首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major in vivo metabolites of (S)-(-)-pulegone in humans using a metabolism of ingestion-correlated amounts (MICA) experiment were newly identified as 2-(2-hydroxy-1-methylethyl)-5-methylcyclohexanone (8-hydroxymenthone, M1), 3-hydroxy-3-methyl-6-(1-methylethyl)cyclohexanone (1-hydroxymenthone, M2), 3-methyl-6-(1-methylethyl)cyclohexanol (menthol), and E-2-(2-hydroxy-1-methylethylidene)-5-methylcyclohexanone (10-hydroxypulegone, M4) on the basis of mass spectrometric analysis in combination with syntheses and NMR experiments. Minor metabolites were be identified as 3-methyl-6-(1-methylethyl)-2-cyclohexenone (piperitone, M5) and alpha,alpha,4-trimethyl-1-cyclohexene-1-methanol (3-p-menthen-8-ol, M6). Menthofuran was not a major metabolite of pulegone and is most probably an artifact formed during workup from known (M4) and/or unknown precursors. The differences in toxicity between (S)-(-)- and (R)-(+)-pulegone can be explained by the strongly diminished ability for enzymatic reduction of the double bond in (R)-(+)-pulegone. This might lead to further oxidative metabolism of 10-hydroxypulegone (M4) and the formation of further currently undetected metabolites that might account for the observed hepatotoxic and pneumotoxic activity in humans.  相似文献   

2.
The volatile components of Citrus sphaerocarpa Tanaka (Kabosu) cold-pressed peel oil were investigated by chemical and sensory analyses. Monoterpene hydrocarbons (more than 94.6%) were predominant in Kabosu peel oil, with limonene and myrcene accounting for the major proportions (70.5% and 20.2%, respectively). The Kabosu oxygenated fraction was characterized by quantitative abundance in aldehydes and a relatively wide variety of alcohols. The weight percentages of aldehydes, alcohols, and esters in Kabosu cold-pressed oil were 1.3%, 0.1%, and 0.1%, respectively. Aroma extract dilution analysis was employed for determination of the odors of Kabosu volatile components, flavor dilution factors, and relative flavor activities. Gas chromatography/olfactometry using Kabosu cold-pressed oil and its oxygenated fraction completed by a chiral analysis revealed that (R)-(+)-citronellal is a characteristic element of Kabosu peel oil odor. Careful sniff testing demonstrated that aqueous solutions of both 0.25% and 0.016% (R)-(+)-citronellal gave an odor similar to that of Kabosu.  相似文献   

3.
(R)-Terpinen-4-ol was mixed in an artificial diet at a concentration of 1 mg/g of diet, and the diet was fed to the last instar larvae of common cutworm (Spodoptera litura). Metabolites were recovered from frass and analyzed spectroscopically. (R)-Terpinen-4-ol was transformed mainly to (R)-p-menth-1-en-4,7-diol. Similarly, (S)-terpinen-4-ol was transformed mainly to (S)-p-menth-1-en-4,7-diol. The C-7 position (allylic methyl group) of (R)- and (S)-terpinen-4-ol was preferentially oxidized.  相似文献   

4.
This study was conducted to determine the composition of kumquat (Fortunella japonica Swingle) cold-pressed peel oil and to determine which volatile components are primarily responsible for the aroma of this oil. Eighty-two compounds were identified in the oil by GC and GC-MS. The major compounds were limonene (93.73%), myrcene (1.84%), and ethyl acetate (1.13%). Flavor dilution (FD) factors and relative flavor activities (RFA) of volatile constituents were evaluated by aroma extract dilution analysis with gas chromatography-olfactometry (GC-O). Camphene, terpinen-4-ol, citronellyl formate, and citronellyl acetate showed high FD factors (>/=5) and RFA (>20). Citronellyl formate and citronellyl acetate were regarded as the characteristic odor components of the kumquat peel oil from the results of FD factor, RFA, and GC-sniffing. Citronellyl acetate is considered to be the odor component most similar to kumquat by organoleptic evaluation with GC-O.  相似文献   

5.
Covalently cross-linked proteins are among the major modifications caused by the advanced Maillard reaction. So far, the chemical nature of these aggregates is largely unknown. Investigations are reported on the isolation of 6-[2-[[(4S)-4-amino-4-carboxybutyl]amino]-6,7-dihydroxy-6,7-dihydroimidazo[4,5-b]azepin-4(5H)-yl]-L-norleucine (10) and N-acetyl-6-[(6R,7R)-2-[[4-(acetylamino)-4-carboxybutyl]amino]-6,7,8a-trihydroxy-6,7,8,8a-tetrahydroimidazo[4,5-b]azepin-4(5H)-yl]-L-norleucine (12) formed by oxidation of the major Maillard cross-link glucosepane 1. Independent synthesis and unequivocal structural characterization are given for 10 and 12. Spiro cross-links, representing a new class of glycoxidation products, were obtained by dehydrogenation of the amino imidazolinimine compounds N6-[2-[[(4S)-4-ammonio-5-oxido-5-oxopentyl]amino]-5-[(2S,3R)-2,3,4-trihydroxybutyl]-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysinate (DOGDIC 2) and N6-[2-[[(4S)-4-ammonio-5-oxido-5-oxopentyl]amino]-5-[(2S)-2,3-dihydroxypropyl]-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysinate (DOPDIC 3). These new oxidation products were synthesized, and their unambiguous structural elucidation proved the formation of the spiro imidazolimine structures N6-[(7R,8S)-2-[[(4S)-4-ammonio-5-oxido-5-oxopentyl]amino]-8-hydroxy-7-(hydroxymethyl)-6-oxa-1,3-diazaspiro[4.4]non-1-en-4-ylidene]-L-lysinate (16), N6-(8R,9S)-2-[(4S)-4-ammonio-5-oxido-5-oxopentyl]amino]-8,9-dihydroxy-6-oxa-1,3-diazaspiro[4.5]dec-1-en-4-ylidene)-L-lysinate (19), and N6-[(8S)-2-[(4-amino-4-carboxybutyl)amino]-8-hydroxy-6-oxa-1,3-diazaspiro[4.4]non-1-en-4-ylidene]-L-lysinate (18), respectively. It was shown that reaction of the imidazolinone 15 led to the formation of spiro imidazolones, structurally analogous to 16 and 19.  相似文献   

6.
The chemical changes and artifact formation in daidai (Citrus aurantium L. var. Cyathifera Y. Tanaka) cold-pressed peel oil upon storage at 20, 5, and -21 degrees C for 3, 6, and 12 months were investigated using capillary gas chromatography (GC) and GC-MS. Major changes occurred in the oil stored at 20 and 5 degrees C. No changes were found at -21 degrees C. Monoterpene hydrocarbons decreased from 98.0 to 66.4% upon 12 months at 20 degrees C, while sesquiterpene hydrocarbons and alcohols increased from 0.1 to 2.4% and from 0.3 to 7.9%, respectively. Notable decreases of germacrene D, myrcene, linalyl acetate, and limonene occurred. Prominent increases of cis-carveol, trans-beta-farnesene, trans-p-2,8-menthadien-1-ol, linalool, and beta-caryophyllene were found. Thirty-four artifact compounds constituting 17.0% of the total volatile compounds were formed upon 12 months at 20 degrees C. The artifacts consisted of 13 alcohols (6.0%), five carbonyl compounds (5.3%), seven esters (4.9%), three epoxides (0.4%), four hydrocarbons (0.3%), and two unidentified. The prominent artifact compounds were (+)-carvone, trans,trans-farnesyl acetate, sabinene hydrate, 1-octen-3-ol, cis,cis-farnesyl acetate, and dihydrocarveol acetate. The results could be applied for monitoring and control of the flavor quality of daidai essential oil and related products.  相似文献   

7.
Although menthol is a common ingredient used in food products, other molecules also evoke coolness through stimulation of the somatosensory system. To discover new molecules having cooling properties, we virtually screened the chemical structures of terpenes and sesquiterpenes to find structures that are similar to (-)-menthol. We realized that dihydroumbellulols could be good candidates. Although their occurrence was reported in Hyptis pectinata Poit, we were unable to obtain these molecules from the plant or to prove their natural occurrence. Therefore, we extracted (-)-(R)-umbellulone from Umbellularia californica Nutt. The (-)-(R)-umbellulone was reduced to prepare (1R,2R/S)-1-isopropyl-4-methylbicyclo[3.1.0]hex-3-en-2-ol, (1R,4R/S)-1-isopropyl-4-methylbicyclo[3.1.0]hexan-2-one, and (1R,2RS,4RS)-1-isopropyl-4-methylbicyclo[3.1.0]hexan-2-ols, named dihydroumbellulols. Sensory analysis suggested that (1R,2R,4S)-dihydroumbellulol has a pleasant, trigeminal cooling effect, about 2-3 times less cooling than (-)-menthol, with a weak odor slightly reminiscent of eucalyptol. In addition, a previously unreported compound was discovered, (-)-(1R)-1-isopropyl-4-methylenebicyclo[3.1.0]hexan-2-one.  相似文献   

8.
Four new abscisic acid related compounds (1-4), together with (+)-abscisic acid (5), (+)-beta-D-glucopyranosyl abscisate (6), (6S,9R)-roseoside (7), and two lignan glucosides ((+)-pinoresinol mono-beta-D-glucopyranoside (8) and 3-(beta-D-glucopyranosyloxymethyl)-2- (4-hydroxy-3-methoxyphenyl)-5-(3-hydroxypropyl)-7-methoxy-(2R,3S)-dihydrobenzofuran (9)) were isolated from the antioxidative ethanol extract of prunes (Prunus domestica L.). The structures of 1-4 were elucidated on the basis of NMR and MS spectrometric data to be rel-5-(3S,8S-dihydroxy-1R,5S-dimethyl-7-oxa-6-oxobicyclo[3,2,1]oct-8-yl)-3-methyl-2Z,4E-pentadienoic acid (1), rel-5-(3S,8S-dihydroxy-1R,5S-dimethyl-7-oxa-6-oxobicyclo[3,2,1]oct-8-yl)-3-methyl-2Z,4E-pentadienoic acid 3'-O-beta-d-glucopyranoside (2), rel-5-(1R,5S-dimethyl-3R,4R,8S-trihydroxy-7-oxa-6-oxobicyclo[3,2,1]oct-8-yl)-3-methyl-2Z,4E-pentadienoic acid (3), and rel-5-(1R,5S-dimethyl-3R,4R,8S-trihydroxy-7-oxabicyclo[3,2,1]- oct-8-yl)-3-methyl-2Z,4E-pentadienoic acid (4). The antioxidant activities of these isolated compounds were evaluated on the basis of oxygen radical absorbance capacity (ORAC). The ORAC values of abscisic acid related compounds (1-7) were very low. Two lignans (8 and 9) were more effective antioxidants whose ORAC values were 1.09 and 2.33 micromol of Trolox equiv/micromol, respectively.  相似文献   

9.
The differentiation of nonrefined (e.g., cold-pressed) and refined edible oils is an important task in food control because of the higher commercial value of the former. Here, we explored the suitability of the relative abundance of cis-phytol as a marker for authentication of nonrefined edible oils. Phytol, the tetramethyl-branched, monoenoic alcohol, is found widespread in nature as a part of chlorophyll. In chlorophyll, only trans-phytol is found. In this study, we present a method for the analysis of the phytol isomers, considering that traces of cis-phytol (contributing 0.1% to the phytol content) can be determined next to trans-phytol. For this purpose, phytol was gathered with the unsaponifiable matter from the oil, trimethylsilylated, and analyzed by gas chromatography coupled to mass spectrometry. With this method, 27 samples of edible oils (16 refined and 11 nonrefined edible oils) were analyzed for the abundance of cis-phytol relative to trans-phytol. In the nonrefined oils (e.g., olive oil, rapeseed oil, maize oil, and sunflower oil), cis-phytol contributed 0.1% (n = 3) or less (n = 8) to the phytol content. In contrast, the refined olive oils (n = 4) contained a share of 1.3-3% cis-phytol; the refined rapeseed oil (n = 3) contained a share of 0.7-1.0% cis-phytol; and the refined sunflower oil (n = 4) contained a share of 0.3-0.9% cis-phytol. Only one refined pomegranate kernel did not contain cis-phytol. The phytol concentration was not suited to distinguish nonrefined from refined oils. In contrast, our data suggest that the virtual absence of cis-phytol can be used as a marker for nonrefined (e.g., cold-pressed) edible oils.  相似文献   

10.
The chemical composition of the volatile oil from roots of Bergenia ligulalta was analyzed by GC-MS. A total of 97 compounds were identified. (+)-(6S)-Parasorbic acid (1) (47.45%), isovaleric acid (6.25%), 1,8-cineole (4.24%), (Z)-asarone (3.50%), and terpinen-4-ol (2.96%) were the most prominent constituents. (+)-(6S)-Parasorbic acid (1) was isolated and characterized by spectroscopic data. This is the first report of the existence of (+)-(6S)-parasorbic acid in the saxifrage family. The volatile oil and the isolated compound were tested against Drosophila melanogaster . The results obtained showed that the volatile oil from roots could be considered as natural insecticidal effect agents.  相似文献   

11.
Cysteine conjugates, resulting from the addition of cysteine to alpha,beta-unsaturated carbonyl compounds, are important precursors of odorant sulfur compounds in food flavors. The aim of this work was to better understand this chemistry in the light of the unexpected double addition of cysteine to two unsaturated aldehydes. These reactions were studied as a function of pH. When (E)-2-methyl-2-butenal (tiglic aldehyde, 4) was treated with cysteine in water at pH 8, the major product formed was the new compound (4R)-2-(2-[[(2R)-2-amino-2-carboxyethyl]thio]methylpropyl)-1,3-thiazolidine-4-carboxylic acid (6). Under acidic conditions (pH 1), we also observed a double addition, but the second cysteine was linked by a vinylic sulfide bond to form the previously unreported major product, (2R,2'R,E)-S,S'-(2,3-dimethyl-1-propene-1,3-diyl)bis-cysteine (7). When (E)-2-hexenal (12) was treated with cysteine under acidic conditions, the major product was the novel (4R,2' 'R)-2-[2'-(2' '-amino-2' '-carboxyethylthio)pentyl]-1,3-thiazolidine-4-carboxylic acid (13), and the formation of an vinylic sulfide compound analogous to 7 was not observed. Reduction of the acidic crude reaction mixture with NaBH(4) afforded 13 and the cysteine derivative (R)-S-[1-(2-hydroxyethyl)butyl]cysteine (14) in 14% yield. Treating (E)-2-hexenal with cysteine at pH 8 followed by NaBH(4) reduction yielded the new product (3R)-7-propylhexahydro-1,4-thiazepine-3-carboxylic acid (15). Addition of cysteine to mesityl oxide (16), at pH 8, followed by reduction with NaBH(4) furnished (R)-S-(3-hydroxy-1,1-dimethylbutyl)cysteine (3) and the new compound (3R)-hexahydro-5,7,7-trimethyl-1,4-thiazepine-3-carboxylic acid (18).  相似文献   

12.
In the course of our study on the isolation and structure determination of constituents in tropical plants, we focused on Peucedanum japonicum Thunb., belonging to the family Umbelliferae. In this study, a new C(13) norisoprenoid glucoside, (3S)-O-beta-d-glucopyranosyl-6-[3-oxo-(2S)-butenylidenyl]-1,1,5-trimethylcyclohexan-(5R)-ol (1), and two new phenylpropanoid glucosides, 3-(2-O-beta-d-glucopyranosyl-4-hydroxyphenyl)propanoic acid (3) and methyl 3-(2-O-beta-d-glucopyranosyl-4-hydroxyphenyl)propanoate (4), were isolated from the n-butanol soluble fraction of this plant's leaves, together with five known compounds. The structures of these compounds were determined on the basis of spectroscopic evidence. In addition, all isolated compounds were examined for scavenging activity against 1,1-diphenyl-2-picrylhydrazyl radical and inhibitory activity against mushroom tyrosinase. These results suggested that 2-(4-hydroxy-3-methoxyphenyl)propane-1,3-diol (7) and 3-O-beta-d-glucopyranosyl-2-(4-hydroxy-3-methoxyphenyl)propanol (8) showed an appreciable activity in both assay systems.  相似文献   

13.
Novel antioxidative metabolites in rat liver with ingested sesamin   总被引:10,自引:0,他引:10  
Sesamin, a major lignan in sesame oil, is known to have many biological activities, especially protective effects against oxidative damage in the liver. As sesamin itself has no antioxidative properties in vitro, to elucidate the mechanism of its antioxidative effects, the reaction products of sesamin in rat liver homogenate were analyzed. The methylenedioxyphenyl moiety in the structure of sesamin was shown to be changed into a dihydrophenyl (catechol) moiety. The enzymatic reaction products in vitro were identified as (1R,2S,5R,6S)-6-(3,4-dihydroxyphenyl)-2-(3,4-methylenedioxyphenyl)-3,7-dioxabicyclo[3,3,0]octane and (1R,2S,5R,6S)-2,6-bis(3,4-dihydroxyphenyl)-3,7-dioxabicyclo[3,3,0]octane, which showed strong radical scavenging activities; the latter was a novel compound. The same metabolites were found as glucuronic acid and/or sulfic acid conjugates in substantial amounts in rat bile after oral administration of sesamin. It is suggested that sesamin is a prodrug and the metabolites containing the catechol moieties in their structures are responsible for the protective effects of sesamin against oxidative damage in the liver.  相似文献   

14.
Esterification, catalyzed by papaya (Carica papaya) lipase (CPL), was studied with various alcohols and carboxylic acids under competitive conditions. Acids studied were straight-chain saturates of different chain lengths, with octanoic acid as the reference. Alcohols chosen were aliphatic straight-chain, branched, secondary, tertiary, terpene, and aromatic alcohols of different chain lengths, using 1-hexanol as the reference. The initial reaction rate increased with increasing chain length of the acid from C4:0 to C18:0, followed by a slight decrease with C20:0. In the case of alcohols, an optimum chain length of 8 carbon atoms was obtained for the straight-chain aliphatic group (C2 to C16). Ethanol, 1-propanol, and secondary and tertiary alcohols showed rather low reactivity. Branching of the alcohols was found not to affect the reactivity in esterification; among the terpenes, beta-citronellol [(2E)-3, 7-dimethyl-6-octenol] and geraniol [(2E)-3,7-dimethylocta-2, 6-dien-1-ol] were found to be more reactive than nerol [(2Z)-3, 7-dimethylocta-2,6-dien-1-ol]. The highest reaction rate was found for the aromatic benzyl alcohol (phenylmethanol).  相似文献   

15.
The pyrolysis of [(14)C]-chlorantraniliprole {3-bromo-1-(3-chloro-2-pyridinal)-N-[4-chloro-2-methyl-6-[(methylamino)carbonyl]phenyl]-1H-pyrazole-5-carboxamide} in tobacco was examined. Typically five commercially available cigarettes were treated separately with either [pyrazole carbonyl-(14)C] or [benzamide carbonyl-(14)C]-chlorantraniliprole at a concentration of 20 ppm (μg chlorantraniliprole equivalent/g cigarette weight; main study) to 40 ppm (for degradate identification only). All treated cigarettes were smoked using an apparatus designed to collect mainstream (MS) and sidestream (SS) smoke through a glass fiber filter and a series of liquid traps. The material balance for recovery of applied radiolabel ranged from 92.4 to 94.9%. Unchanged chlorantraniliprole was the major component found in butt and filter extracts, averaging a total of 17.4-17.9% of the applied radioactivity. A nonpolar degradation product, 2-[3-bromo-1-(3-chloro-2-pyridinyl)-1H-pyrazol-5-yl]-6-chloro-3,8-dimethyl-4(3H)-quinazolinone, designated 1, represented an average of 10.1-15.9% of the applied radioactivity in the [pyrazole carbonyl-(14)C] or [benzamide carbonyl-(14)C]-chlorantraniliprole cigarettes, respectively. (14)CO(2) was the major degradate, representing an average of 32.9 and 25.1% of the applied radioactivity in pyrazole and benzamide experiments, respectively. In the pyrazole carbonyl label a polar degradate, 5-bromo-N-methyl-1H-pyrazole-3-carboxamide (2) was present in the filter extracts at an average of 9.5% of the applied radioactivity. The most nonpolar degradate, 2,6-dichloro-4-methyl-11H-pyrido[2,1b]quinazolin-11-one (3), was present in [benzamide carbonyl-(14)C]-treated cigarettes only and represented an average of 14.7% of the applied radioactivity.  相似文献   

16.
Some series of 2-alkyl (alkythio)-5-((4-chloro)-3-ethyl-1-methyl-1H-pyrazole-5-yl)-1,3, 4-oxadiazoles (thiadiazoles) were prepared as potential fungicides. Their fungicidal activity was evaluated against rice sheath blight, which is a major disease of rice in China. Structure-activity relationships for the screened compounds were evaluated and discussed. It was found that 5-(4-chloro-3-ethyl-1-methyl-1H-pyrazole-5-yl)-1,3, 4-thiadiazole-2-thione has the higher fungicidal activity.  相似文献   

17.
The characteristic aroma-active compounds in raw and cooked pine-mushrooms (Tricholoma matsutake Sing.) were investigated by gas chromatography-olfactometry using aroma extract dilution analysis. 1-Octen-3-one (mushroom-like) was the major aroma-active compound in raw pine-mushrooms; this compound had the highest flavor dilution factor, followed by ethyl 2-methylbutyrate (floral and sweet), linalool (citrus-like), methional (boiled potato-like), 3-octanol (mushroom-like and buttery), 1-octen-3-ol (mushroom-like), (E)-2-octen-1-ol (mushroom-like), and 3-octanone (mushroom-like and buttery). By contrast, methional, 2-acetylthiazole (roasted), an unknown compound (chocolate-like), 3-hydroxy-2-butanone (buttery), and phenylacetaldehyde (floral and sweet), which could be formed by diverse thermal reactions during the cooking process, together with C8 compounds, were identified as the major aroma-active compounds in cooked pine-mushrooms.  相似文献   

18.
Essential oil (EO) from aerial parts (leaves, juvenile branches, and flowers when present) of Pistacia lentiscus L. growing wild in five localities of Sardinia (Italy) was extracted by steam-distillation (SD) and analyzed by gas chromatography (GC), FID, and GC-ion trap mass spectrometry (ITMS). Samples of P. lentiscus L. were harvested between April and October to study the seasonal chemical variability of the EO. A total of 45 compounds accounting for 97.5-98.4% of the total EO were identified, and the major compounds were alpha-pinene (14.8-22.6%), beta-myrcene (1-19.4%), p-cymene (1.6-16.2%), and terpinen-4-ol (14.2-28.3%). The yields of EO (v/dry w) ranged between 0.09 and 0.32%. Similar content of the major compounds was found in samples from different origins and seasonal variability was also observed. The EOs were tested for their antifungal activity against Aspergillus flavus, Rhizoctonia solani, Penicillium commune, Fusarium oxysporum. Two samples were weakly effective against Aspergillus flavus. Furthermore, terpinenol and alpha-terpineol, two of the major components of EO of Pistacia lentiscus L., totally inhibited the mycelian growth of A. flavus. Quite good antioxidant activity of the EO was also found.  相似文献   

19.
Aroma compounds contained in the extracts of soybean and mung bean that possess antioxidant activity were identified by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). The major aroma constituents of soybeans were 1-octen-3-ol (13.699 ppm), maltol (1.662 ppm), phenylethyl alcohol (1.474 ppm), hexanol (1.430 ppm), and gamma-butyrolactone (1.370 ppm). The major aroma constituents of mung beans were hexanol (3.234 ppm), benzyl alcohol (2.060 ppm), gamma-butyrolactone (1.857 ppm), 2-methyl-2-propenal (1. 633 ppm), and pentanol (1.363 ppm). The major aroma chemicals of soybeans and mung beans were examined for antioxidative activities in two different assays. Eugenol, maltol, benzyl alcohol, and 1-octen-3-ol showed potent antioxidative activities in two different assays. Eugenol, maltol, benzyl alcohol, and 1-octen-3-ol inhibited the oxidation of hexanal by 100%, 93%, 84%, and 32%, respectively, for a period of 40 days at the 500 microg/mL level. Eugenol, maltol, benzyl alcohol, and 1-octen-3-ol inhibited malonaldehyde (MA) formation from cod liver oil by 91%, 78%, 78%, and 78%, respectively, at the 160 microg/mL level. The antioxidative activity of eugenol was comparable to that of the natural antioxidant alpha-tocopherol (vitamin E).  相似文献   

20.
Soybean (Glycine max) seed volatiles were analyzed using a solid phase microextraction (SPME) method combined with gas chromatography-mass spectrometry (GC-MS). Thirty volatile compounds already reported for soybean were recovered, and an additional 19 compounds not previously reported were identified or tentatively identified. The SPME method was utilized to compare the volatile profile of soybean seed at three distinct stages of development. Most of the newly reported compounds in soybean seed were aldehydes and ketones. During early periods of development at maturity stage R6, several volatiles were present at relatively high concentrations, including 3-hexanone, (E)-2-hexenal, 1-hexanol, and 3-octanone. At maturity stage R7 and R8, decreased amounts of 3-hexanone, (E)-2-hexenal, 1-hexanol, and 3-octanone were observed. At maturity stage R8 hexanal, (E)-2-heptenal, (E)-2-octenal, ethanol, 1-hexanol, and 1-octen-3-ol were detected at relatively high concentrations. SPME offers the ability to differentiate between the three soybean developmental stages that yield both fundamental and practical information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号