首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
【目的】近几年随着观光农业的兴起,花色的选育和改良已成为甘蓝型油菜种质资源鉴定和材料创制的重要研究方向。以甘蓝型油菜黄白花分离F2群体为研究对象,通过二代测序技术,对白花性状基因候选区间定位,开发与白花性状连锁的分子标记,为定位白花候选基因和选育白花新材料提供新思路。【方法】以甘蓝型油菜DH纯系黄花Y05和甘蓝型油菜纯系白花W01杂交,观察F1和F2群体的花色分离,分析白花性状遗传模式。在F2群体中选取30株纯白花和30株纯黄花构建DNA叶片子代池和RNA花瓣子代池,对亲本和DNA叶片子代池进行30×重测序,对RNA花瓣子代池进行5×测序。以法国甘蓝型油菜Darmor-bzh、中双11、Darmor、Tapidor为参考序列,重测序QTL-seq分析流程计算2个DNA子代池的SNP-index和delta(SNP-index)。利用R包画出SNP-index和delta(SNP-index)滑窗分析图,鉴定候选区间。转录组MMAPPR分析流程以法国甘蓝型油菜Darmor-bzh为参考序列,计算SNP频率,ED4(Loess fit)检测峰值和鉴定候选区间。利用MISA进行重复序列鉴定,使用Prime3在候选区间进行SSR引物设计,在F2群体中采用聚丙烯酰胺凝胶电泳方法对SSR引物进行筛选。【结果】甘蓝型油菜黄花与白花杂交F2群体中,白花和黄花性状分离比符合3﹕1,暗示白花性状受1对显性主效基因控制。全基因组重测序区间定位结果显示,白花性状基因候选区间在Darmor-bzh C03染色体52—55 Mb。同时以甘蓝型油菜中双11、Darmor、Tapidor分别为参考序列,均鉴定出白花基因候选区间在C03染色体上的一致性和稳定性。转录组测序定位白花性状基因位于Darmor-bzh C03染色体54—55 Mb。转录组测序和重测序定位染色体结果高度一致。在此区间内MISA和Primer3结合设计SSR引物,聚丙烯酰胺凝胶电泳筛选到6个与白花性状紧密连锁共分离的SSR标记。6个SSR标记区间范围在760 kb(52.81—53.57 Mb)。此候选区间与甘蓝、白菜共线性分析,对应白菜A02染色体56.76—57.40 Mb区间,对应甘蓝C03染色体10.99—11.28 Mb区间。【结论】甘蓝型油菜白花性状由1对显性主效基因控制。白花性状基因候选区间在法国甘蓝型油菜Darmor-bzh C03染色体52—55 Mb区间内。此区间760 kb范围内筛选出6个与白花性状基因紧密连锁共分离的SSR标记。  相似文献   

2.
【目的】开发与四倍体马铃薯蛋白含量相关的分子标记,加快选育高蛋白的马铃薯品种,提高马铃薯品种竞争力。【方法】以高蛋白马铃薯品种‘大西洋’为母本、低蛋白品种‘定薯1号’为父本构建分离群体,利用混池和高通量简化基因组测序技术相结合的方法(BSA-seq)对马铃薯块茎蛋白含量进行QTL定位,在定位区间开发与马铃薯块茎蛋白含量紧密连锁的SSR标记,并使用分离群体及四倍体马铃薯品种进行筛选验证。【结果】在2号、4号染色体共定位到3个控制马铃薯块茎蛋白含量的主效位点,分别位于2号染色体18.88~21.59 Mb,区间大小为2.71 Mb; 4号染色体8.3~12.84 Mb,区间大小为4.54 Mb; 4号染色体65.12~66.39 Mb,区间大小为1.27 Mb。根据定位区域、基因位置及参考基因组信息,使用NR、 Tr EMBL、 KEGG、 GO、 KOG、 swissprot、 PFAM共7个功能数据库对候选基因进行功能注释,共注释到719个候选基因,注释基因显著富集在玉米素合成代谢通路,该代谢通路可阻止蛋白质降解。在2号染色体18.88~21.59 Mb区间内开发分子标记pChr2-4...  相似文献   

3.
【目的】运用QTL分析厚皮甜瓜心部果肉蔗糖含量,挖掘影响该性状的候选基因,为厚皮甜瓜甜味性状的遗传改良奠定理论基础。【方法】以高糖材料VZX(V醉仙)为母本和低糖材料HP(高代自交系)为父本杂交衍生的F2群体为研究对象,利用高效液相色谱仪测定果实赤道位置心部果肉蔗糖含量,从F2群体中挑选蔗糖含量极端高和极端低的单株各20个,分别构建高蔗糖池和低蔗糖池,对双亲及混合池均进行全基因组重测序(约20×覆盖深度),定位蔗糖性状的关联区间,并结合生物信息学分析候选基因。【结果】厚皮甜瓜心部果肉蔗糖含量在F2群体中基本呈正态分布,符合典型的数量性状遗传特征;对双亲及混池进行全基因组重测序,共获得有效数据32.62 G,Q20在95%以上,平均覆盖深度为17.76,比对到参考基因组上的总reads数目比例在98.72%~99.02%,测序数据质量高,参考基因组选择合理有效;在8号染色体定位到1个3.29 Mb的区间,共注释到108个基因;在初定位区间内获得1个参与糖酵解和糖异生生化过程的候选基因EVM0000647,在高糖和低糖亲本间编码区无非同义突变,但启动子区域具有大量差异位点,且表达量具有明显差异。【结论】极端混池测序(BSA)方法,在8号染色体上定位到1个影响厚皮甜瓜心部果肉蔗糖含量的QTL,大小为3.29 Mb,共注释到108个基因,其中候选基因EVM0000647,通过差异表达负调控厚皮甜瓜心部果肉蔗糖的积累。  相似文献   

4.
表皮蜡质是油菜适应逆境的保护措施之一。本课题组前期报道了一个由1对显性基因控制的甘蓝型油菜(Brassica napus L.)光叶突变体DL22B077-1。为了进一步了解其遗传机制,本研究利用全基因组重测序技术和分离群体分析法(bulk segregated analysis,BSA)通过F2群体进行基因定位,获得的有效碱基数达10 661.75 Mb,其中,Q30均值为92.99%,平均作图率为97.73%,平均测序深度为24×,平均覆盖率为82.06%,测序质量较高;此外,分析了单核苷酸多态性(single nucleotide polymorphism,SNP)标记和插入-缺失(insertion-deletion,In-Del)标记与光叶性状的相关性。通过SNP标记,在5条染色体上得到7个相关区域和1 509个相关基因。通过In-Del标记,在11条染色体上得到15个相关区域和2 633个相关基因。SNP标记和In-Del标记关联分析结果的交集部分为C8染色体上8.60~10.39 Mb区域,总长度为1.79 Mb,共计130个候...  相似文献   

5.
【目的】测定苏太猪和白色杜洛克×二花脸F2资源家系240 d血糖(glucose,GLU)和糖基化血清蛋白(glycosylated serum proteins,GSP)浓度,采用全基因组关联分析定位影响GLU和GSP的染色体位点,为最终鉴别影响该性状的因果基因奠定基础,同时为人类低血糖症和糖尿病的遗传学研究提供参考。【方法】分别将435头苏太猪和760头白色杜洛克×二花脸F2资源家系F2个体在相同条件下饲养至240日龄进行统一屠宰,收集血液后分离血清,利用全自动生化分析仪测定GLU和GSP浓度。采集猪只耳组织提取DNA并测定DNA浓度。将质检合格的DNA样品利用Illumina porcine 60K SNP芯片判定基因型。运用PLINK软件对SNP判型结果进行质控,将合格的SNP标记用于后续的关联性分析,利用广义混合线性模型及R语言GenABEL软件包进行全基因组关联分析,定位影响苏太猪和白色杜洛克×二花脸F2资源家系240 d血清GLU和GSP含量的染色体位点。根据全基因组关联分析结果从Ensembl或NCBI网站上分析可能的位置候选基因。【结果】全基因组关联分析共检测到5个与血清GLU和GSP达染色体显著水平相关的SNP位点。其中白色杜洛克×二花脸F2资源群体在10号染色体(SSC10)24.67Mb处定位到与血清GSP含量显著相关的SNP(ALGA0057739,P=1.58×10-5),解释表型变异为3.72%。苏太猪群体共检测到2个与血清GSP显著相关的SNP(ALGA0108699和DRGA0017552,P=1.45×10-5),解释表型变异均为3.72%。使用猪参考基因组序列(10.2版本),无法定位到具体的染色体位置。通过人、猪比较基因组分析,这两个SNP都位于SSC8,距STPG2基因3’端约180.0-193.0 kb。将两个群体进行Meta分析,未发现新的与GSP显著相关的SNP;在1号染色体250.32Mb处(DRGA0002016,P=2.48×10-5)和14号染色体43.97Mb处(ASGA0062984,P=1.29×10-5),定位到与血清GLU显著相关的SNP。通过搜寻显著相关SNP所在染色体区域内的注释基因,发现ASPM、TRPM3和KCTD10 等基因是影响血清GSP和GLU的重要候选基因。【结论】检测到5个显著影响猪血清GLU和GSP的SNP位点。这些SNP位点所处染色体区域内的ASPM、TRPM3、STPG2和KCTD10基因是影响血清GSP和GLU的重要候选基因。  相似文献   

6.
以西瓜浅绿色果皮、完全花品系ZXG1555及绿色果皮、单性花自交系Cream of Saskatchewan(简称“COS”)为亲本构建F2群体,作BSA-seq分析,结合InDel和CAPS标记作基因分型,利用两亲本及其他6份绿色果皮、单性花西瓜品系基因组重测序数据,筛选并预测候选基因。结果表明,浅绿色果皮性状和单性花性状均由单隐性基因调控,利用分子标记筛选隐性性状单株重组事件,将控制两性状的关键基因分别定位于9号染色体1.1 Mb和3号染色体0.7 Mb区间内。筛选区间内候选基因,初步推测Cla97C09G175170(Two-component response regulator-like protein APRR2)和Cla97C03G066110(1-aminocyclopropane-1-carboxylate synthase 7)分别为西瓜浅绿色果皮和单性花性状候选基因。  相似文献   

7.
为检测萝卜肉质根根形指数相关的数量性状遗传位点(QTL),挖掘调控萝卜肉质根根形的关键基因,以肉质根根形指数差异显著的小型扁圆萝卜LLYH和大型长白萝卜CLA为亲本,杂交构建了F2分离群体,利用QTL-seq方法对肉质根根形指数性状进行了QTL定位分析。一共检测到4个QTL位点,其中两个主效QTL位点rs2.1和rs2.2,分别位于萝卜R2号染色体21.66~26.03 Mb和30.79~36.56 Mb区域,两个微效QTL位点rs4.1和rs6.1,分别位于萝卜R4号染色体39.04~40.43 Mb和R6号染色体11.53~13.40 Mb。研究结果为开发与萝卜肉质根根形指数连锁的分子标记奠定了基础,同时为挖掘肉质根根形指数调控基因提供了重要参考。  相似文献   

8.
【目的】薯肉颜色是马铃薯重要的农艺性状,它直接影响马铃薯的营养和商品价值,一直是马铃薯遗传研究和育种改良的重要目标。本研究通过对二倍体红色薯肉分离群体的混池分析、基因精细定位和候选基因表达分析,确定调控红色薯肉的候选基因,为下一步基因功能、遗传调控研究及彩色马铃薯的分子育种奠定基础。【方法】本研究通过向二倍体红色薯肉亲本导入自交不亲和抑制基因Sli获得BC1S1群体,从300个单株中挑选18株红色薯肉和21株黄色薯肉个体提取基因组DNA,分别测序进行混池分析。通过集团分离分析法(bulked segregation analysis,BSA)对基因进行初步定位;在定位区间内开发分子标记,对796份BC1S1植株进行基因型分析,筛选交换单株,并结合表型对基因进行精细定位;借助参考基因组注释信息和qRT-PCR表达量分析确定候选基因。【结果】本研究通过构建薯肉颜色分离的二倍体BC1S1群体,利用BSA-seq分析把调控薯肉花青素合成的主效位点定位在第10号染色体48.70—52.20 Mb。最终,利用分子标记将该基因定位于51.47—51.85 Mb的377 kb区间内。基于参考基因组注释信息,此区间包括5个基因,其中2个基因注释为MYB类转录因子,结合表达量数据推测这2个基因为候选基因,编号分别为PGSC0003DMG400013966、PGSC0003DMG400013965。【结论】本研究将调控马铃薯薯肉花青素积累的一个主效位点定位于第10号染色体51.47—51.85 Mb之间,推测PGSC0003DMG400013966和PGSC0003DMG400013965为候选基因。  相似文献   

9.
【目的】适合机械化收获是当今油菜育种改良和遗传研究的重要目标。该研究以一个自然变异产生的油菜有限花序(denterminate inflorescence 1,di1)突变体为研究对象,通过分析有限花序的遗传模式,开展有限花序性状的基因定位和克隆,以期发掘候选基因,为培育适合机械化收获的油菜新品种提供新思路和新材料,为揭示油菜有限花序遗传机制奠定基础。【方法】以一个稳定遗传的有限花序突变株系FM8与野生型自交系FM7开展正反交,观察F1和F2后代的花序形态,分析有限花序性状的遗传模式。在F2群体中挑选20个有限花序单株和20个野生类型单株构建混合池,对混合池和亲本开展20×和10×覆盖度的全基因组重测序,定位有限花序性状的关联区间。根据关联区间对应到拟南芥基因组的共线性区段和基因注释信息,预测候选基因,并对候选基因进行同源克隆,发掘序列变异,筛选关键基因。【结果】油菜有限花序突变性状表现为初花期主花序和侧枝花序顶部形成一个或若干个顶生花,花序无限生长受阻,导致结角期主枝和侧枝有封顶特征即有限花序。有限花序突变株系与野生型正反交F1均表现为野生型,F2代无限花序与有限花序的分离比符合13﹕3,说明有限花序的遗传受2对隐性基因和1对隐性上位抑制基因互作控制。对混合池及亲本开展全基因组重测序,得到30 123个单核苷酸多态性(SNPs)标记和107 636个插入缺失标记(In Dels)标记,用于有限花序性状的全基因组定位。定位结果共检测获得7个显著关联区间,分布于油菜A08、A09、A10、C08和C09共5条染色体。其中,A10染色体上的关联区间峰值最高,是控制有限花序性状的主效位点。并且,A10染色体关联区间内的14.36—15.07 Mb的区域与C09染色体2个关联区间显示高度同源性。候选基因预测发现位于A08、A09、A10、C08和C09的5个关联区间包含有8个候选基因,包括TERMINAL FLOWER 1(TFL1)、FLOWERING LOCUS C(FLC)、ATBZIP14(FD)、MULTICOPY SUPPRESSOR OF IRA1 4(FVE)和SCHLAFMUTZE(SMZ)。基因序列分析表明di1突变体TFL1、FVE和SMZ的基因编码区存在序列变异,并导致蛋白序列变异。【结论】油菜有限花序突变由2对隐性基因和1对隐性上位抑制基因互作控制。与有限花序性状显著关联的区间有7个,其中,位于染色体A10和C09的关联区间具有高度同源性。TFL1、FVE和SMZ被推断为有限花序性状的候选基因。  相似文献   

10.
【目的】直链淀粉含量是影响糯稻品质的关键性状,旨在剖析其遗传基础对稻米品质改良的重要意义。【方法】构建‘品糯R191/金贵丝苗//金贵丝苗///金贵丝苗’的BC2F4和BC2F5回交遗传世代群体,在携带wxwx基因的遗传背景下,采用集团分离分析法,利用GSR40K水稻基因芯片对双亲和高、低池群体进行SNP分型,并根据分析结果锚定影响稻米直链淀粉含量的候选基因。【结果】定位到控制直链淀粉含量的2个候选基因区段,位于5号染色体0.04~0.37 Mb和12号染色体17.53~24.09 Mb。从12号染色体候选区间中筛选出14对具有多态性的SSR标记和SNP标记,利用QTL IciMapping软件构建遗传连锁图,在3种环境及不同世代下,采用完备区间作图法(Inclusive composite interval mapping, ICIM)进行QTL定位,在N21774~A24633区间检测到影响直链淀粉含量的QTL qAC12,区间距离为3.46 Mb,对直链淀粉含量贡献率均值为14.10%,加性效...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号