首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
为优化松针多酚的提取工艺,并考察其体外抗氧化作用以及对α-葡萄糖苷酶、α-淀粉酶、酪氨酸酶活性的抑制作用,本研究利用超声辅助提取法,在提取温度、提取时间、乙醇体积分数、液料比等要素对松针多酚提取单因素试验的基础上,利用响应面法优化松针多酚提取工艺;并利用优化工艺条件,测定了6种松科植物松针的多酚提取量。进一步利用不同多酚含量的松针提取液,分析松针多酚对1,1-二苯基-2-苦基肼自由基(DPPH)、2,2′-联氮-双-3-乙基苯并噻唑啉-6-磺酸自由基(ABTS+)、羟基自由基(·OH)的清除能力及其对α-葡萄糖苷酶、α-淀粉酶、酪氨酸酶活性的抑制能力。结果表明,松针多酚的最佳提取工艺为提取温度60℃、提取时间28 min、乙醇体积分数60%、料液比1 g∶25 ml;在此条件下,6种松科植物松针多酚提取量为19.97~53.41 mg/g。6种松科植物松针多酚对DPPH自由基清除的IC50值范围为22.76~159.90μg/ml,对ABTS+自由基清除的IC50值范围为0.092~0.184 mg...  相似文献   

2.
采用核桃楸叶为原料,超声波辅助提取和紫外分光光度计对其多酚类物质进行含量测定。在单因素试验基础上,通过响应面法优化了核桃楸叶多酚类物质的提取工艺,得出核桃楸叶多酚类物质最佳提取条件为:乙醇体积分数70%,液料比15∶1,超声时间30min,超声温度60℃。核桃楸叶多酚类物质对羟基自由基、亚硝酸根离子、超氧阴离子、DPPH自由基有较强的清除能力,其对4种自由基的清除能力强弱顺序为DPPH自由基超氧阴离子羟基自由基亚硝酸根离子,核桃楸叶多酚类物质对4种自由基的清除能力整体强于化学防腐剂苯甲酸,这表明核桃楸叶多酚类物质具有较强的抗氧化活性,是一种天然的抗氧化剂,为下一步研究多酚类物质的抗氧化性提供了依据。  相似文献   

3.
为研究广金钱草多酚的提取条件及其抗氧化能力,通过单因素试验和正交试验研究提取溶剂、乙醇体积分数、料液比、时间、温度、提取次数对广金钱草多酚提取的影响。结果表明,最佳提取条件为:40%乙醇,料液比(g·mL~(-1))1∶40,在40℃浸提40min,多酚得率为(5.20±0.11) mg·g~(-1)。广金钱草多酚对DPPH·自由基、超氧阴离子自由基及亚硝酸根离子的半抑制浓度IC50分别为(1.94±0.02),(40.48±0.48),(134.0±7.6)μg·mL~(-1),Vc对DPPH·自由基、超氧阴离子自由基及亚硝酸根离子的半抑制浓度IC50分别为(6.17±0.03),(136.0±1.9),(188.6±7.3)μg·mL~(-1),表明广金钱草多酚抗氧化能力强于Vc。  相似文献   

4.
【目的】确定玫瑰花蒂多酚的超声辅助提取最佳工艺并评价其抗氧化活性.【方法】通过单因素试验考察料液比、乙醇体积分数、超声时间和提取次数4个因素对多酚提取率的影响,采用响应面法分析优化其提取工艺,采用DPPH和ABTS自由基清除活性测定方法评价对该工艺制备所得玫瑰花蒂多酚的抗氧化活性.【结果】玫瑰花蒂多酚的超声辅助提取最佳工艺条件为料液比1∶17.5(g∶mL)、乙醇体积分数52%、超声时间60min、提取次数4次.在此条件下多酚实际提取率为8.33%,与理论值较为接近.玫瑰花蒂多酚对DPPH和ABTS自由基的半清除浓度(SC50)均低于阳性对照VC,分别为6.67g/mL和59.32g/mL.【结论】结果表明采用响应面法分析优化玫瑰花蒂多酚超声辅助提取工艺的方法可行,且玫瑰花蒂多酚具有显著的抗氧化活性.  相似文献   

5.
以滇黄精为原料,采用Box-Behnken响应曲面设计对其总黄酮超声辅助双水相提取工艺条件进行优化,并研究滇黄精总黄酮对DPPH自由基、超氧阴离子、羟自由基的清除能力及小鼠肝组织脂质自氧化能力。结果表明,滇黄精总黄酮超声辅助双水相提取的最佳工艺条件为超声时间32 min、硫酸铵用量0.39 g/mL、液料比为24 mL∶1 g,此时获得的总黄酮提取率为6.21%;滇黄精总黄酮对DPPH自由基、超氧阴离子、羟自由基均有较强的清除能力,且能抑制小鼠肝组织脂质自氧化能力。  相似文献   

6.
以艾纳香为原料、艾纳香总黄酮得率为指标,采用超声辅助乙醇-硫酸铵双水相体系对艾纳香总黄酮提取工艺进行单因素及Box-Behnken响应曲面试验优化,并用羟自由基清除力、DPPH自由基清除力以及还原力与一般回流提取所得的总黄酮的抗氧化能力进行比较研究。结果表明,艾纳香总黄酮超声辅助双水相提取的最佳工艺条件为超声时间31 min、(NH_4)_2SO_4用量0.4 g/m L、液料比为32 m L∶1 g,此条件下提取的艾纳香总黄酮得率为(13.31±0.21)%。对DPPH自由基、羟自由基有较强的清除能力以及较高的还原力,且超声辅助双水相提取的艾纳香总黄酮抗氧化能力显著高于一般回流提取。  相似文献   

7.
以青椒叶为原料,采用响应面设计优化青椒叶多酚提取工艺,分析青椒叶多酚的抗氧化活性。以多酚的提取率为指标,在单因素试验基础上,利用Box-Behnken设计进行响应面试验,确定青椒叶多酚最佳提取工艺,并对多酚清除DPPH和OH自由基的能力进行分析。结果表明:青椒叶多酚最佳提取工艺为乙醇浓度71%、超声时间41 min,液料比25∶1(mL∶g)和提取温度71℃,在最佳工艺条件下得到多酚提取率为67.62 mg/g。与模型预测值相比,其相对误差仅为0.21%,证明了基于响应面分析方法优化青椒叶多酚提取工艺的有效性和可行性。青椒叶多酚能够有效地抵抗氧化作用,并且其抗氧化活性与多酚浓度呈正相关,对DPPH自由基和OH自由基清除率的半抑制质量浓度分别为56.34和125.20 mg/L,该研究为青椒叶多酚在保健品和食品工业等领域的应用提供了参考。  相似文献   

8.
[目的]优化圣女果番茄红素提取工艺,并分析其抗氧化活性,为提高圣女果番茄红素的开发利用提供理论依据.[方法]在单因素试验基础上,通过响应面法优化圣女果番茄红素超声协同复合酶提取最佳工艺条件,并考察经人工胃液和肠液体外模拟消化后番茄红素清除1,1-二苯基-2-苦肼基(DPPH·)能力的变化情况.[结果]各因素对圣女果番茄红素提取量的影响排序为超声时间>酶解温度>复合酶添加量>料液比.3个单因素(复合酶添加量、酶解温度和超声时间)及料液比与复合酶添加量、料液比与超声时间、复合酶添加量与酶解温度、酶解温度与超声时间的交互作用对圣女果番茄红素提取量影响极显著(P<0.01).圣女果番茄红素最优提取工艺条件为:料液比1:40、复合酶添加量3.6%、酶解温度54℃、超声时间22 min,在此工艺条件下,圣女果番茄红素的提取量为410.94±1.78μg/g,与模型预测值(412.62μg/g)接近.圣女果番茄红素对DPPH·、羟基自由基(·OH)和超氧阴离子(O-2·)的清除能力具有一定的量效关系,均明显高于同浓度的2,6-二叔丁基对甲酚(BHT).体外模拟消化后的圣女果番茄红素对DPPH·的清除率减小,且圣女果番茄红素浓度越高,清除率降幅越小.[结论]采用响应面法优化的工艺条件可用于圣女果番茄红素提取,且提取得到的圣女果番茄红素具有较强的抗氧化能力,可为后续圣女果的开发利用提供技术支持.  相似文献   

9.
【目的】开展大叶千斤拔叶黄酮(Flemingia macrophylla leaf flavonoids,FMLF)的超声—微波协同提取工艺及其抗氧化活性研究,为FMLF的进一步综合开发利用提供数据基础。【方法】以FMLF得率为优选指标,固定超声波功率50 W,采用单因素试验考察乙醇体积分数、液料比、浸泡时间、微波功率和提取时间对FMLF得率的影响,并采用正交设计表L16(45)优选FMLF的超声—微波协同提取工艺,同时测定FMLF清除羟自由基(·OH)、超氧阴离子自由基(O2-·)、1, 1-二苯基-2-苦肼基自由基(DPPH·)和亚硝酸盐的能力,以评价其体外抗氧化活性。【结果】各因素影响超声—微波协同提取FMLF效果的排序为:乙醇体积分数>微波功率>液料比>浸泡时间>提取时间,且乙醇体积分数、微波功率和液料比对FMLF提取效果有显著影响(P< 0.05)。优选的FMLF提取条件为:乙醇体积分数60%、液料比21:1(mL/g)、浸泡时间8 min、微波功率400 W、提取时间180 s,在此工艺条件下FMLF得率可达60.25 mg/g,且超声—微波协同提取效率优于单独超声和单独微波提取。在试验范围内,FMLF对·OH、O2-·、DPPH·和亚硝酸盐的清除作用与FMLF质量浓度均存在明显的量效关系,FMLF对·OH、O2-·、DPPH·和亚硝酸盐的清除率最高分别达73.05%、73.82%、82.54%和93.04%,其半数清除浓度(IC50)分别为1.42、2.88、0.66和1.24 mg/mL。【结论】正交试验优化的超声—微波协同提取法可用于FMLF的提取,FMLF具有一定的抗氧化活性,可作为天然的抗氧化剂进行开发。  相似文献   

10.
王家皓  贲蕾洁  符茜  张扬  郑丽雪 《江苏农业科学》2020,48(17):201-205,214
以南苜蓿为原料,通过复合酶解协同乙醇法提取其叶片中的总黄酮。采用响应面分析法优化其最佳提取工艺,进一步考察南苜蓿叶总黄酮对大肠杆菌(Escherichia coli)和金黄色葡萄球菌(Staphylococcus aureus)的抑制性能,再通过对羟基自由基的清除能力、DPPH自由基的清除能力测定其抗氧化性能。结果表明最佳提取工艺为:复合酶用量3.0%,酶解时间15.7 min,酶解温度39.0℃。在此条件下,南苜蓿叶总黄酮得率达到(1.9±0.3)%。抑菌试验结果表明,南苜蓿叶总黄酮对大肠杆菌ATCC 25922最低抑菌浓度(minimum inhibitory concentration,简称MIC)为0.15 mg/mL,对金黄色葡萄球菌ATCC 25923 MIC为0.20 mg/mL。南苜蓿叶总黄酮对羟基自由基和DPPH均表现出一定的清除能力,当样品浓度为1.0 mg/mL时,清除率分别为54.75%、88.48%,对DPPH自由基、羟自由基半数抑制浓度IC_(50)分别为0.368、0.947 mg/mL。  相似文献   

11.
蒙古栎叶片多酚的超声提取、优化及抗氧化能力   总被引:3,自引:0,他引:3  
以抗氧化活性为示踪,采用超声辅助提取法,在单因素筛选的基础上,对超声提取过程的影响因素进行研究,以多酚质量和清除ABTS自由基能力为双响应因子,进行3因素3水平的响应面法试验设计,并对提取工艺进行优化。结果表明,最佳提取工艺条件:乙醇体积分数28.62%,提取时间30.90 min,液料比19.96 mL.g-1,提取次数3次。在最佳提取工艺条件下,2.0 g蒙古栎叶片原料中多酚质量为84.88 mg,ABTS自由基清除能力为0.79 mol.g-1。蒙古栎叶片多酚清除DPPH自由基的EC50值为223 mg.L-1,高于BHA、BHT、VC和VE等4种合成抗氧化剂。  相似文献   

12.
牡丹多糖的提取及其对自由基和亚硝酸根离子的清除作用   总被引:1,自引:0,他引:1  
为探讨牡丹多糖抗氧化及其清除亚硝酸根离子的能力,对牡丹根进行脱脂、去蛋白等操作,建立了牡丹多糖的提取、纯化工艺,同时测定牡丹根中主要物质组成;通过检测不同质量浓度多糖溶液对DPPH自由基、O_2·和NO_2的清除率,评价牡丹多糖清除自由基和亚硝酸根离子的活性。结果表明,牡丹根的物质组成大致为:粗脂肪含量为6%,蛋白质含量为12%,多糖含量较为丰富,约为29%。确定了制备牡丹多糖的去蛋白最佳方案为:Sevage试剂中氯仿与正丁醇体积比为3∶1,多糖提取液与Sevage试剂添加量体积比为4∶1。牡丹多糖对2种自由基和NO_2均具有不同程度的清除能力,随着多糖质量浓度的逐渐增大,清除率变化趋势表现为先急剧增大,再缓慢升高,最后趋于稳定。对DPPH自由基、O_2·和NO_2达到较好清除效果的多糖质量浓度分别为2.5、2.5、1.0 g/L。牡丹多糖是一种良好的天然抗氧化剂。  相似文献   

13.
【目的】优化咖啡果皮多酚提取工艺条件,为其功能性开发和综合利用提供技术参考。【方法】采用单因素及响应面试验方法对超声辅助提取咖啡果皮多酚工艺进行优化,比较分析咖啡果皮多酚体外抗氧化活性。【结果】在超声功率200 W条件下,咖啡果皮多酚的最佳提取工艺条件为料液比m(g)∶v(mL)=1∶54,乙醇体积分数56%,提取时间42 min,提取温度69℃,多酚提取率为34.68 mg·g-1。表明咖啡果皮多酚具有较好的还原性,对1,1-二苯基-2-三硝基苯肼(DPPH)自由基、羟自由基和超氧阴离子自由基有一定的清除能力,IC50值分别为2.10、314.97、322.02μg·mL-1,其清除能力分别是L-抗坏血酸的0.99倍、0.52倍、0.12倍。【结论】响应面优化工艺提取的咖啡果皮多酚具有一定抗氧化活性,提取工艺可行性高。该研究可为咖啡加工废弃物的再利用提供参考。  相似文献   

14.
以银杏叶渣为原料,分别采用水提醇沉法和复合酶辅助醇水溶剂提取法获取银杏叶渣多糖和总黄酮;通过DPPH自由基、ABTS+自由基、羟自由基清除试验考查其体外抗氧化活性。结果显示,银杏叶渣与纯水1∶9,85℃提取3 h,其粗多糖得率为17.90%,多糖提取率达3.03%。提取多糖后的银杏叶渣,添加β-葡萄糖甘酶、纤维素酶与果胶酶(1∶1∶2)复合酶,添加量为8.0%,p H值为5,50℃酶解2.5 h,之后在80%乙醇、料液比1∶8、80℃条件下提取4 h,银杏叶渣总黄酮提取率0.59‰,3种游离苷元(槲皮素、山奈酚、异鼠李素)提取率0.93‰,与仅用80%乙醇提取的银杏叶渣总黄酮相比,其总黄酮提取率增加126.9%,游离苷元提取率增长102.2%。3.0 mg/m L多糖对DPPH自由基、ABTS+自由基、羟自由基清除率分别为67.59%、52.56%、56.47%;复合酶辅助醇水溶剂提取法提取的银杏叶渣总黄酮对3种自由基IC50值分别为0.63、1.08、0.35 mg/m L,与溶剂提取法所得银杏叶渣总黄酮IC...  相似文献   

15.
为考察超声辅助低共熔溶剂提取柴胡皂苷的效果,设计并制备了5种低共熔溶剂,筛选得到提取量最高的低共熔溶剂,用单因素试验确定溶剂摩尔比、料液比、含水量、超声时间以及超声功率,并采用响应面法优化提取工艺。确定的最佳工艺条件为:含22%水的乳酸-氯化胆碱(摩尔比2∶1)、料液比1∶40(g/mL)、超声时间18 min、超声功率330 W。在此条件下,柴胡皂苷提取量为16.25±0.42 mg/g,优于水提法(5.84±0.33 mg/g)和乙醇提取法(8.06±0.16 mg/g)。超声辅助-DESs柴胡提取物清除DPPH·和ABTS+自由基的IC50值分别为0.22、0.16 mg/mL,抗氧化能力高于柴胡水提物和乙醇提取物。  相似文献   

16.
[目的]优化多花勾儿茶果实中多酚提取工艺,并以叶多酚为对照,考察其果实多酚体外抗氧化能力。[方法]运用Box-Behnken Design响应面法优化多花勾儿茶果实提取工艺,并通过测定其总抗氧化能力,清除DPPH·自由基、清除羟基自由基及超氧阴离子自由基清除率考察其抗氧化能力。[结果]最优条件:乙醇体积分数51.66%、料液比1∶35、提取时间2.5 h,该条件下多花勾儿茶果实多酚的得率为5.684 0 mg/g。同条件下提取多花勾儿茶果实及叶的多酚,且均具有较强抗氧化能力。[结论]多花勾儿茶果实多酚具有一定清除自由基能力,开发前景广阔。  相似文献   

17.
对枸杞叶中具有生物活性的化合物进行提取是提升枸杞资源利用效率的前提。为了提高枸杞叶中多酚物质的提取效率及探究其生物活性功能,以枸杞叶为试验原料,基于超声波辅助酶法探究乙醇体积分数、料液比、超声时间和纤维素酶添加量等4个单因素对枸杞叶多酚提取效率的影响,通过响应面分析优化枸杞叶多酚的提取工艺,并探究枸杞叶多酚提取物对DPPH和ABTS自由基的清除能力。结果表明,4个单因素对枸杞叶多酚提取效率均具有一定影响,枸杞叶多酚提取效率均呈先升高后降低的趋势;经过拟合优化取得最优的提取条件为:乙醇体积分数68%、料液比1∶89(g/mL)、超声时间39 min、纤维素酶添加量2 mg/g,在此条件下,枸杞叶提取液中多酚含量为5.09 mg/g,与预测值(5.21 mg/g)的相对误差仅为2.3%。抗氧化试验表明,枸杞叶多酚提取物对DPPH和ABTS自由基的清除率随着溶液多酚质量浓度的增加而升高,半数抑制浓度IC50值分别为27.28、190.00μg/mL,表明具有较好的抗氧化能力。综上,超声辅助酶法可提高枸杞叶多酚的提取效率,所提取的枸杞叶中多酚具有明显的体外抗氧化活性。  相似文献   

18.
青麦仁种皮膳食纤维的提取及其抗氧化活性研究   总被引:1,自引:0,他引:1  
以青麦仁种皮为原料,通过测定总黄酮含量、DPPH自由基清除能力、羟自由基清除能力和还原能力,对酶-碱法、双酶法、超声辅助酶法、微波辅助酶法4种提取方法进行评价,制备高抗氧化性膳食纤维。结果表明,超声辅助酶法为青麦仁种皮高抗氧化性水溶性膳食纤维的最优提取方法,其总黄酮含量为1.486 mg/g、DPPH自由基清除能力为76.85%、羟自由基清除能力为17.96%,还原能力(吸光度)为0.312;双酶法为青麦仁种皮高抗氧化性不溶性膳食纤维的最优提取方法,其总黄酮含量2.467 mg/g、DPPH自由基清除能力为78.5%、羟自由基清除能力为59.80%、还原能力(吸光度)为0.514。  相似文献   

19.
探究不同类型离子液体及提取条件对甘薯叶片多酚提取的影响,建立一种提取甘薯叶片多酚的高效方法。在超声辅助作用下,将离子液体与70%乙醇组成的混合溶剂用于甘薯叶片多酚的提取,考察离子液体类型、离子液体浓度、提取时间、料液比对多酚提取率的影响。结果表明,多酚提取的最佳条件为:[BMIM]Br的浓度为0.40 mol·L-1,料液比为1∶40(g·mL-1),提取时间为40 min,甘薯叶片多酚提取率为55.614 mg·g-1。离子液体与含水乙醇混合溶剂的使用及超声辅助的协同作用,显著促进多酚的溶出,为甘薯叶片多酚的提取提供了新的思路和方法。  相似文献   

20.
以民族药白雪茶为材料,多糖提取率为检测指标,在单因素试验基础上,设计正交试验确定复合酶法提取多糖的最佳工艺条件,并测定多糖在体外清除DPPH和亚硝酸盐能力。结果表明,在复合酶为纤维素酶和木瓜蛋白酶(质量比1∶4)条件下,酶解温度50℃,酶解时长1.0 h,pH 5.0,酶浓度3.0%,白雪茶多糖提取为10.81%。白雪茶多糖对亚硝酸盐和DPPH自由基均有一定的清除作用,且表现为剂量效应关系。当白雪茶多糖浓度为2.5 mg/mL时,对DPPH自由基的清除率达98%。多糖浓度为2.0 mg/mL时,对亚硝酸钠的清除率达19.8%。采用复合酶法提取白雪茶多糖,可以明显提高多糖的提取率,且该工艺提取的白雪茶多糖对DPPH自由基有很好的清除作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号