首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
为提升豆粕的营养价值实现豆粕的高值化利用,本试验基于固态法模式下,于50℃恒温箱中用酸性蛋白酶降解豆粕,以氨基酸态氮生产率为指标,通过控制变量法依次确定豆粕酶解的最佳工艺条件。试验结果表明:当酸性蛋白酶添加量为豆粕干粉重量的0.5%,含水量为33.3%,酶解时间为72 h,氨基酸态氮生成率最高可达0.060 gN/g豆粕,对试验数据进行显著性分析,表明酶添加量对氨基酸态氮生成率有显著影响(P <0.05)。豆粕经酶解产生20种氨基酸,种类齐全,其中色氨酸、丙氨酸、异亮氨酸占比42.36%,饲用必需氨基酸占比68.27%,调节肠道功能的氨基酸占氨基酸总量的20.22%。本试验对提高豆粕营养价值,实现豆粕的高效开发利用,降低生产成本,减少对动物蛋白源性饲料的依赖具有重要意义。  相似文献   

2.
菌酶协同处理豆粕制备饲用小肽的研究   总被引:1,自引:0,他引:1  
以小肽含量为指标研究了芽孢杆菌、酵母菌和中性蛋白酶协同发酵、酶解处理豆粕制备饲用小肽的工艺条件。结果表明:菌酶协同处理豆粕的最佳条件为混合菌接种量1.5%、加酶量450 U/g、料水比1∶1.4、发酵温度40℃、发酵时间48 h。在此条件下,豆粕经菌酶协同处理后,小肽含量从11.40 mg/g提高到199.65 mg/g,粗蛋白质含量从47.62%提高到56.72%。  相似文献   

3.
本实验研究了菌酶融合制作高肽发酵豆粕的新工艺,经过新工艺制作出的高肽发酵豆粕,不仅可以去除豆粕中的抗原蛋白和不良寡糖,而且使豆粕中酸溶蛋白含量由2豫提高到了36.5%(是普通发酵豆粕酸溶蛋白含量的4倍)。经过动物实验,在保育料中可以用4%的发酵豆粕T替代3%的鱼粉,而不会降低仔猪的生长性能。  相似文献   

4.
本实验选用多种微生物发酵豆粕原料,对降解豆粕抗原能力进行了研究,结果表明枯草杆菌05降解抗原蛋白的性能较强,发酵后的豆粕经SDS-PAGE检测,从球蛋白亚基条带颜色深浅的变化,判断该发酵豆粕的β-球蛋白和大豆球蛋白被完全降解,小分子肽含量明显升高。使用湿发酵豆粕对断奶仔猪进行饲喂试验,结果表明添加10%湿发酵豆粕有效提高了仔猪的日采食量、日增重、料肉比比对照组低0.37。  相似文献   

5.
本文采用短乳杆菌、酵母菌、枯草芽孢杆菌和地表芽孢杆菌进行豆粕固态限定发酵和强化发酵的研究,对发酵过程中小分子蛋白含量、菌量、pH及胰蛋白酶抑制剂活性等进行了测定.结果表明:纯菌条件下,接种短乳杆菌和地衣芽孢杆菌实验组限定发酵的小分子蛋白含量分别为31.0%和28.3%,高于接种酵母菌试验组的22.4%.且小分子蛋白积累高峰时间为48~72 h;接种地表芽孢杆菌实验组的胰蛋白酶抑制剂降解率高于接种短乳杆菌或酵母菌实验组.豆粕天然发酵试验组的小分子蛋白含量和胰蛋白酶抑制剂降解率分别为22.2%和44.1%.接种短乳杆菌、地衣芽孢杆菌试验组的小分子蛋白含量和胰蛋白酶抑制剂降解率分别为32.4%、99.5%和29.3%、99.7%.表明接种强化发酵有助于小分子蛋白含量的提高和胰蛋白酶抑制剂的降解.  相似文献   

6.
本试验以小肽含量为指标,对解淀粉芽孢杆菌单菌固态发酵豆粕以及解淀粉芽孢杆菌、植物乳杆菌和酿酒酵母菌3个菌种混菌固态发酵豆粕的工艺条件进行优化,并对其发酵前后的营养物质含量变化进行研究。通过解淀粉芽孢杆菌、植物乳杆菌和酿酒酵母3个试验菌的生长曲线确定其接种到固态培养基的最佳接种时间。采用单因素试验设计研究解淀粉芽孢杆菌接种量、温度、料水比、发酵时间4个因素对豆粕发酵产小肽的影响,并在此基础上采用四因素三水平的正交试验设计对单、混菌固态发酵豆粕的工艺条件进行优化。对豆粕发酵前后豆粕营养物质含量、大豆球蛋白含量、蛋白质分子质量、发酵产物p H进行测定。结果显示:3株试验菌接在各自种子培养基扩大培养至21 h为其接种到固态培养基的最佳时间。解淀粉芽孢杆菌单菌固态发酵豆粕的最佳工艺条件为:接种量为10%、温度为40℃、料水比为1.0∶1.2、发酵时间为72 h;解淀粉芽孢杆菌、植物乳杆菌、酿酒酵母混菌固态发酵豆粕的最佳工艺条件为:接种量为15%、温度为31℃、料水比为1.0∶1.0发酵时间为120 h,3个菌株的接种比例为:解淀粉芽孢杆菌∶植物乳杆菌∶酿酒酵母=9∶3∶2。经微生物发酵后,发酵产物中小肽、粗蛋白质、粗灰分、粗脂肪含量较发酵前均得到显著提高(P0.05),粗纤维含量则显著下降(P0.05);单菌发酵组和混菌发酵组发酵产物中大豆球蛋白含量均较未发酵组显著降低(P0.05);单菌发酵组和混菌发酵组发酵产物中蛋白质分子质量较未发酵组降低;混菌发酵组发酵产物的p H较未发酵组显著降低(P0.05),而单菌发酵组发酵产物的p H则与未发酵组差异不显著(P0.05)。综上所述,豆粕经微生物固态发酵后营养价值在一定程度上得到改善,大分子蛋白质被降解,p H也发生了变化,并且单菌发酵和混菌发酵的效果存在差异。  相似文献   

7.
本试验拟在大豆分离蛋白培养基上筛选出一株生长良好、对大豆蛋白水解能力较强的枯草芽孢杆菌菌株KF01。本文研究了KF01对豆粕原料进行固态发酵的工艺参数并进行了条件优化。结果表明,在固态豆粕物料初始含水量49%、KF01菌种接种量10%、料层厚度20cm、发酵时间48h、翻料次数4次的条件下,酸溶蛋白含量由3.5%提高到8%以上。该菌株可以用于豆粕原料蛋白的发酵生产富含小肽蛋白饲料。  相似文献   

8.
本试验以小肽含量为指标,对解淀粉芽孢杆菌单菌固态发酵豆粕以及解淀粉芽孢杆菌、植物乳杆菌和酿酒酵母菌3个菌种混菌固态发酵豆粕的工艺条件进行优化,并对其发酵前后的营养物质含量变化进行研究。通过解淀粉芽孢杆菌、植物乳杆菌和酿酒酵母3个试验菌的生长曲线确定其接种到固态培养基的最佳接种时间。采用单因素试验设计研究解淀粉芽孢杆菌接种量、温度、料水比、发酵时间4个因素对豆粕发酵产小肽的影响,并在此基础上采用四因素三水平的正交试验设计对单、混菌固态发酵豆粕的工艺条件进行优化。对豆粕发酵前后豆粕营养物质含量、大豆球蛋白含量、蛋白质分子质量、发酵产物p H进行测定。结果显示:3株试验菌接在各自种子培养基扩大培养至21 h为其接种到固态培养基的最佳时间。解淀粉芽孢杆菌单菌固态发酵豆粕的最佳工艺条件为:接种量为10%、温度为40℃、料水比为1.0∶1.2、发酵时间为72 h;解淀粉芽孢杆菌、植物乳杆菌、酿酒酵母混菌固态发酵豆粕的最佳工艺条件为:接种量为15%、温度为31℃、料水比为1.0∶1.0发酵时间为120 h,3个菌株的接种比例为:解淀粉芽孢杆菌∶植物乳杆菌∶酿酒酵母=9∶3∶2。经微生物发酵后,发酵产物中小肽、粗蛋白质、粗灰分、粗脂肪含量较发酵前均得到显著提高(P<0.05),粗纤维含量则显著下降(P<0.05);单菌发酵组和混菌发酵组发酵产物中大豆球蛋白含量均较未发酵组显著降低(P<0.05);单菌发酵组和混菌发酵组发酵产物中蛋白质分子质量较未发酵组降低;混菌发酵组发酵产物的p H较未发酵组显著降低(P<0.05),而单菌发酵组发酵产物的p H则与未发酵组差异不显著(P>0.05)。综上所述,豆粕经微生物固态发酵后营养价值在一定程度上得到改善,大分子蛋白质被降解,p H也发生了变化,并且单菌发酵和混菌发酵的效果存在差异。  相似文献   

9.
文章研究了3种发酵增效剂对发酵豆粕肽含量的影响。在复合菌剂接种量为0.5%,无氧发酵48 h后有氧发酵24 h条件下,以正交试验的方式对发酵增效剂在发酵豆粕基质中添加量、发酵温度、料水比进行优化。分别得到3种发酵增效剂最适宜的添加条件。发酵豆粕肽含量随3种发酵增效剂添加量增大而提高(P<0.01)。发酵增效剂Ⅰ组中,发酵温度为41℃时最佳,料水比4:6最适宜,最优条件组合发酵豆粕肽含量观测值为18.99%;发酵增效剂Ⅱ组中,发酵温度39℃或41℃时最佳,料水比3:7最适宜,优化后发酵豆粕产肽量观测值为17.57%;发酵增效剂Ⅲ组中,料水比3.5:6.5或3:7时最适宜,优化后发酵豆粕肽含量观测值为19.67%。通过抗原蛋白抽提及SDS-PAGE分析可知,在发酵基质中添加发酵增效剂可以改善豆粕中抗原蛋白降解程度。比较最适宜添加条件下3种发酵增效剂对肽含量的提高效果可知,发酵增效剂Ⅲ对发酵豆粕肽含量提高效果最佳,在39℃、3:7料水比、5kg/t添加量条件下可使发酵豆粕肽含量提高208.31%。  相似文献   

10.
芽孢杆菌在豆粕固态发酵中的应用研究   总被引:5,自引:0,他引:5  
研究利用芽孢杆菌对豆粕进行固态发酵试验,通过监测发酵前后的酸溶性蛋白(TCA-N)含量的变化来评价发酵的效果。菌株组合JM1+JM3正交实验后得到的最佳发酵工艺条件为:料水比为1:0.6,初始发酵温度为34℃,接种量为10%,菌种比(JM1:JM3)为1:1,灭菌时间为20 min,发酵时间为48 h。发酵后样品中粗蛋白含量从50.6%增加到54.1%,TCA-N含量从2.4%增加到38.8%,大豆肽含量从1.8%提高到29.5%,乳酸含量从0.7%增加到4.7%,游离氨基酸含量从5.57 mg/g增加到92.65 mg/g。SDS-PAGE电泳分析的结果表明,发酵后大豆抗原已经完全被分解,大分子蛋白质基本上都被降解成10 kD以下的小分子肽,各种主要抗营养因子的降解率达90%以上。  相似文献   

11.
王诚刚  郭芸  赵雯 《饲料研究》2023,(3):102-105
试验旨在研究乳酸菌发酵豆粕工艺参数优化及其对豆粕营养成分的影响。采用单因素试验和正交试验探究发酵时间、发酵温度、乳酸菌粉接种量、液料比对发酵豆粕中粗蛋白含量的影响,优化发酵工艺参数,比较最优工艺条件下发酵前后豆粕中各营养成分的差异。结果显示,影响发酵豆粕中粗蛋白含量的因素排序为发酵时间>乳酸菌粉接种量>发酵温度>液料比,最优工艺参数为发酵温度32℃、乳酸菌粉接种量1.5%、发酵时间72 h和液料比0.8 L/kg。在最佳工艺条件下,发酵后豆粕中粗蛋白含量达49.64%。与发酵前相比,发酵豆粕中粗蛋白含量显著高于发酵前(P<0.05),胰蛋白酶抑制因子含量降解率达97.32%(P<0.05)。研究表明,利用乳酸菌对豆粕进行固态发酵可进一步有效改善豆粕营养价值,提高豆粕利用率。  相似文献   

12.
饲用酶与芽孢杆菌协同作用发酵豆粕的相关研究   总被引:1,自引:1,他引:0  
以酸溶性蛋白(TCA-N)含量为主要评价指标,研究饲用酶酶解、芽孢杆菌发酵、饲用酶加芽孢杆菌协同处理豆粕的工艺条件。结果表明,酶菌协同处理的结果优于酶和菌单独作用的结果,最佳发酵工艺条件为:料水比1:0.7、初始发酵温度40℃、加酶量0.05%(蛋白酶活力50 U/g)、接种量1%(0.5%1号菌+0.5%3号菌)、处理时间为48 h。在此条件下,豆粕经过处理后,其酸溶性蛋白含量从2.74%增加到24.55%,乳酸含量从1.26%增加到4.70%,各种抗营养因子也大都得到降解。SDS-PAGE电泳分析结果表明,处理后豆粕中的大分子蛋白质被降解为分子量20 kD或以下的小分子物质。  相似文献   

13.
本文通过正交试验,选用碱性微生物蛋白酶,研究得出酶解法制备大豆肽的最佳工艺参数:豆粕预处理条件为90℃水浴加热10min,酶解条件为底物浓度5%(W/V)、加酶量5万单位/g蛋白质、温度50℃、pH值10、酶解时间5.5h。蛋白质水解率达到25%,平均肽链长度为4.0。制得大豆肽粗蛋白质含量66.83%(DM)。并对制得大豆肽和原料豆粕的氨基酸含量进行分析。  相似文献   

14.
将豆粕加入木瓜蛋白酶和酵母菌在40℃条件下进行液态酶解发酵处理24h制备液态酶解发酵豆粕并进行营养成分分析。72头体质量(31.25±0.22)kg健康阉公猪,随机分为3组,每组4个重复,每个重复6头猪,分别为对照料、添加10%液态酶解发酵豆粕和添加20%液态酶解发酵豆粕组,预饲期7d,正试期28d。结果表明,豆粕经过液态酶解发酵后粗蛋白含量有所提高,但是差异不显著(P〉0.05),钙和磷的含量均没有显著变化(P〉0.05),水溶性蛋白、小肽、小分子蛋白含量显著提高(P〈0.05),大分子蛋白含量显著降低(P〈0.05),脲酶活性显著降低(P〈0.05)。饲养试验表明,添加10%液态酶解发酵豆粕和20%液态酶解发酵豆粕的试验组和对照组相比平均日采食量分别提高了12.14%和20.81%(P〈0.05),平均日增重分别提高了11.33%和22.29%(P〈0.05);粪中氮的排泄量分别降低了11.11%和8.80%(P〈0.05);粪中磷的排泄量分别降低了3.59%(P〉0.05)和23.95%(P〈0.05),粪中铜的排泄量分别降低了2.22%(P〉0.05)和7.52%(P〉0.05),粪中锌的排泄量3个组之间均没有显著性差异(P〉0.05)。综上,豆粕经木瓜蛋白酶和酵母菌酶解发酵后蛋白质成分有所改善,饲喂生长育肥猪可以提高生产性能,降低粪中部分营养物质的排泄量。  相似文献   

15.
生物技术处理豆粕多利用益生菌发酵及酶解的作用,将豆粕中大分子物质和抗营养因子进行分解、转化。发酵后的豆粕抗营养因子含量低;富含有益菌、活性酶,提高了小分子有机酸、维生素、游离氨基酸等发酵代谢产物的含量;提高了豆粕的适口性和利用率。利用益生菌处理的发酵豆粕及利用酶处理的酶解豆粕可将豆粕中的大分子蛋白降解为小肽、氨基酸,提高豆粕的消化利用率。菌酶协同发酵豆粕,在微生物发酵的基础上添加外源蛋白酶,由于微生物和酶有较好的协同作用,大分子物质被降解得更彻底,与微生物发酵、酶解相比,缩短了发酵周期,效率更高。生物技术处理豆粕提高了豆粕利用率、畜禽健康水平、畜产品品质,并具有改善养殖环境的功能。文章综述了生物技术处理豆粕的工艺特点、营养特性、代谢产物、应用效果,并进行了总结、分析,对以豆粕为代表的植物蛋白饲料资源的开发和应用有一定的参考意义。  相似文献   

16.
以麸皮和豆渣为培养基质,利用中华根霉12~#固态发酵生产饲用复合酶,对粗酶浸提条件进行了研究。以产酶种类和酶活力为指标,确定了提取溶剂为生理盐水,浸提时间为4 h,浸提温度为40℃,摇床转速150 r/min。以生成的还原糖量为指标,进行了复合酶降解豆粕粉和玉米粉的研究,结果表明,在40℃和pH值6.0条件下添加复合酶组的酶解还原糖得率均高于不加酶组,豆粕与复合酶液比例为14,酶解4 h时生成还原糖量最高;玉米粉与复合酶液比例为11,酶解6 h时生成还原糖量最高。试验结果表明,中华根霉12~#固态发酵生产的饲用复合酶可以用于降低饲料中的某些抗营养因子,改善饲料品质。  相似文献   

17.
该文探讨了以豆粕为主要原料进行黑曲霉固态发酵生产大豆肽的方法,研究了不同发酵时间、豆粕与麸皮原料比及发酵条件对大豆肽转化率的影响。结果表明,最适的发酵豆柏与麸皮原料比为豆粕含量87%;最适发酵条件为:发酵温度30℃,初始pH值为6.2,发酵时间96h.在此条件下,发酵得到的大豆肽转化率达65.52%。考虑到生产成本重新拟定了试验组合,并进行了双组平行试验.结果表明发酵料坯中豆粕含量87%、初始pH值5.8、发酵温度为30℃、发酵90h条件下发酵豆粕中大豆肽的转化率为62.35%。  相似文献   

18.
为了提高豆粕短肽含量,有效促进其吸收利用,试验通过对豆粕蛋白氮溶指数(NSI)的研究选择碱性蛋白酶和风味蛋白酶对其进行酶解,采用正交试验法对酶解条件进行优化。结果表明:碱性蛋白酶酶解豆粕蛋白的最佳酶解条件是p H值11,酶量4 m L,温度50℃,酶解3 h;风味蛋白酶酶解豆粕蛋白的最佳酶解条件是p H值7.0,酶量2.5 g,温度55℃,酶解2 h。经二次酶解后,豆粕蛋白在p H值为7时其三氯乙酸氮溶指数(TCA-NSI)可由原来的8.3%增加到72.3%,短肽含量增加近10倍。说明经碱性蛋白酶和风味蛋白酶降解后将大大提高豆粕蛋白的吸收利用率。  相似文献   

19.
豆粕一直被作为理想蛋白使用,但由于豆粕中含有大量的抗原蛋白、胰蛋白酶抑制剂等抗营养因子,降低了豆粕的营养价值及饲喂效果。本试验期望通过角蛋白酶处理获得酶解豆粕,提高饲用价值,扩大使用范围。以豆粕为底物,在pH 9.0、50℃条件下进行角蛋白酶酶解处理,通过检测可溶性蛋白含量、酸溶蛋白含量、小肽分布及抗原蛋白、胰蛋白酶抑制剂分解情况判定角蛋白酶对豆粕营养价值的改善。结果表明,豆粕经角蛋白酶酶解处理后,可溶性蛋白、酸溶蛋白含量分别增加57.33%、762.96%,产生分子量1 000 Da的小肽占比59.23%,5 000 Da的小肽占比83.71%,抗原蛋白条带降解明显,胰蛋白酶抑制剂降解82.34%。可见,角蛋白酶在酶解处理豆粕中无论是营养成分的改善还是抗营养成分的消除均表现出良好的正向作用,为角蛋白酶在酶解豆粕生产中的应用提供一定的数据支撑,对生产高质量的酶解豆粕具有一定的指导意义。  相似文献   

20.
为了研究枯草芽孢杆菌(Bacillus subtilis)XZ35株固态发酵豆粕的效果,试验以纯化水和市售枯草芽孢杆菌B1株为对照,在最优工艺条件下固态发酵豆粕,对发酵产品进行大豆抗原蛋白残留率、三氯乙酸可溶性氮(TCA-NSI)、粗蛋白、水分和挥发性盐基氮含量测定。结果表明:枯草芽孢杆菌XZ35株发酵豆粕后抗原蛋白残留率为5.9%,显著低于空白对照组和枯草芽孢杆菌B1株对照组(P0.05);TCA-NSI含量为7.24%,显著高于空白对照组和枯草芽孢杆菌B1株对照组(P0.05);枯草芽孢杆菌XZ35株和B1株发酵豆粕后粗蛋白含量显著高于空白对照组(P0.05),各组水分含量差异不显著(P0.05);挥发性盐基氮含量为30.37 mg/100 g,显著低于空白对照组和枯草芽孢杆菌B1株对照组(P0.05)。说明枯草芽孢杆菌XZ35株在豆粕发酵过程中能够将豆粕中大分子蛋白降解为小分子多肽,同时具有较强的抗原蛋白降解能力,进而提高豆粕蛋白质的消化率和利用率,提高豆粕在饲料中的应用范围和使用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号