首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
水稻类病变突变体c5是由粳稻品种中花11种子经化学诱变剂EMS (甲基磺酸乙酯)诱变处理得到的。该突变体叶片在三叶期开始出现近似圆形褐色斑点,经DAB染色和台酚蓝染色显示这些斑点积累了过多的H2O2并引起程序性细胞死亡。与野生型相比,突变体c5的成熟期株高从110.4 cm减少到74.6 cm,有效分蘖数和每穗着粒数分别减少23.7%和28.5%,千粒重和结实率都显著降低,此外,c5还表现出对白叶枯病菌的广谱抗病性,对10个菲律宾生理小种都有强烈的抗性反应。遗传分析表明,c5的突变性状受单隐性核基因控制。利用c5和明恢86配组形成的包含6269个单株的F2群体和18个分子标记,将c基因限定在水稻第5染色体长臂STS标记S41和S47之间大约102 kb的遗传距离内。序列分析发现该区间内其中有11个编码基因,且它们与现已报道的类病变基因都不同,暗示c5可能是一个新型类病变性状控制基因。  相似文献   

2.
一个新的水稻黄绿叶突变体的遗传分析与基因定位   总被引:5,自引:0,他引:5  
通过化学诱变获得一份稳定遗传的水稻黄绿叶突变体D83。该突变体苗期植株呈黄绿色,分蘖期开始逐渐转为淡绿色。与野生型相比,突变体苗期叶绿素a、叶绿素b和类胡萝卜素含量分别下降45.03%、53.93%和39.56%,成熟期每穗着粒数减少9.45%,千粒重下降10.76%。对D83与正常绿色品种杂交F1、F2代的遗传分析表明,D83的突变性状由一对隐性核基因控制。以D83/浙福802 F2代作定位群体,应用分子标记将D83所携带的突变基因定位于水稻第2染色体短臂的SSR标记RM110附近,InDel标记Ch2-27和Ch2-32之间,该基因与这2个InDel标记的遗传距离分别为1.2 cM和2.3 cM。认为D83所携带的突变基因是一个新的水稻黄绿叶突变基因,暂命名为chl13(t)。  相似文献   

3.
叶序和出叶间隔期是叶片生长发育的基本生物学特性和水稻的重要农艺性状之一。对叶序或出叶间隔期突变体的研究,可以帮助我们了解叶片的形成机制。本研究以甲基磺酸乙酯(EMS)诱变粳稻品种日本晴,获得一个稳定遗传的类树状突变体s2-21。该突变体出叶间隔期变短、节间缩短、植株矮化、分蘖数减少、叶片数增加、不能正常进行生殖生长。将该突变体与籼稻品种Dular杂交,遗传分析表明该突变体性状受1对隐性基因控制。通过InDel分子标记对s2-21/Dular F2群体进行遗传定位,将该基因初步定位在第1染色体InDel标记C1-15和S1-17之间。利用本实验已测序的籼稻品种Dular全基因组序列与NCBI (http://www.ncbi.nlm.nih.gov/)上提供的粳稻品种日本晴基因组序列比对,发展了6个新的InDel标记,最终将该基因定位在W25和W26之间约88 kb的区间内。测序结果表明该突变体中PLA2基因的第4个内含子的第5位碱基由G突变为A。  相似文献   

4.
通过EMS诱变普通小麦品系H261获得一个稳定遗传的斑点叶突变体LF2010。在自然条件下, 该突变体在三叶期叶片基部开始出现黄色斑点, 随后逐步扩散到全片叶、叶鞘、颖壳和麦芒。斑点部位不存在细胞死亡, 斑点性状的表达受光照和温度诱导, 突变体的色素含量、光合速率随着斑点的出现而显著下降。突变体的株高、有效穗数、单株产量、穗长、结实率和旗叶长等农艺性状显著下降, 但是千粒重和旗叶宽却与野生型无差异。将突变体与正常绿色品系杂交, 对其F1、F2和BC1代的遗传分析表明, LF2010的突变性状由1对隐性核基因控制。  相似文献   

5.
水稻的穗形与其产量关系密切,也是研究的一大热点。利用60Co-γ射线辐射诱变水稻68902B,筛选到一个水稻稀穗突变体,暂命名为Oslp(Oryza sativa lax panicle)。研究了该突变体的主要农艺性状与稀穗的遗传方式,并对稀穗突变基因Oslp进行了分子定位。结果显示稀穗突变体Oslp的每穗粒数为104粒、二次枝梗数目为7个,它们都显著地少于原品种68902B每穗粒数的124粒和二次枝梗数目的 20个。遗传分析揭示突变体Oslp的稀穗性状受一对隐性核基因控制。将(籼稻品种261S×稀穗突变体Oslp)F2代中的稀穗个体作为定位群体,结合BSA和SSR分子标记技术,将基因Oslp定位在第7号染色体短臂的2个分子标记FR-3和FR-4之间,基因Oslp与FR-3和FR-4的遗传距离分别为0.6 c M和0.8 c M。  相似文献   

6.
水稻类病斑突变体spl34的鉴定与基因精细定位   总被引:2,自引:0,他引:2  
利用化学诱变剂EMS处理籼型水稻恢复系“缙恢10号”, 从其后代中筛选到1个遗传稳定的类病斑突变体spl34。该突变体于分蘖后期在下部叶片的叶鞘上开始出现褐色的类病斑, 随后沿着中脉扩散至整个叶片, 成熟期扩散至整个植株。相比于野生型, 该突变体的株高显著变矮, 穗长显著变短, 穗粒数、结实率和千粒重极显著降低。遮光试验和组织化学分析表明, 突变体类病斑的形成受光诱导, 在类病斑形成部位发生大量过氧化氢沉积和细胞程序性死亡。荧光显微镜观察发现, 在紫外光照射下突变体产生的荧光较野生型弱。与野生型相比, 突变体spl34的H2O2和O2-含量较高, 而CAT、POD和T-SOD等保护酶的活性显著降低; 稻瘟病抗性无明显差异或略显降低。遗传分析表明, 突变体spl34的表型受1对隐性核基因控制。基因定位结果表明, 该基因定位于第4染色体的LR49和LR52两个分子标记之间, 物理距离为200 kb。测序分析发现该区间内的候选基因LOC_Os04g56480的第3449位碱基发生突变(G3449T), 导致色氨酸替换为半胱氨酸。qRT-PCR结果表明该基因在突变体内表达量降低, 而部分病程相关基因的表达量则升高。  相似文献   

7.
tms5与pms3是水稻的光温敏核不育基因,其功能位点已经明确,然而它们在两系不育系中的效应尚不清楚。本研究针对tms5与pms3基因功能位点,分别设计了功能标记AS-TMS5和CAPS-PMS3。经鉴定发现,这2个功能标记能准确区分不育、可育性状对应的隐性纯合、杂合和显性纯合3种基因型。利用AS-TMS5和CAPS-PMS3对培矮64S/9311、广占63S/湘恢47和粤光S/宁恢108的F2群体单株的基因型及育性的关系分析发现,tms5基因是广占63S和粤光S控制光温敏不育性状的主效基因,而pms3基因在培矮64S和粤光S中并不能独立起作用,还需要与其他基因共同调控。进一步分析粤光S/宁恢108的F2:3群体基因型与育性的关系,发现在粤光S/宁恢108背景下,携带pms3基因的株系几乎都表现可育,而携带tms5基因的株系在较高气温条件下表现不育,但育性转换温度可能较高;而携带tms5与pms3基因的株系育性转换温度比仅携带tms5基因的株系低,这为聚合2个基因选育不育性状稳定的光温敏不育系提供了思路和方法。  相似文献   

8.
水稻ygl80黄绿叶突变体的遗传分析与目标基因精细定位   总被引:2,自引:0,他引:2  
通过化学诱变获得遗传稳定的水稻黄绿叶突变体ygl80。与野生型亲本10079相比,ygl80突变体在苗期和孕穗期叶片叶绿素分别下降76.64%和54.59%,类胡萝卜素含量分别下降53.85%和41.18%,成熟期株高、每株有效穗数、每穗着粒数、穗长和千粒重分别减少14.8%、16.5%、21.3%、9.1%和7.4%。遗传分析表明,ygl80的突变性状由1对隐性核基因控制。利用(ygl80/浙辐802) F2作为定位群体, 将突变基因定位在第5染色体长臂InDel标记C2和C3之间,遗传距离分别为0.24 cM 和0.39 cM,两标记之间的物理距离约为90 kb,此区间内包含11个预测基因。基因组序列分析发现,ygl80突变体在编码叶绿素合酶的YGL1(LOC_Os05g28200)基因编码区第5027碱基处(位于第14外显子),碱基C突变为碱基T,使编码蛋白序列第348位的脯氨酸(Pro)突变成亮氨酸(Leu)。该基因是已报道的水稻ygl1黄绿叶突变基因的等位基因。ygl80突变体在整个生育期都表现为黄绿叶,而ygl1突变体在苗期叶片黄化,中期慢慢转绿,后期叶色以及总叶绿素和类胡萝卜素的含量接近野生型,这可能是YGL1基因编码的叶绿素合酶蛋白的氨基酸不同突变位点造成的。  相似文献   

9.
四排穗(four-rowed spike, FRS)性状是超数小穗(supernumerary spikelets, SS)性状的一种类型,表现为在一个穗轴节片上近垂直地着生2个无柄小穗,从而增加了小穗数和穗粒数,对提高产量有一定的潜力。为了解圆锥小麦0880 FRS性状的遗传特征,将0880与正常穗(normal spike, NS)圆锥小麦0879杂交,构建了遗传群体,并对0880 (FRS) × 0879 (NS)与0879 (NS) × 0880 (FRS) F1、F2及F2:3植株的穗部性状进行了调查。结果显示,正反交组合的F1植株均表现为正常穗,F2群体中正常穗与四排穗符合3∶1的分离比例,表明0880的四排穗性状由隐性单基因控制,将该基因定名为frs1;细胞质对frs1无显著影响。采用已定位于普通小麦A组与B组的SSR分子标记并结合混合分组分析法(BSA), 筛选出32个在双亲及F2单株构建的四排穗型池和正常穗型池都具有多态性的SSR分子标记,利用JoinMap4.0软件构建了与frs1连锁的2A染色体11个SSR分子标记遗传图谱,其中SSR标记Xwmc598和Xwmc522位于frs1基因两侧,与该基因的遗传距离分别为4.0 cM和2.4 cM。利用2A染色体缺失系对这11个SSR进行物理定位,Xwmc598和Xwmc522均被定位在2A染色体短臂FL0.00~0.78区域。本研究的结果为frs1基因的精细定位及分子标记辅助选择奠定了基础。  相似文献   

10.
从F2(粤晶丝苗2号/H4)群体中,鉴定出一份显性斑点叶突变体spl32(spotted leaf 32)。其叶片褐色斑点受自然光诱导,在幼穗分化期从叶尖逐渐扩散至叶鞘,台盼蓝染色表明斑点并非由细胞死亡引起。以从F5杂合个体分离出的正常叶色植株为对照,斑点叶植株的穗粒数、结实率显著降低。斑点出现后,spl32的POD活性和MDA含量均显著高于对照;同时,spl32叶片光合色素含量降低,但荧光动力学参数并无显著变化。抽穗期人工接菌表明,spl32对水稻白叶枯病菌抗性较对照显著提高。遗传分析表明spl32斑点性状由一个显性基因Spl32(t)控制,利用F2(02428/spl32)群体将其定位在第11染色体Ind-c和RM206之间,推测该基因为一个新的水稻斑点叶基因。  相似文献   

11.
适度矮化有利于提高水稻的抗倒伏性, 进而影响产量和品质, 是水稻育种中重要的选择性状之一, 因此研究矮秆形成的分子机制具有重要的意义。为鉴定新的矮秆资源, 探讨株高形成的分子调控机制, 我们对籼型恢复系缙恢10号的EMS (甲基磺酸乙酯)诱变体库进行了鉴定, 从中筛选到1个植株半矮化且籽粒变大的突变体sdb1。本文对其进行了形态鉴定、细胞学观察、遗传分析和基因定位等研究。田间种植条件下, 全生育期sdb1的株高都明显矮于野生型, 成熟期仅76.66 cm, 与野生型的117.43 cm相比, 下降了34.72%, 差异达极显著水平, 进一步分析发现sdb1的穗和各节间长均显著变短。在茎秆石蜡切片中发现, 纵向细胞的长度与野生型相比无显著变化, 横向细胞面积极显著变小、数量则极显著增加, 纵向细胞变少是导致sdb1植株半矮化的主要原因。除植株变矮外, sdb1的另一典型特征是籽粒变大, 千粒重由野生型的24.83 g变为突变体的29.00 g, 差异达极显著水平; 颖壳中薄壁细胞数量增加了22.05%, 致使籽粒的长、宽、厚均极显著变大, 从而提高了sdb1的粒重。此外, sdb1叶肉细胞层数增多, 导致其光合色素含量极显著高于野生型, 叶片呈现深绿色。遗传分析发现, sdb1的突变表型受单隐性核基因调控, 利用中花11/sdb1杂交组合的F2隐性植株, 最终将调控基因定位在第4染色体SSR标记RM16632和Indel标记J50-7之间约406 kb的物理范围内。这为SDB1的克隆和功能研究奠定了基础, 也有助于水稻株高发育分子机制的进一步阐释。  相似文献   

12.
The leaves of cultivated soybean (Glycine max L.) are comprising of three leaflets in general, but there are also individual varieties or mutants which have a high frequency of compound leaves with 4-7 leaflets, named multifoliolate leaves. Compound leaf formation enhances the plant's ability to adapt to the external environment. Study of related genes to multifoliolate leaves might contribute to the improvement yield level of and soybean agronomic traits. In this study, a multifoliolate leaf mutant Zhonghuang 622 was identified from the mutant library of soybean cultivar Zhongpin 661, which had 4-9 leaflets in each compound leaf. The compound leaf phenotypes of F2 and F2:3 population from a cross between Zhongpin 661 and Zhonghuang 622 were investigated in Beijing and Hainan, respectively. Analysis of phenotypic data from F2 and F2:3 population revealed that the multifoliolate leaf trait was controlled by an incomplete dominant gene. BSA-Seq method was used for gene mapping. The two bulks of normal trifoliate and multifoliolate individuals in F2 population were constructed and sequenced for an average depth of 32.75×, which covered 99.22% genome compared to the reference genome. Through correlation analysis of mixed pool sequencing results by ED method, two regions were located on chromosome 11, with a total length of 5.29 Mb and a total length of 1103 genes. Three regions were identified on chromosome 11 at confidence of 0.99, with a total length of 3.42 Mb and a total of 701 genes by the association analysis of SNP-index method. There were 690 genes located simultaneously and six SNP genes between parents by the two association analysis methods. These results lay the foundation for map-based cloning of the genes related to compound leaf development.  相似文献   

13.
白粉病是影响小麦产量和品质的一种主要病害。小偃麦衍生品系CH1357对白粉病具有较好的成株抗性,苗期对27个菌株表现为免疫或高抗,是一个高抗白粉病的优异抗源。为了明确其抗白粉病基因在染色体上的位置,对台长29/CH1357和绵阳11/CH1357的F_1、BC_1及F_(2:3)家系进行了遗传分析,并利用分离群体分组分析法(bulked segregantanalysis,BSA)将其初步定位。CH1357的白粉病抗性受1对显性核基因控制,位于染色体5DS,暂命名为PmCH1357。其侧翼连锁标记为Xcfd81和Xbwm8,在2个作图群体台长29/CH1357和绵阳11/CH1357中的遗传距离分别为2.0 cM/11.3 cM和1.5 cM/8.9 cM。PmCH1357与5DS染色体上已报道的其他抗白粉病基因抗谱不同,可能是一个新的抗源。  相似文献   

14.
不断挖掘和克隆抗稻瘟病新基因, 是解析水稻抗病分子遗传机制和培育抗稻瘟病新品种的重要基础。Pi47是笔者从广谱、持久抗稻瘟病湖南地方品种湘资3150中鉴定的稻瘟病抗性基因, 前期研究将其初步定位于第11染色体标记RM224和RM5926间。本研究利用3个Pi47单基因系与感病亲本CO39杂交F2群体1687个感病单株对Pi47精细定位, 利用6个STS标记对3个单基因系进行背景分析, 采用生物信息学方法进行了候选基因分析。结果表明, Pi47被精细定位于CAPS标记S32与K33间0.24 cM区域的171.2 kb物理区间内, 背景分析将Pi47进一步缩小至SC12和K33间67.8 kb的区间内; 该区间含有8个结构基因, 其中2个编码NBS-LRR抗病类似蛋白, 为Pi47的候选功能基因。稻瘟菌抗谱比较分析发现, Pi47单基因系与其定位区间内4个Pik位点的等位基因PikPikmPikhPikp的近等基因系抗谱不同。这些结果为进一步克隆Pi47和利用其进行分子标记辅助选择培育抗稻瘟病水稻新品种奠定了基础。  相似文献   

15.
水稻的花器官发育影响着水稻的产量与品质。本研究通过12C重离子诱变航恢7号获得一个水稻花器官突变体multi-floret 2 (mf2), 其稃片、浆片、雄蕊、雌蕊增多, 多数小穗内具2~3朵类似小花。mf2内外稃不能很好勾合, 而且形状和维管束的数目都产生了一定程度的变化。电镜扫描幼穗发现花器官的变异在幼穗分化期的各花器官原基分化时就已形成。另外, 该突变体的抽穗期推迟, 株高降低, 穗数增多, 表明其营养生长也受到一定的影响。遗传分析表明mf2突变体表型受单隐性核基因控制。利用SSR、InDel分子标记将MF2定位于第1染色体的标记SSR39108和InD39210之间, 区间大小约为102 kb。  相似文献   

16.
根毛是植物吸收水分和养分的重要器官。本研究从T-DNA突变体库中获得一个以中花11为遗传背景的水稻短根毛突变体, 命名为ossrh3 (Oryza sativa short root hair 3)。该突变体的根毛伸长严重受阻, 并且伴随株高、主根长、侧根长和侧根数目等性状的改变。遗传分析表明该突变性状受1对隐性单基因控制, 利用ossrh3纯合体和籼稻品种Kasalath杂交构建F2定位群体, 利用已公布的水稻SSR (simple sequence repeat)和自行设计的STS (sequence- tagged site)标记, 最终将OsSRH3定位在水稻第1染色体上的标记S38978和S39016之间, 物理距离约为37.7 kb, 包含8个候选基因, 为进一步克隆OsSRH3基因和研究禾本科作物根毛发育的分子调控机理提供了依据。  相似文献   

17.
18.
经甲基磺酸乙酯(EMS)诱变优良籼型水稻恢复系缙恢10号,获得一个稳定遗传的水稻类病斑早衰突变体lmps1(lesion mimic and premature senescence 1)。该突变体苗期表型正常,分蘖早期出现褐色类病斑,且斑点数目随植株生长而增多,孕穗期叶片开始萎黄衰老。与野生型相比,突变体lmps1的每穗总粒数下降8%(P0.05),株高、穗长、有效穗数、每穗实粒数、结实率以及千粒重分别下降14.3%、24.3%、27.2%、50%、45.7%与14.5%,差异均达极显著水平(P0.01)。遮光处理表明,突变体lmps1的类病斑性状受光照诱导。孕穗期叶片光合色素含量下降且光合效率降低, H2O2含量增加,抗氧化酶SOD和CAT的活性显著降低。透射电镜观察结果显示,突变体lmps1叶肉细胞中叶绿体数目减少,叶绿体的类囊体片层结构损伤降解。qRT-PCR结果显示,突变体lmps1中防卫反应相关基因除POX22.3表达量降低外,POC1、PAL、PBZ1、PR1、NPR1、PR5表达量均极显著高于野生型。遗传分析表明突变体lmps1的类病斑早衰性状受1对隐性核基因控制,利用西农1A与突变体lmps1杂交所得F2群体中的突变株,将目标基因定位于第7染色体长臂端粒附近约167.3 kb的物理区段内。  相似文献   

19.
在水稻品种Dongjin的T-DNA插入突变体库中筛选到一份黄绿叶突变体T113,该突变体在生长的整个时期叶片都呈现黄绿色,且越到后期表型越明显。T113与野生型亲本Dongjin相比,叶片光合色素含量明显降低,株高变矮,结实率降低,每穗着粒数、穗长和千粒重均明显减少,抽穗期延迟,且黄绿叶性状不受温度影响,叶绿体中的类囊体排列较为疏松,出现更多的嗜锇体,叶绿素合成和质体发育相关基因表达量发生改变。遗传分析表明,T113的突变性状由1对隐性核基因控制。利用T113/N22的F2群体,将突变基因定位在第2染色体长臂Indel标记CX2和JX18之间,物理距离约为79 kb,此区间内包含12个预测基因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号