首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enrofloxacin was administered orally to 6 healthy dogs at dosages of approximately 2.75, 5.5, and 11 mg/kg of body weight, every 12 hours for 4 days, with a 4-week interval between dosage regimens. Serum and tissue cage fluid (TCF) concentrations of enrofloxacin were measured after the first and seventh treatments. The mean peak serum concentration occurred between 1 and 2.5 hours after dosing. Peak serum concentrations increased with increases in dosage. For each dosage regimen, there was an accumulation of enrofloxacin between the first and seventh treatment, as demonstrated by a significant (P = 0.001) increase in peak serum concentrations. The serum elimination half-life increased from 3.39 hours for the 2.75 mg/kg dosage to 4.94 hours for the 11 mg/kg dosage. Enrofloxacin accumulated slowly into TCF, with peak concentrations being approximately 58% of those of serum. The time of peak TCF concentrations occurred between 3.8 hours and 5.9 hours after drug administration, depending on the dosage and whether it was after single or multiple administrations. Compared with serum concentrations (area under the curve TCF/area under the curve serum), the percentage of enrofloxacin penetration into TCF was 85% at a dosage of 2.75 mg/kg, 83% at a dosage of 5.5 mg/kg, and 88% at a dosage of 11 mg/kg. All 3 dosage regimens of enrofloxacin induced continuous serum and TCF concentrations greater than the minimal concentration required to inhibit 90% (MIC90) of the aerobic and facultative anaerobic clinical isolates tested, except Pseudomonas aeruginosa.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The distribution of penicillins into a tissue chamber implanted subcutaneously in ponies was studied. Ampicillin sodium (equivalent to 15 mg/kg ampicillin) was administered intravenously. Pivampicillin, a prodrug of ampicillin, was administered by nasogastric tube to fed ponies at a dose of 19.9 mg/kg (equivalent to 15 mg/kg ampicillin). Procaine penicillin G was administered intramuscularly at a dose of 12 mg/kg (equivalent to 12 000 IU/kg). Six ponies were used for each medication. Antibiotic concentrations in plasma and tissue chamber fluid (TCF) were measured for 24 h after administration. Mean peak concentrations of ampicillin in TCF were 7.3 μg/mL, reached at 1.7 h, and 1.3 μg/mL, reached at 2.7 h, after administration of ampicillin sodium and pivampicillin respectively. The mean peak concentration of penicillin G of 0.3 μg/mL was reached 12.3 h after administration of procaine penicillin G. Concentrations in TCF remained above the minimum inhibitory concentration of Streptococcus zooepidemicus for the proposed dosing intervals of 8, 12 and 24 h for ampicillin sodium, pivampicillin and procaine penicillin G respectively.  相似文献   

3.
Ciprofloxacin, a fluoroquinolone antimicrobial agent, was administered orally to 4 healthy dogs at dosage of approximately 11 and 23 mg/kg of body weight, every 12 hours for 4 days, with a 4-week interval between dosing regimens. Serum and tissue cage fluid (TCF) concentrations of ciprofloxacin were measured after the first and seventh dose of each dosing regimen. The peak concentration was greatest in the serum after multiple doses of 23 mg/kg (mean +/- SEM; 5.68 +/- 0.54 micrograms/ml) and least in the TCF after a single dose of 11 mg/kg (0.43 +/- 0.54 micrograms/ml). The time to peak concentration was not influenced by multiple dosing or drug dose, but was longer for TCF (6.41 +/- 0.52 hour) than for serum (1.53 +/- 0.52 hour). Accumulation of ciprofloxacin was reflected by the area under the concentration curve from 0 to 12 hours after administration (AUC0----12). The AUC0----12 was greatest in the serum after multiple doses of 23 mg/kg (31.95 +/- 1.90 micrograms.h/ml) and least in the TCF after a single dose of 11 mg/kg (3.87 +/- 1.90 micrograms.h/ml). The elimination half-life was not influenced by multiple dosing or dose concentration, but was greater for TCF (14.59 +/- 1.91 hours) than for serum (5.14 +/- 1.91 hours). The percentage of TCF penetration (AUCTCF/AUCserum) was greater after multiple doses (95.76 +/- 6.79%) than after a single dose (55.55 +/- 6.79%) and was not different between doses of 11 and 23 mg/kg. Both dosing regimens of ciprofloxacin resulted in continuous serum and TCF concentrations greater than 90% of the minimal inhibitory concentration for the aerobic and facultative anaerobic clinical isolates tested, including Pseudomonas aeruginosa.  相似文献   

4.
The effect of urine pH on plasma disposition of ampicillin sodium was evaluated. A single dose of 10 mg/kg of body weight was administered IV to Thoroughbreds with alkaline (pH greater than 8.0) or acidic (pH less than 4.5) urine. Urine alkalinity was achieved and maintained by oral administration of up to 400 mg of sodium bicarbonate/kg/d, and acidity was achieved and maintained by oral administration of up to 400 mg of ammonium chloride/kg/d. Ampicillin sodium was measured in the plasma of horses by use of an agar diffusion microbiological assay with Bacillus subtilis as the test organism. The plasma disposition kinetics of ampicillin sodium best fitted a 2-exponential decay pattern, and statistically significant differences were not evident in elimination half-life, area under the plasma concentration time curve, volume of distribution, or body clearance rate between horses with alkaline or acidic urine. Results indicate that changes in urine pH over a range encountered in clinically normal horses are unlikely to affect plasma pharmacokinetic variables of ampicillin sodium after IV administration of the drug.  相似文献   

5.
Ampicillin concentrations in pulmonary epithelial lining fluid (PELF) and plasma was studied after single intravenous ampicillin administration (15mg/kg) or single intragastric administration of its prodrug, pivampicillin (19.9mg/kg) to horses and discussed in relation to minimum inhibitory concentrations (MIC) of common equine respiratory pathogens. After intravenous administration, elimination of ampicillin was fast and not detectable in plasma after 12h in three out of six horses. Pivampicillin was absorbed well in non-fasted horses with an oral bioavailability of 36%. The degree of penetration of ampicillin into PELF, as described by the AUC(PELF)/AUC(plasma) ratio from 0 to 12h was 0.40 after intravenous administration and 1.00 after pivampicillin administration. In horses, ampicillin administered either intravenously or orally, in the form of pivampicillin, can provide clinically relevant drug concentrations in PELF for at least 12h, when treating susceptible equine respiratory pathogens (e.g. streptococci). Treatment of other bacterial pathogens requires susceptibility testing and possibly more frequent dosing, depending of minimum inhibitory concentrations (MIC) values.  相似文献   

6.
Holstein bull calves received ampicillin sodium by the intravenous, intramuscular and subcutaneous routes and ampicillin trihydrate by the intramuscular route, at a dosage of 5 mg/kg. In addition ampicillin sodium and ampicillin trihydrate were given at a 12 mg/kg dosage intramuscularly. The serum ampicillin concentrations were determined at five, 30, 60, 120, 180, 240 and 300 min after drug administration and at 360 min after ampicillin trihydrate injection. Intravenous administration gave a high initial level (16.2 mug/ml) at five min that declined to below 1 mug/ml by 120 min. Subcutaneous administration produced the lowest initial levels of drug but concentrations of drug detected did not differ significantly from the intramuscular administration at any sampling interval. The 12 mg/kg intramuscular ampicillin sodium dosage produced significantly higher levels than the 5 mg/kg dosage only at five min. Ampicillin trihydrate gave higher levels than ampicillin sodium at all times except 30 min (5 mg/kg) and five min (12 mg/kg). The serum ampicillin disappearance study (5 mg/kg intravenous) gave a two component bi-exponential curve. Kinetic analysis of the first component showed a C01 (theoretical initial conc) of 44.8 mug/ml, a ke1 (rate constant of disappearance) of 0.064 mug min and a t1/21 (calculated half-life) of 10.8 min. The Co2, ke2 and t1/22 of the second component were 6.2 mug/ml, 0.0157 mug/min and 46.2 min respectively.  相似文献   

7.
The effect of an oral dose of probenecid on the disposition kinetics of ampicillin was determined in four horses. An intravenous bolus dose (10 mg/kg) of ampicillin sodium was administered to the horses on two occasions. On the first occasion the antibiotic was administered on its own, and on the second occasion it was administered one hour after an oral dose of 75 mg/kg probenecid. The plasma concentration of probenecid reached a mean (+/- se) maximum concentration (Cmax) of 188-6 +/- 19.3 micrograms/ml after 120.0 +/- 21.2 minutes and concentrations greater than 15 micrograms/ml were present 25 hours after it was administered. The disposition kinetics of ampicillin were altered by the presence of probenecid and as a result the antibiotic had a slower body clearance (ClB; 109.4 +/- 6.71 ml/kg hours compared with 208.9 +/- 26.2 ml/kg hours) a longer elimination half-life (t1/2 beta 1.198 hours compared with 0.701 hours) and consequently a larger area under the plasma concentration versus time curve (AUC 92.3 +/- 5.09 mg/ml hours compared with 35.95 +/- 3.45 mg/ml hours) when compared with animals to which ampicillin was administered alone. The ampicillin concentrations observed suggest that the dosing interval for horses may be increased from between six and eight hours to 12 hours when probenecid is administered in conjunction with the ampicillin.  相似文献   

8.
The disposition of five therapeutic antimicrobial agents was studied in llamas ( Lama glama ) following intravenous bolus administration. Six llamas were each given ampicillin, tobramycin, trimethoprim, sulfamethoxazole, enrofloxacin and ceftiofur at a dose of 12 mg/kg, 1 mg/kg, 3 mg/kg, 15 mg/kg, 5 mg/kg, and 2.2 mg/kg of body weight, respectively, with a wash out period of at least 3 days between treatments. Plasma concentrations of these antimicrobial agents over 12 h following i.v. bolus dosing were determined by reverse phase HPLC. Disposition of the five antimicrobial agents was described by a two compartment open model with elimination from the central compartment, and also by non-compartmental methods. From compartmental analysis, the elimination rate constant, half-life, and apparent volume of distribution in the central compartment were determined. Statistical moment theory was used to determine noncompartmental pharmacokinetic parameters of mean residence time, clearance, and volume of distribution at stead state. Based on the disposition parameters determined, and stated assumptions of likely effective minimum inhibitory concentrations (MIC) a dose and dosing interval for each of five antimicrobial agents were suggested as 6 mg/kg every 12 h for ampicillin; 4 mg/kg once a day or 0.75 mg/kg every 8 h for tobramycin; 3.0 mg/kg/15 mg/kg every 12 h for trimethoprim/sulfamethoxazole; 5 mg/kg every 12 h for enrofloxacin; and 2.2 mg/kg every 12 h for ceftiofur sodium for llamas. Steady-state peak and trough plasma concentrations were also predicted for the drugs in this study for llamas.  相似文献   

9.
Norfloxacin, a 4-quinolone antibiotic, was administered orally to 4 healthy dogs at dosages of 11 and 22 mg/kg of body weight, every 12 hours for 4 days, with a 4-week interval between dosing regimens. Serum and tissue cage fluid (TCF) norfloxacin concentrations were measured at 0, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 8, 10, and 12 hours after the first and seventh dose of each dosing regimen. When administered at a dosage of 11 mg/kg, the mean peak serum concentration (Cmax) was 1.0 microgram/ml at 1 hour, the time of mean peak concentration (Tmax) after the first dose. After the seventh dose, the Cmax was 1.4 micrograms/ml at Tmax of 1.5 hours. The Tmax for the TCF concentration was 5 hours, with Cmax of 0.3 microgram/ml and 0.7 microgram/ml after the first and seventh dose, respectively. When administered at a dosage of 22 mg/kg, the serum Tmax was 2 hours after the first dose, with Cmax of 2.8 micrograms/ml. After the seventh dose, the serum Tmax was 1.5 hours, with Cmax of 2.8 micrograms/ml. The Tmax for the TCF concentration was 5 hours after the first and seventh doses, with Cmax of 1.2 micrograms/ml and 1.6 micrograms/ml, respectively. After the seventh dose, the serum elimination half-life was 6.3 hours for a dosage of 11 mg/kg and was 6.7 hours for a dosage of 22 mg/kg. For serum concentration, the area under the curve from 0 to 12 hours (AUC0----12) was 8.77 micrograms.h/ml and 18.27 micrograms.h/ml for dosages of 11 mg/kg and 22 mg/kg, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The pharmacokinetics of a 2:1 ampicillin-sulbactam combination in six rabbits, after intravenous and intramuscular injection at a single dosage of 20 mg/kg bodyweight (13.33 mg/kg of sodium ampicillin and 6.67 mg/kg of sodium sulbactam) were investigated by using a high performance liquid chromatographic method for determining plasma concentrations. The plasma concentration-time curves were analysed by compartmental pharmacokinetic and noncompartmental methods. The disposition curves for both drugs were best described by an open two-compartment model after intravenous administration and a one-compartment model with first order absorption after intramuscular administration. The apparent volumes of distribution calculated by the area method for ampicillin and sulbactam were 0.62 +/- 0.09 and 0.45 +/- 0.05 L/kg, respectively, and the total body clearances were 0.65 +/- 0.04 and 0.42 +/- 0.05 L/kg h, respectively. The elimination half-lives of ampicillin after intravenous and intramuscular administration were 0.64 +/- 0.11 and 0.63 +/- 0.16 h, respectively, whereas for sulbactam the half-lives were 0.74 +/- 0.12 and 0.77 +/- 0.17 h, respectively. The bioavailability after intramuscular injection was high and similar in both drugs (73.34 +/- 10.08% for ampicillin and 83.20 +/- 7.41% for sulbactam). The mean peak plasma concentrations of ampicillin and sulbactam were reached at similar times (0.20 +/- 0.09 and 0.34 +/- 0.15 h, respectively) and peak concentrations were also similar but nonproportional to the dose of both products administered (13.07 +/- 3.64 mg/L of ampicillin and 8.42 +/- 1.74 mg/L of sulbactam). Both drugs had similar pharmacokinetic behaviour after intramuscular administration in rabbits.  相似文献   

11.
The pharmacokinetics of the anti-convulsant phenytoin were investigated in clinically healthy horses after oral (p.o.) and intravenous (i.v.) administration. A single dose of phenytoin (8.8 mg/kg body weight) was given i.v. as a bolus to nine horses and one horse received 13.2 mg/kg. A two-compartment open model was used to describe the disposition of phenytoin. Four of the horses that received an i.v. dose (three at 8.8 mg/kg and one at 13.2 mg/kg) were then given the same dose 3 days later by the oral route. Phenytoin achieved a peak concentration in serum within 1–4 h after p.o. administration and was poorly absorbed with a bioavailability of 34.5 ± 8.6%. Oral dosage regimens were calculated on the basis of a dosing interval of 8 h to provide average serum steady-state concentrations of 5 and 10 μg/ml for phenytoin.  相似文献   

12.
OBJECTIVE: To characterize pharmacokinetics of voriconazole in horses after oral and IV administration and determine the in vitro physicochemical characteristics of the drug that may affect oral absorption and tissue distribution. ANIMALS: 6 adult horses. PROCEDURES: Horses were administered voriconazole (1 mg/kg, IV, or 4 mg/kg, PO), and plasma concentrations were measured by use of high-performance liquid chromatography. In vitro plasma protein binding and the octanol:water partition coefficient were also assessed. RESULTS: Voriconazole was adequately absorbed after oral administration in horses, with a systemic bioavailability of 135.75 +/- 18.41%. The elimination half-life after a single orally administered dose was 13.11 +/- 2.85 hours, and the maximum plasma concentration was 2.43 +/- 0.4 microg/mL. Plasma protein binding was 31.68%, and the octanol:water partition coefficient was 64.69. No adverse reactions were detected during the study. CONCLUSIONS AND CLINICAL RELEVANCE: Voriconazole has excellent absorption after oral administration and a long half-life in horses. On the basis of the results of this study, it was concluded that administration of voriconazole at a dosage of 4 mg/kg, PO, every 24 hours will attain plasma concentrations adequate for treatment of horses with fungal infections for which the fungi have a minimum inhibitory concentration 相似文献   

13.
Pharmacokinetics of dantrolene sodium in horses   总被引:1,自引:0,他引:1  
The pharmacokinetics of dantrolene sodium were investigated in horses following both intravenous (2 mg/kg) and intragastric (4 mg/kg) administration. Two ponies also received dantrolene sodium intravenously (2 mg/kg) in a pilot study to obtain preliminary kinetic data and to determine urinary and biliary excretion of the intact drug. Distribution and elimination of dantrolene was rapid, resulting in an elimination half-life of 129 +/- 8 (SEM) min and a whole body clearance of 4.16 +/- 0.52 ml/min/kg. Following intragastric administration, dantrolene rapidly acheived peak concentrations within 1.5 h, but was incompletely absorbed, with a bioavailability of 39 +/- 10%. Small amounts of intact drug were recovered in urine and bile. Based upon disposition kinetics of dantrolene in these studies, intravenous and intragastric dosage regimens were determined which would maintain blood dantrolene concentrations within the predicted clinically effective range.  相似文献   

14.
The pharmacokinetics and bioavailability of rifampin were determined after IV (10 mg/kg of body weight) and intragastric (20 mg/kg of body weight) administration to 6 healthy, adult horses. After IV administration, the disposition kinetics of rifampin were best described by a 2-compartment open model. A rapid distribution phase was followed by a slower elimination phase, with a half-life (t1/2[beta]) of 7.27 +/- 1.11 hours. The mean body clearance was 1.49 +/- 0.41 ml/min.kg, and the mean volume of distribution was 932 +/- 292 ml/kg, indicating that rifampin was widely distributed in the body. After intragastric administration of rifampin in aqueous suspension, a brief lag period (0.31 +/- 0.09 hour) was followed by rapid, but incomplete, absorption (t1/2[a] = 0.51 +/- 0.32 hour) and slow elimination (t1/2[d] = 11.50 +/- 1.55 hours). The mean bioavailability (fractional absorption) of the administered dose during the first 24 hours was 53.94 +/- 18.90%, and we estimated that 70.0 +/- 23.6% of the drug would eventually be absorbed. The mean peak plasma rifampin concentration was 13.25 +/- 2.70 micrograms/ml at 2.5 +/- 1.6 hours after dosing. All 6 horses had plasma rifampin concentrations greater than 2 micrograms/ml by 45 minutes after dosing; concentrations greater than 3 micrograms/ml persisted for at least 24 hours. Mean plasma rifampin concentrations at 12 and 24 hours after dosing were 6.86 +/- 1.69 micrograms/ml and 3.83 +/- 0.87 micrograms/ml, respectively. We tested 162 isolates of 16 bacterial species cultured from clinically ill horses for susceptibility to rifampin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The pharmacokinetics (PK) of azithromycin after i.v. and i.m. injection at a single dosage of 20 mg/kg bodyweight was studied in sheep. Blood samples were collected from the jugular vein until 120 h after dosing for both routes. Plasma concentrations of azithromycin were determined by bioassay. The plasma concentration-time data of azithromycin best fitted a three-compartment model after i.v. administration and a two-compartment model with first-order absorption after i.m. administration. The elimination half-life (t(1/2lambdaz)) was 47.70 +/- 7.49 h after i.v. administration and 61.29 +/- 13.86 h after i.m. administration. Clearance value after i.v. dosing was 0.52 +/- 0.08 L/kg.h. After i.m. administration a peak azithromycin concentration (C(max)) of 1.26 +/- 0.19 mg/L was achieved at 1.24 +/- 0.31 h (t(max)). Area under the curve (AUC) were 38.85 +/- 5.83 mg.h/L and 36.03 +/- 1.52 mg.h/L after i.v. and i.m. administration respectively. Bioavailability obtained after i.m. administration was 94.08 +/- 11.56%. The high tolerability of this i.m. preparation and the favourable PK behaviour such as the long half-life and high bioavailability make azithromycin likely to be effective in sheep.  相似文献   

16.
The pharmacokinetics and estimated bioavailability of amoxicillin were determined after IV, intragastric, and IM administration to healthy mares. After IV administration of sodium amoxicillin (10 mg/kg of body weight), the disposition of the drug was best described by a 2-compartment open model. A rapid distribution phase was followed by a rapid elimination phase, with a mean +/- SD half-life of 39.4 +/- 3.57 minutes. The mean volume of distribution was 325 +/- 68.2 ml/kg, and the mean body clearance was 5.68 +/- 0.80 ml/min.kg. It was concluded that frequent IV administration of sodium amoxicillin would be required to maintain therapeutic plasma concentrations of amoxicillin, and thus, the use of this dosage form should be limited to the initiation of treatment or to intensive care situations. After intragastric administration of amoxicillin trihydrate (20 mg/kg), 5% cherry-flavored suspension, the drug was rapidly, but incompletely, absorbed and rapidly eliminated (mean half-life of the decline phase of the plasma amoxicillin concentration-time curve, 51 minutes). The mean estimated bioavailability (fractional absorption) of the administered dose was 10.4%, and the mean peak plasma amoxicillin concentration was 2.73 micrograms/ml at 1.5 hours after dosing. In one horse with clinical signs of abdominal discomfort and diarrhea, the absorption of amoxicillin from the gastrointestinal tract was delayed and the fraction absorbed was increased. It was concluded that this oral dosage form could be recommended only for the treatment of infections caused by bacteria that are highly susceptible to amoxicillin, that frequent dosing would be necessary, and that absorption may be inconsistent in horses with gastrointestinal disease.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The pharmacokinetics of ampicillin and amoxicillin following intravenous administration at a dose rate of 15 and 10 mg/kg respectively were studied in four healthy adult horses. Pharmacokinetics of pivampicillin and amoxicillin were studied after oral administration to four healthy adult horses. Pivampicillin, a prodrug of ampicillin, was administered orally to starved and fed horses at a dose rate of 19.9 mg/kg, which is equivalent on a molecular basis to 15 mg/kg ampicillin. Amoxicillin was administered orally to starved horses only, at a dose rate of 20 mg/kg. Ampicillin and amoxicillin concentrations in plasma, synovial fluid and urine were determined. Mean biological half-life of intravenously administered ampicillin and amoxicillin was 1.72 and 1.43 h respectively, whilst the distribution volume (Vss) appeared to be 0.180 and 0.192 1/kg. Orally administered pivampicillin and amoxicillin were rapidly absorbed. A maximum concentration in plasma of 3.80 micrograms/ml was reached 2 h after administration of pivampicillin to starved horses; in fed horses a maximum concentration of 5.12 micrograms/ml was reached 1 h after administration. After oral administration of amoxicillin a maximum concentration of 2.03 micrograms/ml was reached after 1 h. The (absolute) bioavailability of pivampicillin administered orally was 30.9% in starved horses and 35.9% in fed horses. The bioavailability of amoxicillin administered orally was 5.3% in starved horses.  相似文献   

18.
After intravenous (i.v.) injection, acepromazine was distributed widely in the horse ( Vd = 6.6 litres/kg) and bound extensively (>99%) to plasma proteins. Plasma levels of the drug declined with an α phase half-life of 4.2 min, while the β phase or elimination half-life was 184.8 min. At a dosage level of 0.3 mg/kg acepromazine was detectable in the plasma for 8 h post dosing. The whole blood partitioning of acepromazine was 46% in the plasma phase and 54% in the erythrocyte phase.
Penile prolapse was clearly evident at doses from 0.01 mg/kg to 0.4 mg/kg i.v., and the duration and extent of protrusion were dose related. Hematocrit levels were significantly lowered by administration of 0.002 mg/kg i.v. (about 1 mg to a 500 kg horse) and increasing dosages resulted in greater than 20% lowering of the hematocrit from control levels. Pretreatment of horses with acepromazine also reduced the variable interval (VI 60) responding rate in all horses tested.
These data show that hematocrit changes are the most sensitive pharmacological responses to acepromazine, followed by changes in penile extension, respiratory rate, VI responding and locomotor responses. Acepromazine is difficult to detect in plasma at normal clinical doses. However, because of its large volume of distribution, its urinary elimination is likely prolonged, and further work on its elimination in equine urine is required.  相似文献   

19.
The purpose of this study was to determine the pharmacokinetics (PK) of the 5-HT(2A) receptor antagonist ketanserin in healthy adult horses, and to develop a computational model that could be used to optimize dosing. Plasma concentrations of ketanserin were determined using liquid chromatography with mass spectrometry after single and multiple intravenous administration in the horse. A two-compartment linear pharmacokinetic model described the plasma concentration-time profile of ketanserin after single and multiple doses in healthy horses; the terminal half-life was 11.5 h; steady-state volume of distribution was 10.5 L/kg; AUC was 115 ng · h/mL; and clearance was 0.87 L/h/kg. Model simulations followed by the examination in three healthy horses suggest 0.3 mg/kg q.8 h exhibited linear PK and produced consistent systemic blood concentrations of ketanserin above 3 ng/mL.  相似文献   

20.
Concentrations of oxytetracycline (OTC) in serum and tissue-cage fluid (TCF) from subcutaneous tissue-cages were determined after single and repeated intravenous and intramuscular doses of 10 mg/kg to calves. Intravenous administration resulted in higher levels, and greater area under curve (AUC) in TCF, than did intramuscular administration. However, the penetration measured as the ratio of AUC in TCF to AUC in serum was equal, and therefore independent of the route of administration. A linear relationship between AUC in serum and AUC in TCF could be demonstrated. Half-lives of OTC in serum were 4.9 +/- 3.1 h after intravenous, and 6.1 +/- 2.0 h after intramuscular administration. In TCF the half-lives were 21.5 +/- 4.4 h and 24.5 +/- 11.5 h after intravenous and intramuscular administration, respectively. Repeated dosing resulted in accumulation of OTC in TCF. Lesser accumulation in older cages indicated altered characteristics of the cages with the passage of time. In serum, no substantial accumulation was seen after repeated i.v. dosing until the dosing interval was shortened to 6 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号