首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In several places in Southern California bituminous sediments of the Monterey Formation-siliceous shales, phosphatic rocks, dolomites, and arkoses-were affected during the Pleistocene and as late as the l9th century by spontaneous subsurface combustion of organic matter, during which temperatures up to 1600 degrees C were reached. This oxidative heating (combustion metamorphism) affected rock complexes over areas of tens of square kilometers that tend to occur in clusters. As a result of these processes, the rocks recrystallized and partially melted to form pseudomagmas which intruded the country rocks. The chemical compositions of these melts differ from those of igneous magmas. Acid and intermediate siliceous melts as well as phosphatic melts have formed. These two types are generally immiscible. The following high-temperature minerals were determined: alpha- and beta-cristobalite, quartz, calcic plagioclase, diopsidic pyroxene, wollastonite, cordierite, graphite, fluorapatite, and fluorite; at lower temperature pyrite, gypsum, aragonite, calcite, jarosite, and hexahydrite crystallized.  相似文献   

2.
Indications of shock metamorphism produced by pressures up to the megabar region have been observed in the fine material and the breccias, but very rarely in the coarser fragments of crystalline rocks. These indications are deformation structures in plagioclase and pyroxene, diaplectic plagioclase glasses, and glasses formed by shock-induced melting of lunar rocks. Two sources of shock waves have been distinguished: primary impact of meteorites and secondary impact of crater ejecta. There are two major chemical types of shock-induced melts. The differences in chemistry may be related to impact sites in mare and highland areas.  相似文献   

3.
Nine different crystalline rocks of the Apollo 12 samples have been analyzed with conventional chemical rock analysis methods. Five of the rocks have normative quartz, whereas the others have normative olivine and hypersthene. The rocks show a wide range in the ratio of iron to magnesium, and their compositions fall on relatively smooth curves in the oxide variation diagram. It is suggested that these rocks, with one exception, represent different parts of a differentiated magmatic body, in which magmatic differentiation by crystallization and settling of olivine was most effective. The source material of the original magma may be peridotite with or without minor amounts of plagioclase or spinel or garnet, with the presence or absence of these minerals dependent on the depth of magma generation.  相似文献   

4.
Fragments of igneous rocks and breccias, and one coarse-grained rock with thin sections, have been studied. Minerals found include pyroxene, plagioclase, olivine, ilmenite, troilite, ulv?spinel, native iron, cristobalite, tridymite, alkali feldspar, apatite, and quartz. Textures are described and interpreted. Among features revealed by optical, microprobe, x-ray diffraction, and electron microscope methods are extreme zoning and unmixing in pyroxene grains, compositional variations in ilmenites, and effects of shock metamorphism. Some trace elements were determined by x-ray fluorescence analysis.  相似文献   

5.
Glass spherules, glass fragments, augite, ferroaugite, titanaugite, pyroxmangite, pigeonite, hypersthene, plagioclase, potassium feldspar, maskelynite, olivine, silica, ilmenite, TiO(2), "ferropseudobrookite," spinel, ulv?spinel, native iron, nickel-iron, troilite, and chlorapatite were analyzed with the electron microprobe. There are no indications of large-scale chemical differentiation, chemical weathering, or hydrous minerals. Contributions of meteoritic material to lunar surface rocks are small. Rocks with igneous textures originated from a melt that crystallized at or near the surface, and oxygen fugacities have been low. Shock features indicate that at least some surface material is impact-produced.  相似文献   

6.
Calcic plagioclase is the dominant luminescent mineral in crystalline rocks and breccias. Minor amounts of cristobalite and tridymite are also luminescent, as are trace grains of potassium feldspar. Two types of intergrowths of potassium feldspar with a silica phase, possibly quartz, were found in the breccias. Luminescence spectra of plagioclase show significant similarities to, and differences from, spectra of terrestrial plagioclase. Shock damage in the breccias is reflected in systematic changes in the plagioclase spectra, thus giving evidence of disordering on the angstrom scale. Associated extinction patterns seen between crossed Nicol prisms give evidence of disordering on the micrometer scale.  相似文献   

7.
The primary rocks are a sequence of titanium-rich basic volcanics, composed of clinopyroxene, plagioclase, and ilmenite with minor olivine, troilite, and native iron. The soil and microbreccias are respectively loose and compacted mixtures of fragments and aggregates of similar rocks, minerals, and glassy fragments and spheres. Impact events are reflected by the presence of shock metamorphosed rock fragments, breccias, and glasses and their resulting compaction to form complex breccias, glass-spattered surfaces, and numerous glass-lined craters. Chemistry of the glasses formed by the impact events is highly variable, and the high iron and nickel content of a few moundlike features suggests that at least some of the projectiles are iron and nickel-rich meteorites.  相似文献   

8.
Pseudotachylytes are typically interpreted to have formed by frictional melting during coseismic faulting within the upper to middle crust. Pseudotachylytes in the Bergen arcs of western Norway contain microlites including omphacite, garnet, plagioclase, and quartz. This eclogite facies assemblage is stable at temperatures of about 800 degrees C and pressures of 18 to 19 kilobars, corresponding to depths of 60 kilometers or more. The pseudotachylytes are exposed in Grenvillian granulites that locally underwent fluid-induced eclogitization and corresponding volume reduction of approximately 10 percent during the Caledonian continental collision. The pseudotachylytes may have formed as a result of the rapid relaxation of stresses caused by the eclogitization process.  相似文献   

9.
Results of detailed mineralogical, chemical, and oxygen isotope analyses of the clay minerals and zeolites from two Cretaceous-Tertiary (K/T) boundary regions, Stevns Klint, Denmark, and Deep Sea Drilling Project (DSDP) Hole 465A in the north central Pacific Ocean, are presented. In the central part of the Stevns Klint K/T boundary layer, the only clay mineral detected by x-ray diffraction is a pure smectite with > 95 percent expandable layers. No detrital clay minerals or quartz were observed in the clay size fraction in these beds, whereas the clay minerals above and below the boundary layer are illite and mixed-layer smectite-illite of detrital origin as well as quartz. The mineralogical purity of the clay fraction, the presence of smectite only at the boundary, and the delta(18)O value of the smectite (27.2 +/- 0.2 per mil) suggest that it formed in situ by alteration of glass. Formation from impact rather than from volcanic glass is supported by its major element chemistry. The high content of iridium and other siderophile elements is not due to the cessation of calcium carbonate deposition and resulting slow sedimentation rates. At DSDP Hole 465A, the principal clay mineral in the boundary zone (80 to 143 centimeters) is a mixed-layer smectite-illite with >/=90 percent expandable layers, accompanied by some detrital quartz and small amounts of a euhedral authigenic zeolite (clinoptilolite). The mixed-layer smectite-illite from the interval 118 to 120 centimeters in the zone of high iridium abundance has a very low rare earth element content; the negative cerium anomaly indicates formation in the marine environment. This conclusion is corroborated by the delta(18)O value of this clay mineral (27.1 +/- 0.2 per mil). Thus, this mixed-layer smectite-illite formed possibly from the same glass as the K/T boundary smectite at Stevns Klint, Denmark.  相似文献   

10.
Plagioclase and olivine crystals in the crystalline rocks from the Sea of Tranquillity show little or no evidence of either static or dynamic deformation. The large disorientations in many of the pyroxene crystals are commonly consistent with slip on the system T -(100), t = [001], but these distortions are not due to plastic flow. They are ascribed to rapid growth and quenching phenomena as deduced from studies of chondrules and of quenched natural and experimentally produced melts. Some of the silicates in the breccias and regolith show evidence of shock deformation, from mild to intense, as indicated by pervasive featuring, shock lamallae, and partial transformatiion of pyroxene and plagioclase crystals to glass.  相似文献   

11.
The Miniature Thermal Emission Spectrometer (Mini-TES) on Opportunity investigated the mineral abundances and compositions of outcrops, rocks, and soils at Meridiani Planum. Coarse crystalline hematite and olivine-rich basaltic sands were observed as predicted from orbital TES spectroscopy. Outcrops of aqueous origin are composed of 15 to 35% by volume magnesium and calcium sulfates [a high-silica component modeled as a combination of glass, feldspar, and sheet silicates (approximately 20 to 30%)], and hematite; only minor jarosite is identified in Mini-TES spectra. Mini-TES spectra show only a hematite signature in the millimeter-sized spherules. Basaltic materials have more plagioclase than pyroxene, contain olivine, and are similar in inferred mineral composition to basalt mapped from orbit. Bounce rock is dominated by clinopyroxene and is close in inferred mineral composition to the basaltic martian meteorites. Bright wind streak material matches global dust. Waterlain rocks covered by unaltered basaltic sands suggest a change from an aqueous environment to one dominated by physical weathering.  相似文献   

12.
A thin claystone layer found in nonmarine rocks at the palynological Cretaceous-Tertiary boundary in eastern Montana contains an anomalously high value of iridium. The nonclay fraction is mostly quartz with minor feldspar, and some of these grains display planar features. These planar features are related to specific crystallographic directions in the quartz lattice. The shocked quartz grains also exhibit asterism and have lowered refractive indices. All these mineralogical features are characteristic of shock metamorphism and are compelling evidence that the shocked grains are the product of a high velocity impact between a large extraterrestrial body and the earth. The shocked minerals represent silicic target material injected into the stratosphere by the impact of the projectile.  相似文献   

13.
The Holleford Crater, a circular depression in southern Ontario, is filled with Paleozoic sediments and underlain by brecciated Precambrian igneous and metamorphic rocks. The presence of coesite in two core samples of this breccia has been established by petrographic and x-ray diflraction methods. Shattered quartz in the coesite-bearing samples exhibits planar fractures. The shocked quartz is the result of great shock pressures and the association of coesite with the shocked quartz strongly suggests that Holleford Crater originated from a hypervelocity impact.  相似文献   

14.
Samples returned from the Apollo 15 site consist of mare basalts and breccias with a variety of premare igneous rocks. The mare basalts are from at least two different lava flows. The bulk chemical compositions and textures of these rocks confirm the previous conclusion that the lunar maria consist of a series of extrusive volcanic rocks that are rich in iron and poor in sodium. The breccias contain abundant clasts of anorthositic fragments along with clasts of basaltic rocks much richer in plagioclase than the mare basalts. These two rock types also occur as common components in soil samples from this site. The rocks and soils from both the front and mare region exhibit a variety of shock characteristics that can best be ascribed to ray material from the craters Aristillus or Autolycus.  相似文献   

15.
The lunar samples consist largely of augite, calcic plagioclase, and ilmenite. Olivine is a minor constituent of some rocks, as is cristobalite. Other minerals present in small amounts include tridymite, chromite, kamacite, taenite, and troilite. The principal rock types can be broadly grouped into ilmenite basalts and breccias. Except for their high ilmenite content, the lunar rocks resemble the calcium-rich achondritic meteorites (eucrites and howardites) in composition and structure. Evidence of a meteoritic increment in the lunar soil is provided by the presence of nickel-iron particles in glass and breccia, and the occurrence of metal-troilite spheroids; the breccias contain occasional silicate aggregates that resemble meteoritic chondrules. The lunar fines contain 325 parts of watersoluble calcium per million.  相似文献   

16.
Crystal defects and chemical reactions occurring at scales beyond the resolution of light microscopes have major effects on the chemical and physical properties of rocks and minerals. High-resolution imaging, diffraction, and chemical analysis in the transmission electron microscope have become important methods for exploring mineral defect structures and reaction mechanisms and for studying the distribution of phases resulting from reactions. These techniques have shown that structural disorder is common in some rock-forming minerals but rare in others. They have also established mechanisms by which many reactions occur at the atomic cluster scale. These data thus provide an atomistic basis for understanding the kinetics of geological reactions. Furthermore, apparent major-element, minor-element, and trace-element chemistry of minerals can be influenced by submicroscopic inclusions or intergrowths, which commonly form as products of solid-state reactions.  相似文献   

17.
Silicate grains from Tranquillity Base have shock-induced features ranging from internal fragmentation through complete disruption of the lattice to thermal melting. Half the crystalline grains with diameters less than 125 micrometers have features of shock equivalent to those produced in the laboratory at pressures greater than about 40 kilobars. One quarter have features indicative of pressures greater than 90 kilobars. These properties together with great quantities of melt glass and aluminum-26 in the fine-grained material are indicative of repeated shock-loading by meteoritic bombardment over long periods of time.  相似文献   

18.
An experiment-based model for the petrogenesis of high-alumina basalts   总被引:1,自引:0,他引:1  
To understand magmatism at convergent margins, one must know the origin of their characteristic, plagioclase-rich, high-alumina basalts (HABs). Wet melting experiments on basalts at 3 kilobars yielded high-alumina liquids and a coexisting mineral assemblage with little or no plagioclase. An isothermal pressure drop to 1 kilobar caused 20 to 30 percent plagioclase crystallization in these melts, while mafic minerals underwent limited crystallization or even resorption. These results suggest that hydrous (>/=4 percent H(2)O) HAB liquids, presumably formed by fractionation of a hydrous basalt at depth, will precipitate voluminous plagioclase as pressure drops during ascent and eruption. Plagioclase accumulation is not necessarily required to explain the petrogenesis of plagioclase-rich HAB.  相似文献   

19.
The hollandite high-pressure polymorph of plagioclase has been identified in shock-induced melt veins of the Sixiangkou L6 chondrite. It is intimately intergrown with feldspathic glass within grains previously thought to be "maskelynite." The crystallographic nature of the mineral was established by laser micro-Raman spectroscopy and x-ray diffraction. The mineral is tetragonal with the unit cell parameters a = 9.263 +/- 0.003 angstroms and c = 2.706 +/- 0.003 angstroms. Its occurrence with the liquidus pair majorite-pyrope solid solution plus magnesiowustite sets constraints on the peak pressures that prevailed in the shock-induced melt veins. The absence of a calcium ferrite-structured phase sets an upper bound for the crystallization of the hollandite polymorph near 23 gigapascals.  相似文献   

20.
Examination of multiphase melt inclusions in 91 sections of 26 lunar rocks revealed abundant evidence of late-stage immiscibility in all crystalline rock sections and in soil fragments and most breccias. The two individual immiscible silicate melts (now glasses) vary in composition, but are essentially potassic granite and pyroxenite. This immiscibility may be important in the formation of the lunar highlands and tektites. Other inclusions yield the following temperatures at which the several minerals first appear on cooling the original magma: ilmenite (?) liquidus, 1210 degrees C; pyroxene, 1140 degrees C; plagioclase, 1105 degrees C; solidus, 1075 degrees C. The glasses also place some limitations on maximum and minimum cooling rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号