首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While the cumulative effects of the actions of multiple owners have long been recognized as critically relevant to efforts to maintain sustainable forests at the landscape scale, few studies have addressed these effects. We used the HARVEST timber harvest simulator to predict the cumulative effects of four owner groups (two paper companies, a state forest and non-industrial private owners) with different management objectives on landscape pattern in an upper Michigan landscape managed primarily for timber production. We quantified trends in landscape pattern metrics that were linked to Montreal Process indicators of forest sustainability, and used a simple wildlife habitat model to project habitat trends. Our results showed that most trends were considered favorable for forest sustainability, but that some were not. The proportion of all age classes and some forest types moved closer to presettlement conditions. The trend for the size of uneven-aged patches was essentially flat while the average size of patches of the oldest and youngest age classes increased and the size of patches of the remaining age classes decreased. Forest fragmentation generally declined, but edge density of age classes increased. Late seral forest habitat increased while early successional habitat declined. The owners use different management systems that cumulatively produce a diversity of habitats. Our approach provides a tool to evaluate such cumulative effects on other landscapes owned by multiple owners. The approach holds promise for helping landowner groups develop and evaluate cooperative strategies to improve landscape patterns for forest sustainability.  相似文献   

2.

Context

Habitat loss, fragmentation and degradation are widespread drivers of biodiversity decline. Understanding how habitat quality interacts with landscape context, and how they jointly affect species in human-modified landscapes, is of great importance for informing conservation and management.

Objectives

We used a whole-ecosystem manipulation experiment in the Brazilian Amazon to investigate the relative roles of local and landscape attributes in affecting bat assemblages at an interior-edge-matrix disturbance gradient.

Methods

We surveyed bats in 39 sites, comprising continuous forest (CF), fragments, forest edges and intervening secondary regrowth. For each site, we assessed vegetation structure (local-scale variable) and, for five focal scales, quantified habitat amount and four landscape configuration metrics.

Results

Smaller fragments, edges and regrowth sites had fewer species and higher levels of dominance than CF. Regardless of the landscape scale analysed, species richness and evenness were mostly related to the amount of forest cover. Vegetation structure and configurational metrics were important predictors of abundance, whereby the magnitude and direction of response to configurational metrics were scale-dependent. Responses were ensemble-specific with local-scale vegetation structure being more important for frugivorous than for gleaning animalivorous bats.

Conclusions

Our study indicates that scale-sensitive measures of landscape structure are needed for a more comprehensive understanding of the effects of fragmentation on tropical biota. Although forest fragments and regrowth habitats can be of conservation significance for tropical bats our results further emphasize that primary forest is of irreplaceable value, underlining that their conservation can only be achieved by the preservation of large expanses of pristine habitat.
  相似文献   

3.

Context

In heterogeneous landscapes, habitat complementation is a key process underlying the distribution of mobile species able to exploit non-substitutable resources over large home ranges. For instance, insectivorous bats need to forage in a diversity of habitat patches offering varied compositions and structures within forest landscape mosaics to fulfill their life cycle requirements.

Objectives

We aimed at analyzing the effects of forest structure and composition measured at the stand and landscape scales on bat species richness, abundance and community composition in pine plantation forests of south-western France.

Methods

We sampled bat communities at different periods of the summer season using automatic ultrasound recorders along a tree composition gradient from pine monocultures to pure oak stands. We analyzed bat species activity (as a proxy for bat abundance) and species richness with linear mixed models. Distance-based constrained ordinations were used to partition the spatio-temporal variation in bat communities.

Results

Deciduous tree cover increased bat activity and modified community composition at both stand and landscape scales. Changes in bat communities were mostly driven by landscape-scale variables while bat activity responded more to stand-scale predictors.

Conclusions

The maintenance of deciduous trees at both stand and landscape scales is likely critical for bat communities living in fast-growing conifer plantations, by increasing the availability and diversity of prey and roosting sites. Our study suggests that bats respond to forest composition at both stand and landscape scales in mosaic plantation landscapes, mainly through a resource complementation process.
  相似文献   

4.
Contemporary landscape ecology continues to explore the causes and consequences of landscape heterogeneity across a range of scales, and demands for the scientific underpinnings of landscape planning and management still remains high. The spatial distribution of resources can be a key element in determining habitat quality, and that in turn is directly related to the level of heterogeneity in the system. In this sense, forest habitat mosaics may be more affected by lack of heterogeneity than by structural fragmentation. Nonetheless, increasing spatial heterogeneity at a given spatial scale can also decrease habitat patch size, with potential negative consequences for specialist species. Such dual effect may lead to hump-backed shape relationships between species diversity and heterogeneity, leading to three related assumptions: (i) at low levels of heterogeneity, an increase in heterogeneity favours local and regional species richness, (ii) there is an optimum heterogeneity level at which a maximum number of species is reached, (iii) further increase in spatial heterogeneity has a negative effect on local and regional species richness, due to increasing adverse effects of habitat fragmentation. In this study, we investigated the existence of a hump-shaped relationship between local plant species richness and increasing forest landscape heterogeneity on a complex mosaic in the French Alps. Forest landscape heterogeneity was quantified with five independent criteria. We found significant quadratic relationships between local forest species richness and two heterogeneity criteria indicators, showing a slight decrease of forest species richness at very high heterogeneity levels. Species richness–landscape heterogeneity relationships varied according to the heterogeneity metrics involved and the type of species richness considered. Our results support the assumption that intermediate levels of heterogeneity may support more species than very high levels of heterogeneity, although we were not able to conclude for a systematic negative effect of very high levels of heterogeneity on local plant species richness.  相似文献   

5.
The influence of landscape structure on anopheline mosquito density and diversity was studied in a comparison of agricultural and forested landscapes in northern Thailand. Agriculture locations had significantly higher landscape diversity, more patches, smaller mean patch sizes, and more complex patch shapes than forest locations. Mosquito collections were undertaken during both dry and wet seasons from October 1997 to December 1999. The density of two forest-associated species, Anopheles maculatus s.s. and Anopheles minimus s.l., both primary malaria vectors in Thailand, was significantly higher in forest locations in at least one season. The density of two paddy field-associated species, Anopheles aconitus and Anopheles hyrcanus group did not differ between locations. Anopheles aconitus is a secondary malaria vector and An. hyrcanus group is not considered as a vector in Thailand. The density of An. minimus s.l. was positively related to forest mean patch size, various water and paddy field landscape metrics and negatively related to landscape diversity. Anopheles hyrcanus group was also positively related to water metrics. Anopheline species diversity was negatively related to landscape diversity. Forest fragmentation resulting from human economic activities often increases landscape heterogeneity, which may result in a reduction in anopheline species diversity, as was the case in this study. There are indications that the effect of fruit orchards on anopheline diversity might be different in the dry season compared to the wet season. Fruit orchard landscape metrics affected species diversity negatively in the dry season and positively in the wet season. One reason for this could be that pesticides are typically applied in fruit orchards during the dry season. The conversion of forests to fruit orchards is a major land-use change in northern Thailand. These results show the complexity of vector status in northern Thailand and that vector and agriculture pest control are intricately interrelated. It is therefore important to include both the public health and agricultural sectors in controlling malaria vectors in the country. Our results also indicate that if landscape management should be used for malaria control in northern Thailand large-scale reduction and fragmentation of forest cover would be needed. Such drastic actions do not agree well with current global objectives concerning forest and biodiversity conservation This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.

Context

The ability to detect ecological networks in landscapes is of utmost importance for managing biodiversity and planning corridors.

Objectives

The objective of this study was to evaluate the information provided by a synthetic aperture radar (SAR) image for landscape connectivity modeling compared to aerial photographs (APs).

Methods

We present a novel method that integrates habitat suitability derived from remote sensing imagery into a connectivity model to explain species abundance. More precisely, we compared how two resistance maps constructed using landscape and/or local metrics derived from AP or SAR imagery yield different connectivity values (based on graph theory), considering hedgerow networks and forest carabid beetle species as a model.

Results

We found that resistance maps using landscape and local metrics derived from SAR imagery improve landscape connectivity measures. The SAR model is the most informative, explaining 58% of the variance in forest carabid beetle abundance. This model calculates resistance values associated with homogeneous patches within hedgerows according to their suitability (canopy cover density and landscape grain) for the model species.

Conclusions

Our approach combines two important methods in landscape ecology: the construction of resistance maps and the use of buffers around sampling points to determine the importance of landscape factors. This study was carried out through an interdisciplinary approach involving remote sensing scientists and landscape ecologists. This study is a step forward in developing landscape metrics from satellites to monitor biodiversity.
  相似文献   

7.

Context

Butterflies have been continuously declining for several decades in Europe due to many factors, such as farming intensification. Rural landscapes have undergone dramatic changes leading to homogenized landscapes.

Objectives

In this study, we investigated how landscape composition, structure and connectivity impact butterfly communities according to their ecological and biological traits.

Methods

We made use of 5669 Lepidoptera surveys performed at 4525 distinct locations in lowland Central France. We considered 19 ecological groups based on habitat specialization, mobility, diet, voltinism or overwintering strategy. Generalized linear mixed-effect models were used to relate the species richness of these groups to landscape variables defined in circular zones with radius from 250 m to 5 km.

Results

Richness of most species groups co-varied with landscape variables, with the exception of mobile, imago-overwintering, monophagous and polyphagous species. Habitat proportion explained more variation in butterfly diversity than habitat connectivity or habitat diversity. Moreover, the best proportion models were generally found for the 250-m circular zones. Thirteen species groups were disfavored by cropland amount. Except for forest specialists and high mobility group, no other group was more diverse in landscapes dominated by a single land cover type. Rather, for total diversity and 14 groups, species richness peaked for forest proportions varying between 40 and 80%, and for total diversity and nine groups for grassland proportions ranging from 30 to 60%.

Conclusions

These results indicate that landscape homogenization is contributing to the ongoing decline in butterflies, and support preserving and (re)creating mosaics of grasslands and forests.
  相似文献   

8.
Cumming  Steve  Vervier  Pierre 《Landscape Ecology》2002,17(5):433-444
Forest managers in Canada need to model landscape pattern or spatial configurationoverlarge (100,000 km2) regions. This presents a scalingproblem, as landscape configuration is measured at a high spatial resolution,but a low spatial resolution is indicated for regional simulation. We present astatistical solution to this scaling problem by showing how a wide range oflandscape pattern metrics can be modelled from low resolution data. Our studyarea comprises about 75,000 km2 of boreal mixedwoodforest in northeast Alberta, Canada. Within this area we gridded a sample of 84digital forest cover maps, each about 9500 ha in size, to aresolution of 1 ha and used FRAGSTATS to compute a suite oflandscape pattern metrics for each map. We then used multivariate dimensionreduction techniques and canonical correlation analysis to model therelationship between landscape pattern metrics and simpler stand table metricsthat are easily obtained from non-spatial forest inventories. These analyseswere performed on four habitat types common in boreal mixedwood forests: youngdeciduous, old deciduous, white spruce, and mixedwood types. Using only threelandscape variables obtained directly from stand attribute tables (totalhabitatarea, and the mean and standard deviation of habitat patch size), ourstatistical models explained more than 73% of the joint variation in fivelandscape pattern metrics (representing patch shape, forest interior habitat,and patch isolation). By PCA, these five indices captured much of the totalvariability in the rich set of landscape pattern metrics that FRAGSTATS cangenerate. The predictor variables and strengths of association were highlyconsistent across habitat classes. We illustrate the potential use of suchstatistical relationships by simulating the regional, cumulative effects ofwildfire and forest management on the spatial arrangement of forest patches,using non-spatial stand attribute tables.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

9.
Gao  Boyu  Gong  Peng  Zhang  Wenyuan  Yang  Jun  Si  Yali 《Landscape Ecology》2021,36(1):179-190
Context

With the expansion in urbanization, understanding how biodiversity responds to the altered landscape becomes a major concern. Most studies focus on habitat effects on biodiversity, yet much less attention has been paid to surrounding landscape matrices and their joint effects.

Objective

We investigated how habitat and landscape matrices affect waterbird diversity across scales in the Yangtze River Floodplain, a typical area with high biodiversity and severe human-wildlife conflict.

Methods

The compositional and structural features of the landscape were calculated at fine and coarse scales. The ordinary least squares regression model was adopted, following a test showing no significant spatial autocorrelation in the spatial lag and spatial error models, to estimate the relationship between landscape metrics and waterbird diversity.

Results

Well-connected grassland and shrub surrounded by isolated and regular-shaped developed area maintained higher waterbird diversity at fine scales. Regular-shaped developed area and cropland, irregular-shaped forest, and aggregated distribution of wetland and shrub positively affected waterbird diversity at coarse scales.

Conclusions

Habitat and landscape matrices jointly affected waterbird diversity. Regular-shaped developed area facilitated higher waterbird diversity and showed the most pronounced effect at coarse scales. The conservation efforts should not only focus on habitat quality and capacity, but also habitat connectivity and complexity when formulating development plans. We suggest planners minimize the expansion of the developed area into critical habitats and leave buffers to maintain habitat connectivity and shape complexity to reduce the disturbance to birds. Our findings provide important insights and practical measures to protect biodiversity in human-dominated landscapes.

  相似文献   

10.
We determined the relationship between acoustic diversity and metrics of vertical forest structure derived from light detection and ranging (LIDAR) data in a neotropical rainforest in Costa Rica. We then used the LIDAR-derived metrics to predict acoustic diversity across the forest landscape. Sound recordings were obtained from 14 sites for six consecutive days during dusk chorus (6?pm). Acoustic diversity was calculated for each day as the total intensity across acoustic frequency bands using the Shannon index and then averaged over the 6?days at each site. A 10?m radius around each site was used to obtain several LIDAR-derived metrics describing the vertical structural attributes of the forest canopy. Multiple linear regression (MLR) with Akaike information criterion was used to determine a top-ranked model with acoustic diversity as the dependent variable and the LIDAR metrics as independent variables. Acoustic diversity was modeled for forested areas (where canopy height was?>20?m) at 20?m resolution using coefficients obtained from the MLR, and a hotspot analysis was conducted on the resulting layer. Acoustic diversity was strongly correlated (R 2 ?=?0.75) with the LIDAR metrics suggesting that LIDAR-derived metrics can be used to determine canopy structural attributes important to vocal fauna species. The hotspot analysis revealed that the spatial distribution of these canopy structural attributes across the La Selva forest is not random. Our approach can be used to identify forest patches of potentially high acoustic diversity for conservation or management purposes.  相似文献   

11.
Birds can serve as useful model organisms to investigate community level consequences of forestry practices. In this study we investigated the relationships between wintering bird communities and habitat and landscape characteristics of lowland managed forests in Northern Italy. This area is characterized by the spread of the black locust, an alien species that has been favored by forestry practices at the expense of natural oak forests. Birds were censused in winter by point counts in randomly selected plots of 50 m radius. We first addressed bird community–habitat relationships by means of habitat structure measurements, then we investigated bird community–landscape relationships by using GIS techniques. We used generalized linear models (GLM) to test for the effects of habitat and landscape variables on bird community parameters (namely bird species richness, diversity and abundance). Bird community parameters were influenced by oak biomass and tree age, and by oak area and core area, while the other forest habitat types showed less influence. In forest management terms, the main conclusion is that the retention of native oaks is the keyfactor for the conservation of winter bird diversity in local deciduous woods. At the habitat level black locust harvesting may be tolerated, provided that old, large, native oaks are retained in all local woodlots to preserve landscape connectivity and foraging resources. At the landscape meso-scale, large native oak patches, should be preserved or, where necessary, restored. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Wagner  Helene H.  Wildi  Otto  Ewald  Klaus C. 《Landscape Ecology》2000,15(3):219-227
In this paper, we quantify the effects of habitat variability and habitat heterogeneity based on the partitioning of landscape species diversity into additive components and link them to patch-specific diversity. The approach is illustrated with a case study from central Switzerland, where we recorded the presence of vascular plant species in a stratified random sample of 1'280 quadrats of 1 m2 within a total area of 0.23 km2. We derived components of within- and between-community diversity at four scale levels (quadrat, patch, habitat type, and landscape) for three diversity measures (species richness, Shannon index, and Simpson diversity). The model implies that what we measure as within-community diversity at a higher scale level is the combined effect of heterogeneity at various lower levels. The results suggest that the proportions of the individual diversity components depend on the habitat type and on the chosen diversity aspect. One habitat type may be more diverse than another at patch level, but less diverse at the level of habitat type. Landscape composition apparently is a key factor for explaining landscape species richness, but affects evenness only little. Before we can test the effect of landscape structure on landscape species richness, several problems will have to be solved. These include the incorporation of neighbourhood effects, the unbiased estimation of species richness components, and the quantification of the contribution of a landscape element to landscape species richness.  相似文献   

13.
The effects of landscape composition on species and populations have become increasingly important due to large and rapid habitat changes worldwide. In particular, concern is raised for several forest-dwelling species such as capercaillie and black grouse, because their habitats are continuously changing and deteriorating from human development. Conservation of these species is linked to sustainable forest management that seeks to benefit multiple species, which demands knowledge about demographic rates in relation to forest composition and structure. We related the spatial variation in adult density and chick production of capercaillie and black grouse to landscape characteristics from 13 areas within the boreal forest of Norway. Linear mixed effects models showed that black grouse and capercaillie had similar associations to landscape characteristics. Adult density of both species was positively related to the proportion of old forest (>80 years), but only if the area had large proportions of mid to high productive forests. Chick production was negatively related to the proportion of old forest, but positively to habitat diversity and more so for black grouse compared to capercaillie. However, the result for chick production suggest that other forest types also are important, and that forest grouse needs a variety of habitats during their life history stages. Management that seeks to simultaneously conserve populations of black grouse and capercaillie needs to ensure a matrix of various forest types. A special focus must be on the critical life history of local populations to successfully preserve viable populations, for black grouse and capercaillie this implies protection of old and mid to high productive forest while keeping a heterogeneous landscape.  相似文献   

14.
Natural landscapes are increasingly subjected to anthropogenic pressure and fragmentation resulting in reduced ecological condition. In this study we examined the relationship between ecological condition and the soundscape in fragmented forest remnants of south-east Queensland, Australia. The region is noted for its high biodiversity value and increased pressure associated with habitat fragmentation and urbanisation. Ten sites defined by a distinct open eucalypt forest community dominated by spotted gum (Corymbia citriodora ssp. variegata) were stratified based on patch size and patch connectivity. Each site underwent a series of detailed vegetation condition and landscape assessments, together with bird surveys and acoustic analysis using relative soundscape power. Univariate and multivariate analyses indicated that the measurement of relative soundscape power reflects ecological condition and bird species richness, and is dependent on the extent of landscape fragmentation. We conclude that acoustic monitoring technologies provide a cost effective tool for measuring ecological condition, especially in conjunction with established field observations and recordings.  相似文献   

15.

Context

Land-use change impacts biodiversity and ecosystem services, which are intrinsically related. There is a serious lack of knowledge concerning on how land-use change affects this relationship at landscape level, where the greatest impacts have been reported. A proper knowledge of that relationship would provide crucial information for planning conservation strategies. The forest landscape of southern Chile, which includes Valdivian Temperate Forest, has been designated as a hotspot for biodiversity conservation. However, this landscape has been transformed by land-use change.

Objective

We evaluated the impact of land-use change on the spatial patterns of the diversity of native forest habitat and the influence of these impacts on the provision of the ecosystem services water supply, erosion control, and organic matter accumulation from 1986 to 2011.

Methods

The evaluation, at the landscape level, was carried out using satellite images, landscape metrics, spatially explicit models and generalized linear models. Results: We found that the area loss of native forest habitat was 12%, the number patches of native forest habitat increased more than 150% and the Shannon diversity index decreased by 0.20. The largest decrease in the provision of services was recorded for erosion control (346%), and the smallest for water supply (11%).

Conclusions

The loss of provision of the ecosystem services can be explained by the interaction between the area loss, increase in the number patches and diversity loss. We recommend that the conservation planning strategies should consider the current landscape configuration, complemented with land-use planning.
  相似文献   

16.
Richness of Ancient Woodland Indicator plant species was analysed in 308 woodland patches that were surveyed during the Countryside Survey of Great Britain carried out in 1998. The Countryside Survey recorded vegetation plots and landscape structure in 569 stratified 1 km sample squares and developed a remotely-sensed land cover map of the UK. Using these datasets, we tested the hypothesis that Ancient Woodland Indicator species richness in woodland fragments was limited by patch area, shape and spatial isolation and that woodland patches located in the lowland region of Great Britain would respond differently than those in the upland region. The variation in Ancient Woodland Indicator species richness in the British lowlands (n = 218) was mainly explained by patch area and two measures of connectivity, the length of hedgerows and lines of trees in the 1 km square and the area of woodland within 500 m of the vegetation plot. By contrast, variation in Ancient Woodland Indicator species richness in the British uplands (n = 90) was related to Ellenberg scores of the vegetation communities sampled – a surrogate for habitat quality – and no significant effect of spatial structure was detected. It therefore appears that the degree of fragmentation of woodland in the British lowlands limits the distribution of Ancient Woodland Indicator species, while in the uplands, failed colonisation is a matter of habitat quality rather than a result of landscape structure.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

17.
Habitat connectivity for pollinator beetles using surface metrics   总被引:1,自引:1,他引:0  
Measuring habitat connectivity in complex landscapes is a major focus of landscape ecology and conservation research. Most studies use a binary landscape or patch mosaic model for describing spatial heterogeneity and understanding pattern-process relationships. While the value of landscape gradient approaches proposed by McGarigal and Cushman are recognized, applications of these newly proposed three dimensional surface metrics remain under-used. We created a gradient map of habitat quality from several GIS layers and applied three dimensional surface metrics to measure connectivity between 67 locations in Indiana, USA surveyed for one group of ecosystem service providers, flower longicorn beetles (Cerambycidae: Lepturinae). The three dimensional surface metrics applied to the landscape gradient model showed great potential to explain the differences of lepturine assemblages among the 2,211 studied landscapes (between site pairs). Surface kurtosis and its interaction with geographic distance were among the most important metrics. This approach provided unique information about the landscape through four configuration metrics. There were some uniform trends of the responses of many species to some of surface metrics, however some species responded differently to other metrics. We suggest that three dimensional surface metrics applied to a habitat surface map created with insight into species requirements is a valuable approach to understanding the spatial dynamics of species, guilds, and ecosystem services.  相似文献   

18.
In this work we evaluated anuran species distribution in an Atlantic forest fragmented landscape, in the state of Rio de Janeiro, Brazil. Sampling was carried out in three continuous forest sites, 12 forest fragments, and five pasture areas (matrix). We recorded, by visual encounter surveys, 2,495 individuals from 50 amphibian species for all sampled areas. Considering the pooled data, higher richness occurs in continuous forest area. Additionally, more than a third of species that occurred in continuous forest area did not occur in fragments or in matrix. Both ordination analyses showed that continuous forest sites clustered together and matrix areas seemed to be separated from other areas. This ordination resulted from the existence of species occurring only in continuous forest, suggesting that these species may be sensitive to habitat fragmentation. Besides, matrix appears separated from other areas due to occurrence of frog species typical from disturbed environments, which are not recorded in continuous forest sites or in sampled fragments. By analyzing the effect of landscape metrics, we found that there was a tendency for fragments with lower isolation to have higher species richness and proportion of species which did not occur in matrix areas and amphibian local communities seems to be affected in a more local scale by habitat changes. Because local matrix is apparently hostile to typically forest-associated amphibian species, many of them may be unable to reach most isolated fragments by dispersal, which may explain observed results.  相似文献   

19.
Few relevant data are available to analyze how landscape features affect the abundance and movement patterns of tropical insects. We used mark-release-recapture techniques to study the effects of landscape structure and composition on habitat preferences and movements of Canthon cyanellus cyanellus individuals, within a complex tropical deciduous forest landscape in South Mexico during 2004 and 2005. In total, 2,460 individuals of C. c. cyanellus were captured, including 1,225 females and 1,235 males, out of which 124 individuals (65 females and 59 males) were recaptured once, and 9 individuals (seven females and two males) were recaptured twice. The abundance of individuals was equally high in large forest fragments, small forest fragments and hedgerows, but the abundance in pastures was less than half of the abundance in the other habitat types. To disentangle the movement behaviour of the species from the spatially and temporally varying sampling effort, we applied a Bayesian state-space modelling framework with a diffusion based movement model. Males showed generally faster movement rate than females, and they moved faster within forests and hedgerows than within pastures. Contrary to the assumption of the diffusion model, individuals did not move in a continuous fashion, indicated by the large fraction of individuals that were recaptured in the site of release. However, the posterior predictive data did not deviate substantially from the real data in terms of the mean and maximum movement distances recorded, and in terms of the dependence of movement distance on time between captures. Our results suggest that an important component of the biota in Mexican agro-pasture landscapes can utilize contemporary landscape elements such as hedgerows or small forest fragments in addition to large fragments of remnant habitat. These habitats are still locally common in semi-natural ecosystems and require less intensive conservation management.  相似文献   

20.
Habitat specificity indices reflect richness (α) and/or distinctiveness (β) components of diversity. The latter may be defined by α and γ (landscape) diversity in two alternative ways: multiplicatively () and additively (). We demonstrate that the original habitat specificity concept of Wagner and Edwards (Landscape Ecol 16:121–131, 2001) consists of three independent components: core habitat specificity (uniqueness of the species composition), patch area and patch species richness. We describe habitat specificity as a family of indices that may include either area or richness components, or none or both, and open for use of different types of mean in calculation of core habitat specificity. Core habitat specificity is a beta diversity measure: the effective number of completely distinct communities in the landscape. Habitat specificity weighted by species number is a gamma diversity measure: the effective number of species that a patch contributes to landscape richness. We compared 12 habitat specificity indices by theoretical reasoning and by use of field data (vascular plant species in SE Norwegian agricultural landscapes). Habitat specificity indices are strongly influenced by weights for patch area and patch species richness, and the relative contribution of rare vs. common species (type of mean). The relevance of properties emphasized by each habitat specificity index for evaluation of patches in a biodiversity context is discussed. Core habitat specificity is emphasized as an ecologically interpretable measure that specifically addresses patch uniqueness while habitat specificity weighted by species number combines species richness and species composition in ways relevant for conservation biological assessment. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号