods used to evaluate those two components when genetic diversity is evaluated on the basis of genetic markers, and proposes to define an aggregate diversity combining linearly the two components. This implies defining for each breed (or population) its contributions to the between-breed and to the within-breed diversity. When defining an aggregate diversity, one can weight these contributions by FST and 1−FST, respectively, since the fixation index FST of Wright represents the proportion of the total genetic variation which is due to differences in allelic frequencies between populations. Such an approach is valid when the objective is genetic improvement by selection within a so-called “meta-population”. However, in a more general context of animal breeding, when heterosis and complementarities between breeds have to be considered, as well as adaptation to specific environments, more weight should be given to the between-breed variation. The proper weight to apply may require solutions adapted to each particular situation. In a long-term conservation perspective, priorities should also take into account the degree of endangerment of each breed. By combining diversity contributions and probability of extinction, a cryopreservation potential (or priority) may be estimated for each breed. The problem is illustrated on a sample of 11 European pig breeds typed for 18 microsatellite loci.  相似文献   

8.
This review focuses on the diversity of immunoglobulin (Ig) genes and Ig isotypes that are expressed in domestic animals. Four livestock species-cattle, sheep, pigs, and horses-express a full range of Ig heavy chains (IgHs), including μ, δ, γ, ε, and α. Two poultry species (chickens and ducks) express three IgH isotypes, μ, υ, and α, but not δ. The κ and λ light chains are both utilized in the four livestock species, but only the λ chain is expressed in poultry. V(D)J recombination, somatic hypermutation (SHM), and gene conversion (GC) are three distinct mechanisms by which immunoglobulin variable region diversity is generated. Different domestic animals may use distinct means to diversify rearranged variable regions of Ig genes.  相似文献   

9.
ABSTRACT: This review focuses on the diversity of immunoglobulin (Ig) genes and Ig isotypes that are expressed in domestic animals. Four livestock species--cattle, sheep, pigs, and horses--express a full range of Ig heavy chains (IgHs), including mu, delta, gamma, epsilon, and alpha. Two poultry species (chickens and ducks) express three IgH isotypes, mu, upsilon, and alpha, but not delta. The kappa and lambda light chains are both utilized in the four livestock species, but only the lambda chain is expressed in poultry. V(D)J recombination, somatic hypermutation (SHM) and gene conversion (GC) are three distinct mechanisms by which immunoglobulin variable region diversity is generated. Different domestic animals may use distinct means to diversify rearranged variable regions of Ig genes.  相似文献   

10.
The phylogenetic layout of the genotyped (30 microsatellite) 18 sheep breeds in this study demands and provides the opportunity to evaluate both neutral and adaptive components of genetic diversity in a naturally and artificially selected and subdivided sheep population. Seven Pramenka strains from Bosnia and Herzegovina and Croatia characterized by a very low intensity of artificial selection, preserved the highest neutral genetic variability. Eight central and north‐western European breeds under considerable artificial isolation and selection preserved the lowest genetic variability. Only combinations of various phylogenetic parameters offer a reasonable explanation for underlying evolutionary forces working in the investigated island and mainland sheep breeds under variable natural and artificial selection. More than 60% of total genetic, diversity was allocated to virtually unselected Pramenka strains, and an additional 25% to native moderately selected Graue Gehoernte Heidschnucke and intensively selected Ostfriesische Milchschafe. Some economically very important breeds and strains did not contribute to a pool with maximal genetic diversity, while they play an important role in the cultural heritage of respective countries.  相似文献   

11.
Cattle play a very important role in agriculture and food security in Vietnam. A high level of cattle diversity exists and serves different needs of Vietnamese cattle keepers but has not yet been molecularly characterized. This study evaluates the genetic diversity and structure of Vietnamese indigenous cattle populations, using microsatellite markers. A total of 410 individuals from six indigenous cattle populations and an exotic breed was characterized using 27 microsatellite markers A total of 362 alleles was detected and the number of alleles per locus ranged from 8 (INRA005 and ILSTS005) to 17 (ETH185). The level of gene diversity was high indicated by a mean expected heterozygosity (He) across populations and loci of 0.73. Level of inbreeding (mean FIS=0.05) and genetic differentiation (mean FST=0.04) was moderate. The phylogenetic tree based on Reynolds genetic distance reflected geographic distances. Structure analysis indicated five homogeneous clusters. The Brahman, Lang Son, Ha Giang and U Dau Riu cattle were assigned to independent clusters while Nghe An, Thanh Hoa and Phu Yen cattle were grouped in a single cluster. We conclude that Vietnamese indigenous cattle have high levels of genetic diversity and distinct genetic structures. Based on these results, we recommend that for conservation homogenous populations (Nghe An, Thanh Hoa and Phu Yen) can be grouped to reduce costs and U Dau Riu, Lang Son and Ha Giang populations should be conserved separately to avoid loss of genetic diversity.  相似文献   

12.
通过测定采自天山和阿尔泰山草原的17个白喉乌头居群的叶绿体DNA片段序列,调查了其遗传多样性和空间遗传结构,并计算出每个居群的遗传多样性;运用分子变异方差(AMOVA)分析计算发生在居群内和居群间的遗传变异比例;利用错配分析来检验该物种是否发生了历史居群扩张;最后,基于最大熵方法模拟其物种在不同时期的分布区。结果表明:白喉乌头具有较低水平的遗传多样性(单倍型多样性±SD=0.343 7±0.048 8),所有居群均共享一个单倍型;遗传变异大致均等分布于居群间和局群内(58.25%vs.41.75%);两个不同谱系的分化发生在第四纪冰期(1.816~2.280百万年以前)末次盛冰期时期,该物种的避难所存在于天山西部,而在未来气候变化条件下其分布区不会发生变化。研究认为白喉乌头这种空间遗传结构与其克隆繁殖、长的生活周期、异交繁殖等生活史特征,以及第四纪气候变化影响相关。  相似文献   

13.
吴小培  沈迎芳  王海庆 《草业科学》2016,33(6):1136-1146
利用青藏高原及其毗邻地区的7个青藏扁蓿豆(Medicago archiducis-nicolai),以及来自上述地区和内蒙古的3个扁蓿豆(M.ruthenica)野生群体,根据叶绿体trnL-trnF基因间隔区序列,对其遗传多样性和群体遗传结构进行了分析。对161个个体的trnL-trnF序列的分析,共检测到11个核苷酸变异位点,定义了14种单倍型。对单倍型在不同群体中的分布分析显示,青藏扁蓿豆在青藏高原东南边缘地区可能存在避难所,同时在青藏高原边缘地区可能发生了青藏扁蓿豆向扁蓿豆群体的基因入侵。空间分子变异分析和基于K-2P遗传距离的群体聚类均支持将上述群体分为扁蓿豆和青藏扁蓿豆两组,组间的遗传分化程度很大。分子变异分析表明,群体内的遗传变异明显大于群体间的变异,但部分群体间存在较高水平的遗传分化;错配分布和中性检验表明,在采样范围内两种扁蓿豆都没有经历明显的近期种群扩张。研究认为,青藏高原复杂的地形结构、冰期时的气候波动以及扁蓿豆本身的进化历史可能是造成其现今遗传结构形成的主要原因。  相似文献   

14.
扁蓿豆遗传多样性的研究进展   总被引:1,自引:1,他引:0  
扁蓿豆(Medicago ruthenica)为二倍体豆科优良牧草,其抗逆性强、适应性广,生长于温带和寒温带。通过对扁蓿豆在表型、染色体、蛋白质及DNA水平的遗传多样性的研究进展,表明扁蓿豆是很具潜力的牧草植物,研究其遗传多样性具有重要的理论和实践意义。并根据国内的扁蓿豆的研究现状,提出了建议。  相似文献   

15.
16.
猪流行性腹泻(PED)是由猪流行性腹泻病毒(PEDV)引起的一种肠道传染病,对哺乳仔猪致死率可达100%,是导致我国哺乳仔猪高死亡率的“头号杀手”。PEDV属于冠状病毒科、冠状病毒属,是一种具有囊膜的单股正链RNA病毒,其基因组由4个结构蛋白和17个非结构蛋白组成。其中,S蛋白在病毒侵入宿主细胞和诱导机体产生中和抗体过程中发挥重要作用,因此S蛋白的突变与病毒的致病性高度相关。PEDV的变异以及PEDV与其它病原的共感染是难以防控PED的重要因素。  相似文献   

17.
18.
The aim of this study was to research the population structure and genetic diversity of the Nova Scotia Duck Tolling Retriever (NS) and the Lancashire Heeler (LH) dog breeds. Data consisted of nearly all the worldwide registration history for both breeds, including 28 668 NS and 4 782 LH individuals. A reference population, including the females born between 1999 and 2008, was defined for genetic analyses for each breed. Average depth of the pedigrees known for the reference population dogs was 12.9 complete generation equivalents in the NS and 6.0 in the LH. Only a small fraction of the born dogs were used later for breeding. Effective number of founders was 9.8 in the NS and 15.2 in the LH. More than 50% of the genetic diversity in the reference population was explained by two ancestors in the NS and five in the LH. Average inbreeding coefficients in the reference populations were 0.26 in the NS and 0.10 in the LH. Average kinships were 0.26 and 0.08 and realised effective population sizes 18 and 28, respectively. Failure to use available genetic resources for sustainable breeding has resulted in depletion of genetic variation in both breeds. To increase genetic variation, a larger proportion of the dogs should be used in reproduction and the contributions of reproducing animals should be equalized. In the LH, it is necessary to use the unregistered farm dogs in breeding. In the NS, crosses with another breed are needed.  相似文献   

19.
This review assesses evidence from DNA analysis to determine whether there is sufficient genetic diversity within breeds to ensure that populations are sustainable in the absence of cross breeding and to determine whether genetic diversity is declining. On average, dog breeds currently retain approximately 87% of the available domestic canine genetic diversity. Requirements that breeding stock must be 'clear' for all genetic disorders may firstly place undue genetic pressure on animals tested as being 'clear' of known genetic disorders, secondly may contribute to loss of diversity and thirdly may result in the dissemination of new recessive disorders for which no genetic tests are available. Global exchange of genetic material may hasten the loss of alleles and this practice should be discussed in relation to the current effective population size of a breed and its expected future popularity. Genomic data do not always support the results from pedigree analysis and possible reasons for this are discussed.  相似文献   

20.
For 100s of years, livestock producers have employed various types of selection to alter livestock populations. Current selection strategies are little different, except our technologies for selection have become more powerful. Genetic resources at the breed level have been in and out of favour over time. These resources are the raw materials used to manipulate populations, and therefore, they are critical to the past and future success of the livestock sector. With increasing ability to rapidly change genetic composition of livestock populations, the conservation of these genetic resources becomes more critical. Globally, awareness of the need to steward genetic resources has increased. A growing number of countries have embarked on large scale conservation efforts by using in situ, ex situ (gene banking), or both approaches. Gene banking efforts have substantially increased and data suggest that gene banks are successfully capturing genetic diversity for research or industry use. It is also noteworthy that both industry and the research community are utilizing gene bank holdings. As pressures grow to meet consumer demands and potential changes in production systems, the linkage between selection goals and genetic conservation will increase as a mechanism to facilitate continued livestock sector development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号