首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Impact of artificial reservoir water impoundment on global sea level   总被引:1,自引:0,他引:1  
Chao BF  Wu YH  Li YS 《Science (New York, N.Y.)》2008,320(5873):212-214
By reconstructing the history of water impoundment in the world's artificial reservoirs, we show that a total of approximately 10,800 cubic kilometers of water has been impounded on land to date, reducing the magnitude of global sea level (GSL) rise by -30.0 millimeters, at an average rate of -0.55 millimeters per year during the past half century. This demands a considerably larger contribution to GSL rise from other (natural and anthropogenic) causes than otherwise required. The reconstructed GSL history, accounting for the impact of reservoirs by adding back the impounded water volume, shows an essentially constant rate of rise at +2.46 millimeters per year over at least the past 80 years. This value is contrary to the conventional view of apparently variable GSL rise, which is based on face values of observation.  相似文献   

2.
A uniform oxygen isotope value of -25 per mil was obtained from old ground water at depths of 20 to 30 meters in a thick deposit of clay in the southern part of the glacial Lake Agassiz basin. The lake occupied parts of North Dakota and southern Manitoba at the end of the last glacial maximum and received water from the ice margin and the interior plains region of Canada. Ground water from thick late Pleistocene-age clay deposits elsewhere, a till in southern Saskatchewan, and a glaciolacustrine deposit in northern Ontario show the same value at similar depths. These sites are at about 50 degrees N latitude, span a distance of 2000 kilometers, and like the Lake Agassiz sites, have a ground-water velocity of less than a few millimeters per year. The value of -25 per mil is characteristic of meltwater impounded in the southern basin of Lake Agassiz. This value corresponds to an estimated air temperature of -16 degrees C, compared with the modern temperature of 0 degrees C for this area.  相似文献   

3.
Satellite radar altimetry measurements indicate that the East Antarctic ice-sheet interior north of 81.6 degrees S increased in mass by 45 +/- 7 billion metric tons per year from 1992 to 2003. Comparisons with contemporaneous meteorological model snowfall estimates suggest that the gain in mass was associated with increased precipitation. A gain of this magnitude is enough to slow sea-level rise by 0.12 +/- 0.02 millimeters per year.  相似文献   

4.
Satellite radar interferometry observations of the Reykjanes Peninsula oblique rift in southwest Iceland show that the Reykjanes central volcano subsided at an average rate of up to 13 millimeters per year from 1992 to 1995 in response to use of its geothermal field. Interferograms spanning up to 3.12 years also include signatures of plate spreading and indicate that the plate boundary is locked at a depth of about 5 kilometers. Below that depth, the plate movements are accommodated by continuous ductile deformation, which is not fully balanced by inflow of magma from depth, causing subsidence of the plate boundary of about 6.5 millimeters per year.  相似文献   

5.
The late Quaternary marine terraces near Santa Cruz, California, reflect uplift associated with the nearby restraining bend on the San Andreas fault. Excellent correspondence of the coseismic vertical displacement field caused by the 17 October 1989 magnitude 7.1 Loma Prieta earthquake and the present elevations of these terraces allows calculation of maximum long-term uplift rates 1 to 2 kilometers west of the San Andreas fault of 0.8 millimeters per year. Over several million years, this uplift, in concert with the right lateral translation of the resulting topography, and with continual attack by geomorphic processes, can account for the general topography of the northern Santa Cruz Mountains.  相似文献   

6.
Earthquake potential along the northern hayward fault, california   总被引:1,自引:0,他引:1  
The Hayward fault slips in large earthquakes and by aseismic creep observed along its surface trace. Dislocation models of the surface deformation adjacent to the Hayward fault measured with the global positioning system and interferometric synthetic aperture radar favor creep at approximately 7 millimeters per year to the bottom of the seismogenic zone along a approximately 20-kilometer-long northern fault segment. Microearthquakes with the same waveform repeatedly occur at 4- to 10-kilometer depths and indicate deep creep at 5 to 7 millimeters per year. The difference between current creep rates and the long-term slip rate of approximately 10 millimeters per year can be reconciled in a mechanical model of a freely slipping northern Hayward fault adjacent to the locked 1868 earthquake rupture, which broke the southern 40 to 50 kilometers of the fault. The potential for a major independent earthquake of the northern Hayward fault might be less than previously thought.  相似文献   

7.
Measurements of time-variable gravity show mass loss in Antarctica   总被引:7,自引:0,他引:7  
Using measurements of time-variable gravity from the Gravity Recovery and Climate Experiment satellites, we determined mass variations of the Antarctic ice sheet during 2002-2005. We found that the mass of the ice sheet decreased significantly, at a rate of 152 +/- 80 cubic kilometers of ice per year, which is equivalent to 0.4 +/- 0.2 millimeters of global sea-level rise per year. Most of this mass loss came from the West Antarctic Ice Sheet.  相似文献   

8.
The relative motion vector for the North American and African plates has been determined from detailed charting of the trend of the Atlantis fracture zone for over 1000 kilometers in the central North Atlantic near 30 degrees N and from identification of marine magnetic anomalies and deep-sea drilling results. The vector (pole) is located at 52.5 degrees N, 34 degrees W and has a magnitude (opening rate) of 5.7 x 10(-7) degree per year. Major changes in either the pole location or the opening rate are not evident for the last 40 million years.  相似文献   

9.
Fission track, radiometric, and paleomagnetic age determinations in marine sedimentary rocks of the Ventura Basin make it possible to estimate the vertical components of displacement rates for the last 2 million years. The basin subsided at rates up to 9.5 +/- 2.5 millimeters per year until about 0.6 million years ago, when subsidence virtually ceased. Since then, the northern margin of the basin has been rising at an average rate of 10 +/- 2 millimeters per year, about the same rate as that based on the geodetic record north and west of Ventura since 1960 but considerably lower than the rate along the San Andreas fault at Palmdale since 1960.  相似文献   

10.
Accelerated sea-level rise from West Antarctica   总被引:1,自引:0,他引:1  
Recent aircraft and satellite laser altimeter surveys of the Amundsen Sea sector of West Antarctica show that local glaciers are discharging about 250 cubic kilometers of ice per year to the ocean, almost 60% more than is accumulated within their catchment basins. This discharge is sufficient to raise sea level by more than 0.2 millimeters per year. Glacier thinning rates near the coast during 2002-2003 are much larger than those observed during the 1990s. Most of these glaciers flow into floating ice shelves over bedrock up to hundreds of meters deeper than previous estimates, providing exit routes for ice from further inland if ice-sheet collapse is under way.  相似文献   

11.
A set of subsurface temperature measurements in the trade wind region northeast of Hawaii reveals large perturbations about the mean state, with zonal wavelengths of 480 kilometers. The perturbations are identified as mesoscale baroclinic eddies, and they appear to drift westward at a rate of 4.7 +/- 2.0 centimeters per second. The large-scale ( 1000 kilometers) baroclinic flow at a depth of 200 meters is 1.5 +/- 0.7 centimeters per second, also toward the west, and comparable in magnitude with the eddy drift velocity; this finding suggests that the eddy drift is strongly influenced by the large-scale flow. Mesoscale eddies have been discovered in the tropical and subtropical Atlantic Ocean. Their existence in the Pacific Ocean is now confirmed.  相似文献   

12.
Analysis of 27 repeated observations of Global Positioning System (GPS) position-difference vectors, up to 11 kilometers in length, indicates that the standard deviation of the measurements is 4 millimeters for the north component, 6 millimeters for the east component, and 10 to 20 millimeters for the vertical component. The uncertainty grows slowly with increasing vector length. At 225 kilometers, the standard deviation of the measurement is 6, 11, and 40 millimeters for the north, east, and up components, respectively. Measurements with GPS and Geodolite, an electromagnetic distance-measuring system, over distances of 10 to 40 kilometers agree within 0.2 part per million. Measurements with GPS and very long baseline interferometry of the 225-kilometer vector agree within 0.05 part per million.  相似文献   

13.
Measurements made once or twice a year from 1977 through 1982 show large correlated changes in gravity, elevation, and strain in several southern California networks. Precise gravity surveys indicate changes of as much as 25 microgals between surveys 6 months apart. Repeated surveys show that annual elevation changes as large as 100 millimeters occur along baselines 40 to 100 kilometers long. Laser-ranging surveys reveal coherent changes in areal strain of 1 to 2 parts per million occurred over much of southern California during 1978 and 1979. Although the precision of these measuring systems has been questioned, the rather good agreement among them suggests that the observed changes reflect true crustal deformation.  相似文献   

14.
Ten magnetic profiles across the mid-Atlantic ridge near 27 degrees N show trends that are parallel to the ridge axis and symmetrical about the ridge axis. The configuration of magnetic bodies that could account for the pattern supports the Vine and Matthews hypothesis for the origin of magnetic anomalies over oceanic ridges. A polarity-reversal time scale inferred from models for sea-floor spreading in the Pacific-Antarctic ridge and radiometrically dated reversals of the geomagnetic field indicates a spreading rate of 1.25 centimeters per year during the last 6 million years and a rate of 1.65 centimeters per year between 6 and 10 million years ago. A similar analysis of more limited data over the mid-Atlantic ridge near 22 degrees N also indicates a change in the spreading rate. Here a rate of 1.4 centimeters per year appears to have been in effect during the last 5 million years; between 5 and 9 million years ago, an increased rate of 1.7 centimeters per year is indicated. The time of occurrence and relative magnitude of these changes in the spreading rate, about 5 to 6 million years ago and 18 to 27 percent, respectively, accords with the spreading rate change implied for the Juan de Fuca ridge in the northeast Pacific.  相似文献   

15.
Dynamics of slow-moving landslides from permanent scatterer analysis   总被引:3,自引:0,他引:3  
High-resolution interferometric synthetic aperture radar (InSAR) permanent scatterer data allow us to resolve the rates and variations in the rates of slow-moving landslides. Satellite-to-ground distances (range changes) on landslides increase at rates of 5 to 7 millimeters per year, indicating average downslope sliding velocities from 27 to 38 millimeters per year. Time-series analysis shows that displacement occurs mainly during the high-precipitation season; during the 1997-1998 El Ni?o event, rates of range change increased to as much as 11 millimeters per year. The observed nonlinear relationship of creep and precipitation rates suggests that increased pore fluid pressures within the shallow subsurface may initiate and accelerate these features. Changes in the slope of a hill resulting from increases in the pore pressure and lithostatic stress gradients may then lead to landslides.  相似文献   

16.
In order to test photochemical theories linking chlorofluorocarbon derivatives to ozone(O(3)) depletion at high latitudes in the springtime, several related atmospheric species, including O(3), chlorine monoxide(ClO), and bromine monoxide (BrO) were measured in the lower stratosphere with instruments mounted on the NASA ER-2 aircraft on 13 February 1988. The flight path from Moffett Field, California (37 degrees N, 121 degrees W), to Great Slave Lake, Canada (61 degrees N, 115 degrees W), extended to the center of the polar jet associated with but outside of the Arctic vortex, in which the abundance of O(3) was twice its mid-latitude value, whereas BrO levels were 5 parts per trillion by volume (pptv) between 18 and 21 kilometers, and 2.4 pptv below that altitude. The ClO mixing ratio was as much as 65 pptv at 60 degrees N latitude at an altitude of 20 kilometers, and was enhanced over mid-latitude values by a factor of 3 to 5 at altitudes above 18 kilometers and by as much as a factor of 40 at altitudes below 17 kilometers. Levels of ClO and O(3) were highly correlated on all measured distance scales, and both showed an abrupt change in character at 54 degrees N latitude. The enhancement of ClO abundance north of 54 degrees N was most likely caused by low nitrogen dioxide levels in the flight path.  相似文献   

17.
Oceanic crustal material on a global scale is re-created every 110 million years. From the data presented it is inferred that potential sialic material is formed at a rate of about 1.35 cubic kilometers per year, including hemipelagic volcanic sediments that accumulate at a rate of about 0.05 cubic kilometer per year. It is estimated that the influx of 1.65 cubic kilometers per year of terrigenous and biogenic sediment is deposited on the deep ocean, and this represents continental denudation. Because all this material is brought into a subduction zone, continental accretion rates, which could include all this material, may be as high as 3.0 cubic kilometers per year with a potential net growth for continents of 1.35 cubic kilometers per year.  相似文献   

18.
A semi-empirical approach to projecting future sea-level rise   总被引:12,自引:0,他引:12  
A semi-empirical relation is presented that connects global sea-level rise to global mean surface temperature. It is proposed that, for time scales relevant to anthropogenic warming, the rate of sea-level rise is roughly proportional to the magnitude of warming above the temperatures of the pre-Industrial Age. This holds to good approximation for temperature and sea-level changes during the 20th century, with a proportionality constant of 3.4 millimeters/year per degrees C. When applied to future warming scenarios of the Intergovernmental Panel on Climate Change, this relationship results in a projected sea-level rise in 2100 of 0.5 to 1.4 meters above the 1990 level.  相似文献   

19.
Potassium-argon dates obtained from extrusives collected on a traverse across the Mid-Atlantic Ridge at 45 degrees N are consistent with the hypothesis of ocean-floor spreading. The dates suggest a spreading rate in the range of 2.6 to 3.2 centimeters per year near the axis of the ridge; the rate agrees with that computed from fission-track dating of basalt glasses. Additional data for a basalt collected 62 kilometers west of the axis gives a spreading rate of 0.8 centimeter per year, which is similar to the rate inferred from magnetic anomaly patterns in the area. Reasons for the difference in calculated spreading rates are discussed.  相似文献   

20.
Alpine glaciation and river incision control the topography of mountain ranges, but their relative contributions have been debated for years. Apatite 4He/3He thermochronometry tightly constrains the timing and rate of glacial erosion within one of the largest valleys in the southern Coast Mountains of British Columbia, Canada. Five proximate samples require accelerated denudation of the Klinaklini Valley initiating 1.8 +/- 0.2 million years ago (Ma). At least 2 kilometers of overlying rock were removed from the valley at >/=5 millimeters per year, indicating that glacial valley deepening proceeded >/=6 times as fast as erosion rates before approximately 1.8 Ma. This intense erosion may be related to a global transition to enhanced climate instability approximately 1.9 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号