首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 389 毫秒
1.
Carriage of Malassezia spp. yeasts in healthy Cornish Rex cats (CRC) was compared with that in Devon Rex (DRC) and Domestic short-haired (DSH) cats. Samples obtained from the left external ear canal, anus and claw fold of digit III of the left fore foot by swabbing, and the axilla and groin using contact plates, were incubated for yeasts on modified Dixon's agar at 32 degrees C for 7 days. Malassezia species were isolated from 90% of the DRC, but from only 39% of the CRC and 50% of the DSH cats. M. pachydermatis accounted for 121 of 141 Malassezia spp. isolates. Five CRC were colonized by M. pachydermatis alone, one CRC yielded only M. nana, and one cat yielded only M. slooffiae, whereas five CRC were colonized by both M. pachydermatis and M. nana and another yielded M. pachydermatis, M. slooffiae and M. nana. M. nana was primarily isolated from the ear canal, whereas M. slooffiae was most often isolated from the claw. Both the frequencies of isolation and the population sizes of M. pachydermatis at all sites sampled in the CRC were comparable to those of 10 healthy DSH cats. Populations of M. pachydermatis in the left axilla and left and right groin in the CRC were significantly lower when compared with counts in a group of 21 healthy DRC, a breed with very similar coat characteristics but prone to seborrheic dermatitis caused by M. pachydermatis.  相似文献   

2.
A series of 18 allergic cats with multifocal Malassezia spp. overgrowth is reported: atopic dermatitis was diagnosed in 16, an adverse food reaction in another and one was euthanized 2 months after diagnosis of Malassezia overgrowth. All the cats were otherwise healthy and those tested (16 out of 18) for feline leukaemia or feline immunodeficiency virus infections were all negative. At dermatological examination, multifocal alopecia, erythema, crusting and greasy adherent brownish scales were variably distributed on all cats. Cytological examination revealed Malassezia spp. overgrowth with/without bacterial infection in facial skin (n = 11), ventral neck (n = 6), abdomen (n = 6), ear canal (n = 4), chin (n = 2), ear pinnae (n = 2), interdigital (n = 1) and claw folds skin (n = 1). Moreover, in two cats Malassezia pachydermatis was isolated in fungal cultures from lesional skin. Azoles therapy alone was prescribed in seven, azoles and antibacterial therapy in eight and azoles with both antibacterial and anti-inflammatory therapy in three of the cats. After 3-4 weeks of treatment, substantial reduction of pruritus and skin lesions was observed in all 11 cats treated with a combined therapy and in five of seven treated solely with azoles. Malassezia spp. overgrowth may represent a secondary cutaneous problem in allergic cats particularly in those presented for dermatological examination displaying greasy adherent brownish scales. The favourable response to treatment with antifungal treatments alone suggests that, as in dogs, Malassezia spp. may be partly responsible for both pruritus and cutaneous lesions in allergic cats.  相似文献   

3.
Aim of the present study was to determine the distribution and quantification of Malassezia yeasts on a wide number of cutaneous sites in atopic dogs by means of a semiquantitative swab technique. A possible relationship between the presence of clinical signs and the occurrence and population size of yeasts was attempted. Forty-one privately owned atopic dogs of different age and breed were sampled. Results were expressed as colony forming units per swab. Malassezia colonies obtained from each plate were counted, scored and typed. All dogs yielded Malassezia pachydermatis from at least one skin area. Yeast population mean size by site was 6.98 (S.D.=3.47) as compared to other body areas. The frequence of isolation was higher from interdigital areas (70.7%), ears (63.4%), nail folds (35.7%), mouth (33.3%), groin (30.9%), conjunctiva and axillae (23.8%), perineum and anus (19%), perianal glands (9.5%). Ears, anus, interdigital areas, perianal glands and groin yielded the largest mycotic amount. M. pachydermatis was the sole species of yeast to colonize canine skin in examined animals. No statistical correlation between the presence of cutaneous alterations and Malassezia isolation was detected. Highest scores were not exclusively found on affected areas, but also on lesion-free sites, demonstrating that atopic animals can be heavily colonized also in apparently healthy areas.  相似文献   

4.
The lipophilic yeast Malassezia pachydermatis is part of the normal skin flora of most warm-blooded organisms. In a number of surveys it could be demonstrated that this yeast species might be involved in different skin diseases like seborrhoeic dermatitis, especially in dogs and cats. In order to look for an alternative therapeutic agent to the commonly used antimycotic and antiseptic synthetic substances the in vitro activity of Australian tea tree oil, the essential oil of Melaleuca alternifolia, against several strains of Malassezia pachydermatis was examined. All tested strains showed remarkably high susceptibility to tea tree oil. With these results the excellent antibacterial activity of tea tree oil is extended to a new group of fungal pathogens colonizing mainly mammals' skin. During the last ten years there was an increasing popularity of tea tree oil containing human health care products. The presented data open up new horizons for this essential oil as a promising alternative agent for topical use in veterinary medicine as well.  相似文献   

5.
Cutaneous tissue can become infected when fungal organisms contaminate or colonize the epidermal surface or hair follicles. The skin can be a portal of entry for fungal infection when the epithelial barrier is breached or it can be a site for disseminated, systemic fungal disease. The two most common cutaneous fungal infections in small animals are dermatophytosis and Malassezia dermatitis. Dermatophytosis is a superficial cutaneous infection with one or more of the fungal species in the keratinophilic genera Microsporum, Trichophyton, or Epidermophyton. Malassezia pachydermatis is a nonlipid dependent fungal species that is a normal commensal inhabitant of the skin and external ear canal in dogs and cats. Malassezia pachydermatis is the most common cause of Malassezia dermatitis. The diagnosis and treatment of these cutaneous fungal infections will be discussed.  相似文献   

6.
Canine Malassezia dermatitis is frequently treated with systemic ketoconazole (KTZ) and itraconazole (ITZ). However, no information is available on the antifungal susceptibility to azoles and allilamine of Malassezia pachydermatis isolates from dogs with or without skin lesions. The present study was designed to evaluate the in vitro antifungal susceptibility of M. pachydermatis strains from dogs with or without skin lesions to KTZ, ITZ, miconazole (MICO), fluconazole (FLZ), posaconazole (POS), voriconazole (VOR) and terbinafine (TER) using the Clinical and Laboratory Standards Institute reference Broth Microdilution Method (CLSI M27-A2). The association between the susceptibility to antifungal compounds and the origin of M. pachydermatis, from skin with or without lesions has been also assessed. A total of 62 M. pachydermatis strains from healthy dogs (i.e., Group A=30) or with skin lesions (i.e., Group B=32) were tested. ITZ, KTZ and POS showed the highest activity against M. pachydermatis strains, whereas MICO TER and FLZ the lowest. A higher number of Malassezia resistant strains were registered among isolates from Group B than those from Group A. This study indicates that M. pachydermatis strains were susceptible to ITZ, KTZ, and POS. However, dogs with lesions may harbour strains with low susceptibility to antifungal agents and displaying cross-resistance phenomena to azole. The antifungal therapy in Malassezia infections requires careful appraisal of choice of drugs especially in cases of unresponsiveness to antifungal treatment or recurrent infections.  相似文献   

7.
A 6-year-old female goat was presented with a seborrhoeic dermatosis of 5 months duration. The condition developed following a severe enteritis associated with weight loss. Dermatological examination showed a generalized greasy seborrhoeic dermatosis, which spared the head and extremities of the limbs. Microscopic examination of impression smears of lesional skin revealed numerous yeasts typical of Malassezia sp. Culture on Sabouraud's dextrose agar yielded Malassezia pachydermatis growth. Histopathological examination of haematoxylin/eosin and safranin (HES) stained sections of biopsies showed mild lymphocytic superficial perivascular hyperplastic dermatitis. Numerous budding yeasts were visible both on the surface, and follicular keratin, in HES and periodic acid Schiff (PAS) stained sections. A dramatic response was observed after 1 week of a topical anti-Malassezia treatment, and the resolution of the condition was complete after 4 weeks.  相似文献   

8.
OBJECTIVE: To investigate the potential cell-mediated immune response of atopic dogs to the yeast Malassezia pachydermatis and to correlate it with the type-1 hypersensitivity (humoral) response of the same population of dogs. ANIMALS: 16 clinically normal dogs, 15 atopic dogs with Malassezia dermatitis, 5 atopic dogs with Malassezia otitis, and 7 atopic control (ie, without Malassezia dermatitis or otitis) dogs. PROCEDURE: A crude extract of M pachydermatis was extracted for use as an intradermal allergy testing reagent and for stimulation of isolated peripheral blood mononuclear cells in vitro. Flow cytometry was also used to assess cell surface antigenic determinants (CD3, CD4, CD8, CD14, CD21, CD45RA, surface immunoglobulin) on peripheral blood mononuclear cells. RESULTS: Atopic dogs with cytologic evidence of Malassezia dermatitis had an increased lymphocyte blastogenic response to crude M pachydermatis extract, compared with clinically normal dogs and dogs with Malassezia otitis. Atopic control dogs did not differ significantly in their responses from atopic dogs with Malassezia dermatitis or otitis. A significant correlation was not found between the lymphocyte blastogenic response and the type-1 hypersensitivity response to M pachydermatis within any of the groups. CONCLUSIONS AND CLINICAL RELEVANCE: Cell-mediated and humoral reactivities to M pachydermatis contribute to the pathogenesis of atopic dermatitis in dogs but are not directly correlated. Modification of the dysregulated immune response toward M pachydermatis may assist in the reduction of pathologic changes associated with an atopic dermatitis phenotype in dogs.  相似文献   

9.
Malassezia species are commensal organisms of human and animal skin that occasionally act as opportunistic pathogens. The lipid-dependent species are associated with human skin disorders, whereas the non-lipid-dependent species (Malassezia pachydermatis) is considered as an opportunistic secondary pathogen affecting the canine skin surface and ear canal. This study evaluated the relationship between Malassezia yeasts, their population size, and the occurrence of skin lesions from healthy and skin-diseased dogs. The efficiency of cytological examination and fungal culture for Malassezia detection was also evaluated. From March 2002 to July 2003, 33 healthy dogs and 54 dogs with pruritic localized skin diseases were examined; skin swabs (1218) were collected from 7 anatomical sites for culture and cytological examination. Malassezia prevalence according to anatomical site and the agreement between cytological results and fungal cultures were statistically analyzed. Differences in mean colony forming unit counts between positive healthy and diseased dogs were evaluated using the Bonferroni test for post hoc pair-wise comparisons. In healthy dogs, Malassezia yeasts were most frequently isolated in the perianal and perioral areas. The frequency of isolation and population size of Malassezia species were higher in dogs with localized dermatitis, especially in affected areas, indicating a role for Malassezia in the occurrence of skin lesions. Malassezia pachydermatis was the species most commonly cultured from the skin and external ear canal of healthy and diseased dogs; isolation of lipid-dependent yeasts from healthy dogs was less frequent. Using fungal culture as the gold standard, cytological examination showed good relative specificity (95%) but very low relative sensitivity (30%).  相似文献   

10.
Lipid-dependent Malassezia species have recently been cultured from veterinary specimens. The identification of Malassezia species isolates from animals is important to clarify the epidemiology of these lipophilic yeasts. Malassezia species were cultured from the external ear canals of 63 out of 99 cats with otitis and 12 of 52 (23%) healthy control cats. The rate of isolation in affected animals versus controls was highly significant (P<0.01). Malassezia pachydermatis was isolated as a pure culture in 33 (45.2%) cats, associated with Malassezia globosa and Malassezia furfur in 20 (50%) and 17 (42.5%) animals, respectively. Three different species were isolated simultaneously in three cats (two cats with M pachydermatis, M globosa and M furfur, one subject with M pachydermatis, M furfur and Malassezia sympodialis). M globosa was isolated as the sole species in two animals. The present work confirms the presence of some lipid-dependent species of Malassezia in both healthy and otitic cats.  相似文献   

11.
Malassezia spp. yeasts are commensal organisms of mammal and avian skin, but little is known about their presence on the skin of healthy cats. The purposes of this study were to evaluate the prevalence of Malassezia spp. yeasts in feline nail folds and to identify the different species. Forty-six cats of different breeds were evaluated by cytological examination, and Malassezia spp. yeasts were seen in 61% of them. Yeasts were found in 100% of Devon Rex cats [mean 8.63/oil immersion field (high-power field - HPF)]. Conversely, only 42% of cats of other breeds (domestic short-haired and Persian) were positive (mean 0.59/HPF). Twenty-one cats of different breeds were subsequently evaluated by fungal culture. Malassezia pachydermatis was isolated from 52%, M. furfur from 38%, and M. sympodialis from 9.5% of the cats. More than one species was observed in eight of 21 cats, six of which were Devon Rex. Malassezia spp. yeasts are common inhabitants of feline nail folds, especially in Devon Rex cats, and the presence of a high number of yeasts on cytology correlates with the clinical observation of brown, greasy material in the nail folds. M. pachydermatis and two lipid-dependent species were isolated from both Devon Rex cats and cats of other breeds.  相似文献   

12.
OBJECTIVE: To investigate the direct interaction between canine keratinocytes and live Malassezia pachydermatis and thereby determine the role of these organisms in the pathogenesis of epidermal hyperplasia associated with Malassezia dermatitis in dogs. SAMPLE POPULATION: Primary canine keratinocyte cultures established from skin samples obtained from clinically normal dogs. PROCEDURE: The proliferative response of keratinocytes co-cultured with Malassezia organisms for 1, 2, or 3 days was assessed by use of direct manual counting (to determine the number of keratinocytes in both the monolayer and the medium) and immunohistochemical staining techniques involving antibodies against proliferating cell nuclear antigen (PCNA) and another cellular proliferation marker, Ki-67. The potential cytotoxic effect of Malassezia organisms was investigated by use of an apoptosis detection kit to label keratinocytes co-cultured with M. pachydermatis that underwent apoptosis. RESULTS: No stimulatory effect of Malassezia organisms on canine keratinocyte proliferation was detected via cell counting and immunohistochemical techniques. However, there was a significant increase in dead keratinocytes in the medium with increasing numbers of Malassezia organisms in the co-culture. More apoptotic cells were observed in keratinocyte monolayers co-cultured with high numbers of M. pachydermatis than there were in monolayers cultured without Malassezia organisms, and the number increased after prolonged incubation. CONCLUSIONS AND CLINICAL RELEVANCE: M. pachydermatis did not stimulate canine keratinocyte proliferation in vitro. The results suggested that the epidermal hyperplasia observed in dogs with Malassezia dermatitis is unlikely to be caused by a direct effect of the organism on the keratinocyte cell cycle, but is likely to involve other mechanisms.  相似文献   

13.
The purpose of this study was to investigate the diversity of yeast associated with the degree of canine seborrheic dermatitis (SD) by anatomical sites. Fifty-seven samples were divided as 17 healthy skin, 20 with primary seborrheic dermatitis (PSD), and 20 with secondary seborrheic dermatitis (SSD). Yeast isolation and characterization were carried out based on microscopical features and biochemical properties. DNA analysis at the internal transcribed spacer I of 26S rDNA region was utilized for species confirmation. Four species of yeast consisting Malassezia pachydermatis, Malassezia furfur, Candida parapsilosis and Candida tropicalis recovered from examined dogs. M. pachydermatis and C. parapsilosis were isolated from all dogs, but C. tropicalis and M. furfur were recovered from 3 healthy dogs and one diseased dog, respectively. The number of M. pachydermatis and C. parapsilosis in diseased dogs was higher than that of healthy specimens (P<0.01). High frequency and population size of C. parapsilosis were closely associated to PSD, while those of M. pachydermatis were associated with both PSD and SSD (P<0.01). C. parapsilosis were predominant at the perianal area. This study demonstrated the co-colonization of M. pachydermatis and C. parapsilosis in large amounts and frequency associated with stage of disease and anatomical site.  相似文献   

14.
The aim of this study was to investigate the presence of dermatophytes and yeasts in healthy and diseased dogs. A total of 633 samples were collected from 26 healthy animals (104 samples), 131 with dermatitis (343 samples), 74 with otitis (148 samples), and 19 with ocular diseases (38 samples). Cultures from healthy animals were positive for Malassezia pachydermatis in 13.5% (7/52) of samples from skin, 42.3% (11/26) from ear, and 3.8% (1/26) from eye. Fungal growth was observed in 20.4% (70/343) samples from animals with dermatitis. Microsporum canis was the most isolated fungus (n = 39), followed by M. pachydermatis (n = 30) and Malassezia sp. (n = 3). Of the 148 samples from dogs with otitis, 90 (60.8%) were positive for M. pachydermatis, and of the clinical specimens from the conjunctiva of animals with ophthalmic disease, 2.6% (1/38) presented positive cultures for M. pachydermatis. Only 14.3% (2/14) of the positive cultures for M. pachydermatis and 40.9% (9/22) of those for M. canis were positive in the direct exam. Direct exams were positive in 84.3% (70/83) of the culture positive samples from affected ears of dogs with otitis. Malassezia pachydermatis may act as an aggravating factor in the occurrence of cutaneous diseases, or the isolation of M. canis may be associated with the onset of dermatophytosis. Fungal culture, rather than microscopic examination, should be used as the definitive diagnostic test for dermatomycoses and otitis.  相似文献   

15.
Quantitative and semiquantitative cultural techniques were used to study skin and mucosal carriage of Malassezia pachydermatis in 20 healthy mixed-breed dogs, 13 healthy Basset Hounds and 33 seborrhoeic Basset Hounds. The frequencies of isolation and population sizes from the axilla, nose, mouth and vulva were significantly greater ( P  < 0.01) in both groups of Basset Hounds when compared with the healthy mixed-breed dogs. Population sizes in the seborrhoeic Basset Hounds exceeded those of the healthy bassets at the nose ( P  < 0.05), vulva ( P  < 0.01) and axilla ( P  < 0.001). However, the frequencies of isolation and population sizes of the yeast from the anus were comparable in the three groups of dogs. The relatively high skin and mucosal populations in healthy Basset Hounds may explain, in part, the predisposition to ' Malassezia dermatitis' in this breed. However, the factors which enable the yeast to establish such high populations in Basset Hounds remain unclear.  相似文献   

16.
Skin and mucosal carriage of Malassezia pachydermatis was studied in 20 healthy pet dogs of various breeds and in 20 kennelled beagles. Using swabs, anal carriage was detected in 10 pet dogs and 11 beagles and the nose, mouth, prepuce and vulva were shown to be infrequently colonised. M pachydermatis was isolated from the external ear canal of 11 beagles and two pet dogs; both the population sizes and frequency of isolation were significantly (P<0·05) greater in the beagles. The yeast was infrequently isolated from the axilla and groin in low numbers using contact plates and detergent scrub samples but was often cultured from the lower lip and the dorsal interdigital spaces; isolation frequencies and population sizes in the two groups of dogs were not significantly different. These results demonstrate that the anus, external ear canal and lip and interdigital skin of healthy dogs are frequently colonised by M pachydermatis.  相似文献   

17.
IgG immunoreactivity to Malassezia pachydermatis was compared in atopic and non-atopic dogs. Malassezia pachydermatis proteins with a molecular weight of 98 kDa were recognized at a significantly higher frequency in the sera of atopic dogs. Most of the atopic dogs with Malassezia dermatitis had a greater IgG response than did normal dogs.  相似文献   

18.
Malassezia pachydermatis is considered to be a contributing factor to canine atopic dermatitis (AD). The purpose of this study was to investigate the humoral response to a commercially produced M. pachydermatis extract. Fifteen atopic dogs with Malassezia overgrowth on the skin (MD), 16 atopic dogs without MD, three atopic dogs with overgrowth of Malassezia in the ears only (MO), and 12 normal dogs were intradermally tested with M. pachydermatis extract at 50, 100, 250, 500, 1000, 2000 and 4000 PNU mL(-1). All dogs were evaluated cytologically by cutaneous tape strip and bilateral ear exudate sampling to determine presence of MD or MO. Each had serum evaluated for anti-Malassezia IgE using three Malassezia extracts with an ELISA assay. The irritant threshold concentration at which healthy nonatopic dogs ceased to react was 1000 PNU mL(-1). There was a significant difference in intradermal test reactivity between the atopic groups. At this dilution, 93% (14/15) of the atopic MD group, 31% (5/16) of the atopic group without MD or MO, and 100% (3/3) of the atopic MO only group reacted. There were no significant differences in the serum IgE levels as measured by the Greer ELISA assay, between any groups using any of the three extracts. These results support that Greer's M. pachydermatis extract is useful for intradermal testing of dogs with an allergic phenotype, and that atopics with MD are more likely to have a type-1 Malassezia hypersensitivity than those without. The ELISA assay may require further development in order to be useful for the diagnosis of Malassezia hypersensitivity.  相似文献   

19.
Abstract Epidermal hyperplasia is one of the major histopathological features seen in dogs with Malassezia dermatitis. The aim of this study was to investigate the effects of extracts and culture supernatants from Malassezia pachydermatis on the proliferation of canine keratinocytes. Keratinocyte cultures were established from normal dog skin, and cell monolayers were co-cultured with Malassezia extracts (prepared either with or without protease inhibitors) and supernatants derived from organisms grown in liquid culture. The proliferation of keratinocytes was measured using a colourimetric assay. Neither the culture supernatants nor the Malassezia extracts had significant effects on the proliferation rate of canine keratinocytes, regardless of whether protease inhibitors were present or not. The results indicate that the epidermal hyperplasia seen in Malassezia dermatitis is unlikely to be caused directly by secretion of products from the organism.  相似文献   

20.
Hair and hair follicle carriage of Malassezia pachydermatis was studied in 12 healthy beagle dogs. The yeast was isolated from hair clipped from the lip region at 13 sites in nine dogs but was less frequently recovered from the interdigital spaces on the forefeet and from two sites on the trunk. Population sizes at the lip were significantly greater (P < 0.01) than those at other sites. Skin biopsy specimens were obtained from the same sites and epidermal and follicular tissues dissected following immersion in 1 M CaBr(2). Epidermal carriage of M. pachydermatis was identified in nine biopsy specimens taken from five dogs. Hair follicle carriage was identified in five skin specimens (four foot, one lip) from three dogs. This study indicates that M. pachydermatis is readily recovered from the distal hair in healthy dogs and that hair follicle carriage is infrequent or that populations are low at that site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号