首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study investigated the effects of wood-derived biochar (BC) applied at 1% to a C-poor silty-loam soil in the drought-tolerant (D24) and in the drought-sensitive (P1921) Pioneer Hi-Bred maize hybrids in pot and field trials (NE Italy). D24 had better growth than P1921 under rain-fed conditions without irrigation and soil amendment. The addition of biochar increased root growth in D24 (+38% root area) and decreases it in P1921 (?9%) at the silking stage, while the fraction of finer roots (<250 µm diam.) was reduced in D24 and increased in P1921. This led both hybrids to maintain the maximum transpiration at a lower fraction of transpirable soil water (from 82% to 45% in D24, and from 46% to 22% in P1921). There were no significant variations in plant nutrient contents, productivity and in the protein and starch contents of the grains, whereas the lipid content was reduced by biochar, particularly in P1921 (2.6% vs. 3% DW, ?13%).

We conclude that biochar can be profitably used to enhance drought tolerance in maize, possibly due to improvements in the physicochemical characteristics and the water content of treated soils, although maximum benefits are expected in drought-tolerant hybrids through increased root elongation and transpiration.  相似文献   

2.
Two preselected plant growth promoting rhizobacteria (PGPR) containing 1-aminocyclopropane-1-carboxylate (ACC)- deaminase (EC 4.1.99.4) were used to investigate their potential to ameliorate the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.). Inoculated and uninoculated (control) seeds of pea cultivar 2000 were sown in pots (four seeds pot-1) and placed in a wire house. The plants were exposed to drought stress at different stages of growth (vegetative, flowering, and pod formation) by skipping the respective irrigation. Results revealed that inoculation of peas with PGPR containing ACC-deaminase significantly decreased the "drought stress imposed effects" on the growth and yield of peas. Exposure of plants to drought stress at vegetative growth stage significantly decreased shoot growth by 41% in the case of uninoculated plants, whereas, by only 18% in the case of inoculated plants compared to nonstressed uninoculated control.
Grain yield was decreased when plants were exposed to drought stress at the flowering and pod formation stage, but inoculation resulted in better grain yield (up to 62% and 40% higher, respectively) than the respective uninoculated nonstressed control. Ripening of pods was also delayed in plants inoculated with PGPR, which may imply decreased endogenous ethylene production in inoculated plants. This premise is further supported by the observation that inoculation with PGPR reduced the intensity of classical "triple" response in etiolated pea seedlings, caused by externally applied ACC. It is very probable that the drought stress induced inhibitory effects of ethylene could be partially or completely eliminated by inoculation with PGPR containing ACC-deaminase.  相似文献   

3.
Mulberries are members of the genus Morus L., a taxonomic group showing a great genetic variability and adaptability to different environmental conditions. This study deals with the use of AFLP-based fingerprints as a tool for estimating genetic variability within as well as among three different mulberry species (i.e., M. alba L., M. latifolia Poir. and M. bombycis Koidz.). A high level of polymorphism (72.2) was found over all the 48 accessions analyzed. Genetic similarity (GS) within single Morus species ranged from 0.845 (M. bombycis) to 0.884 (M. alba) being intermediate in M. latifolia (0.869). The between-species mean genetic similarity estimates based on pair-wise AFLP marker fingerprint comparison were very similar ranging from 0.861 to 0.874. The partition of the genetic variation over the three Morus species was unexpected a proportion of the among-species genetic diversity as low as GST= 0.084 pointed out that about 92% of the total genetic diversity found among Morus accessions is due to DNA polymorphisms within a species, while only 8% of the total variation was highlighted among species. Our data indicate that some of the introduced accessions showing distinctive phenotypes, clearly differentiated from those revealed in the original habitat where they have been selected and adapted, hide an identical genotype.  相似文献   

4.
Summary Variability in maize zein protein band mobilities in sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) was characterized to classify 27 maize accessions (OTUs) collected from Bendel State, Nigeria. The classification of the OTUs was achieved using two numerical procedures: average linkage cluster analysis and principal component analysis (PCA). Five clusters were delineated by the cluster analysis whereas the PCA complemented the cluster analysis by separating the OTUs with yellow kernels into one group and OTUs with early maturity into another. OTUs from the same geographical contiguity commonly grouped together. However some regional overlappings of the OTUs occurred. Results of the PCA revealed that zein bands that stained less intensely more strongly separated the OTUs into various clusters than did those that stained more intensely.  相似文献   

5.
Ameliorative effect of silicon (Si) (2 mM as sodium silicate (Na2SiO3)) was studied in tobacco (Nicotiana rustica L.) plants grown under control at 100% field capacity (FC), mild drought (60% FC), and severe drought (30% FC) conditions. Si-treated plants had higher biomass of particularly above-ground parts both under drought and control conditions. Plants with Si supply had significantly higher net assimilation rates but lower transpiration rates. Silicon supply enhanced osmotic potentials only in the leaves, but not in the roots. A considerable rise in the concentrations of soluble sugars was observed particularly in the leaves under both drought and Si treatments. Soluble proteins, free α-amino acids, and proline concentrations increased in Si-treated plants under all watering treatments. Si enhanced the activity of antioxidative enzymes and decreased hydrogen peroxide (H2O2) concentrations. Results indicate that Si supplementation alleviates drought stress via improvement of water relation parameters, enhancement of photosynthesis, and elevation of antioxidant defenses.  相似文献   

6.
Wheat (Triticum aestivum L.) is one of the most widely cultivated crops in rainfed areas of Iran, where drought is the main limiting factor on yield. The object of this study was the identification of drought-tolerant genotypes in bread wheat. Forty bread wheat genotypes were tested in separate experiments under drought stress and normal conditions in two years (2009–2010 and 2010–2011). Nine drought-tolerance/susceptibility indices including stress susceptibility index (SSI), mean productivity (MP), tolerance (TOL), stress tolerance index (STI), geometric mean productivity (GMP), yield index (YI), yield stability index (YSI), linear regression coefficient (β) and drought response index (DRI) were determined. Simultanously applied factor analysis used two factors instead of nine indices in this study. Mahdavi was recognized as the most drought-tolerant genotype in both years based on factor analysis. In this study an equation was developed for estimating the Stress Tolerance Score (STS). The results of the equation were identical to those of factor analysis in both years. The equation was much easier to use than factor analysis and is suggested as a screening tool for the identification of drought-tolerant genotypes. In this study, Mahdavi was the most drought-tolerant genotype also corresponding to this equation.  相似文献   

7.
Water shortage is the most important factor constraining agricultural production all over the world. New irrigation strategies must be established to use the limited water resources more efficiently. This study was carried out in a completely randomized design with three replications under the greenhouse condition at Shahrekord University, Shahrekord, Iran. In this study, the physiological responses of pepper plant affected by irrigation water were investigated. Irrigation treatments included control [full irrigation (FI) level] and three deficit irrigation (DI) levels—80, 60, and 40% of the plant's water requirement called DI80, DI60, and DI40, respectively. A no plant cover treatment with three replications was also used to measure evaporation from the soil surface. Daily measurements of volumetric soil moisture (VSM) were made at each 10-cm intervals of the soil column, considered as a layer. The differences between the measured VSM and the VSM in the next day and evaporation rate at the soil surface at the same layer of the bare soil with no plant cover treatment were calculated. Eventually, by considering the applied and collected water in each treatment, evapotranspiration (ETC) and root water uptake in each layer per day were estimated. Furthermore, fruit number per plant, fresh fruit weight/day, root fresh/dry weights, shoot fresh/dry weights, root zone volume, root length and density, crop yield, and water use efficiency (WUE) were measured under different water treatments. The results showed that the maximum and minimum of all the studied parameters were found in the FI and DI40 treatments, respectively. ETC in the DI80, DI60, and DI40 treatments were reduced by 14.2, 37.4, and 52.2%, respectively. Furthermore, applying 80, 60, and 40% of the plant's water requirement led to the reduction in crop yield by 29.4, 52.7, and 69.5%, respectively. The averages of root water uptakes in the DI80, DI60, and DI40 treatments reduced by 17.08, 48.72, and 68.25%, respectively. WUE and crop yield also showed no significant difference in the FI and DI80 treatments. Moreover, in the DI80 treatment, the reduced rate of water uptake was less than the reduced rate of plant's applied water. According to these results, it can be concluded that 20% DI had no significant reduction on the yield of pepper, but above this threshold, there was an adverse effect on the growth and yield. Therefore, for water management in the regions with limited water resources, rate of plant's applied water can be decreased by around 20%.  相似文献   

8.
ABSTRACT

Wheat genotypes with pre- and post-anthesis drought tolerance offer enhanced yield gains under water-limited environments. This study determined pre- and post-anthesis drought responses of selected bread wheat genotypes in order to identify and select candidate genotypes for breeding. Fifteen genetically differentiated wheat genotypes were evaluated under non-stressed (NS), pre-anthesis drought stress (PrADS) and post-anthesis drought stress (PoADS) in glasshouse (GH) and field (FLD) environments. Data were collected on agronomic and physiological traits including number of days to heading (DTH), days to maturity (DTM), plant height (PH), number of spikelet per spike (NSPS), number of kernels per spike (NKPS), thousand kernel weight (TKW), grain yield (GY) and canopy temperature (CT). Analysis of variance revealed significant effects of genotypes, environments and their interactions for studied traits. Weak and positive correlations were recorded between GY with PH (r?=?0.47 and 0.32), NSPS (r?=?0.37 and 0.52) and TKW (r?=?0.30 and r?=?0.20) under PrADS and PoADS conditions, respectively. Genotypes SMY-006, SMY-008, SMY-016, SMY-042 and SMY-044 were identified with pre- and post-anthesis drought tolerance and high yield potential and suitable yield-component traits. These are useful genetic stocks for breeding or cultivation in water-limited environments to improve yield gains.  相似文献   

9.
Genetic Resources and Crop Evolution - Gradual deterioration in water resources and unpredictable distribution pattern of annual precipitation amount are major threats having drastic effects on...  相似文献   

10.
This study explores the effect of drought stress and ozone on cucumber. A factorial experiment with complete randomized design was carried out in a greenhouse. Experimental treatments were drought stress, including three levels 100% (control), 80%, and 60% of the field capacity (FC) and three ozone concentrations of 0, 0.5, and 1 ppm. The drought stress (80% and 60% of the FC) significantly reduced fruit length, weight, and yield, leaf area, and number of fruits. Across the levels of drought stress, the statistical analysis showed significant increments in the fruit weight with the increasing in the ozone concentrations. An enhancement in the total suspended solids values was obtained with the increase in the drought stress level. The height, dry, and fresh weights of plant decreased with the increase in the drought stress level. The highest leaf area, dry, and fresh weights were observed in the 0.5 ppm ozone and 100% FC.  相似文献   

11.
Two cultivars of wheat (Triticum aestivum L.) with differential salinity tolerance were compared by evaluating the growth attributes, pigment composition and accumulation of Na+, K+, Zn2+, Fe 2+, Mn 2+ and proline. Wheat cultivars Al-Moiaya (AM) (salt tolerant) and Habbe-Druma (HD) (salt sensitive) were subjected to four levels of salinity (1.21 dS m?1, 4.4 dS m?1, 8.8 dS m?1 and 13.2 dS m?1) in factorial combinations with three drought stress (FC 30%, FC 60% and FC 90%) treatments in a randomized complete block design. Plant dry weight, leaf area ratio (LAR), soluble protein and total chlorophyll (Chl) content were higher in AM than HD. Salt-tolerant AM maintains a higher K+/ Na+ ratio and thereby is able to grow better than the salt-sensitive HD under both the stresses. The lower foliar Na+ in AM resulted in retention of higher Chl content, reflected in the strong positive correlations between plant ion status and Chl contents (Na+-Chl r2 = 0.83; Chl- Fe2+ r2 = 0.76; Zn2+ r2 = 0.93 and Mn2+ r2 = 0.88). In conclusion, our results suggested that the K+/Na+ ratio, exclusion of Na+ and ion homeostasis play much more important roles in the tolerance to salinity and drought stress than the compatible osmolyte, proline.  相似文献   

12.
The present experiment comprised seven wheat cultivars, two drought levels (0 and 17% PEG-8000) and four replicates. The seeds of six wheat cultivars (Al-lugaimi, Bonus, Kronos, Yecora-rojo, Irena and Sama) were supplied by the King Saud University, Riyaz, Saudi Arabia, whereas S-24 was obtained from the Department of Botany, University of Agriculture, Faisalabad. The seeds were allowed to germinate and grow for 20 days in medium having full-strength Hoagland's nutrient solution or Hoagland's solution with 17% PEG-8000. For the appraisal of drought tolerance, various physiological traits such as gas-exchange attributes (A, E, Ci, gs , and A/E), leaf water relations (ψw, ψs and ψp) and the activities of key antioxidant enzymes (SOD, POD and CAT) were determined. On the basis of biomass and gas-exchange attributes (A, E, and gs ), cultivars Al-lugaimi and Sama were found to be drought tolerant, cultivars Yecora-rojo and Irena moderately drought tolerant, and cultivars S-24, Bonus and Kronos drought sensitive. However, plant osmotic adjustment and the activities of potential antioxidant enzymes (SOD, POD and CAT) were not found to be associated with drought tolerance of the different wheat cultivars.  相似文献   

13.
陆地棉矮秆突变体株高和纤维品质的QTL定位及相关性研究   总被引:2,自引:0,他引:2  
Ari1327是美国引进种质Ari971经60Co γ射线照射后得到的矮化突变体,以陆地棉遗传标准系TM-1为母本和Ari1327组配杂交组合,利用该组合产生的F2群体对株高和纤维品质性状进行QTL分析,共检测到4个与株高相关的QTL,分别位于Chr.3、Chr.11、Chr.14和LG6上,4个位点可解释的联合表型贡...  相似文献   

14.
ABSTRACT

Drought is a major factor threatening crop production worldwide. Developing wheat varieties that are adapted to drought prone environments is a sustainable strategy to improve wheat production and productivity. The aim of this study was to evaluate and select bread wheat genotypes for yield and yield components, and for stability under drought stress and non-stress conditions. One hundred and twenty genotypes were evaluated at five test sites in the 2018/19 cropping season using a 10 x 12 alpha lattice design with two replicates. The level of drought stress was imposed using different sowing dates (early planting representing non-stressed, while late planting as drought stressed conditions) following the onset of the main rain at each site. Grain yield and yield components were recorded, and drought indices were calculated for each genotype. Among the drought tolerance indices, GMP, MP, HM, STI and YI were found to be the most suitable for predicting drought tolerance because they had significant and positive correlations with yield under drought stress and non-stress conditions. Rank sum analysis identified the most drought tolerant genotypes as ‘YS-34', ‘YS-85' and ‘YS-82’. The selected wheat genotypes are useful genetic resources for future drought tolerance breeding programmes in Ethiopia or similar agro-ecologies.  相似文献   

15.
Genetic variation within and among several Sorghum populations from different agroecological zones in Malawi were investigated using random amplified polymorphic markers (RAPDs). DNA samples from individual plants were analyzed using 35 oligonucleotides of random sequence. Twenty five of these primers allowed amplifications of random polymorphic (RAPD) loci. Overall, 52% of the scored loci were polymorphic. Every accession was genetically distinct. The analysis of molecular variance revealed that the within-region (among accessions) variations accounted for 96.43% of the total molecular variance. Observed variations in allelic frequency was not related to agroecological differences. The degree of band sharing was used to evaluate genetic distance between accessions and to construct a phylogenetic tree. Further analysis revealed that the sorghum accessions analyzed were genetically close despite considerable phenotypic diversity within and among them. It is suggested that all the sorghum landraces currently available in Malawi should be conserved both ex situ and in situ to maintain the current level of genetic diversity.  相似文献   

16.
17.
水稻苗期不同阶段与低氮耐性相关的QTL分析   总被引:1,自引:1,他引:1  
以超级杂交稻协优9308(协青早B/中恢9308)的重组自交系(R IL)为材料,通过溶液培养试验检测苗期不同阶段与低氮耐性相关的数量性状基因座(QTL)。结果共检测到14个QTLs,单个QTL可解释的表型变异为7.13%1~3.03%。其中,处理后15 d检测到6个QTLs,分别位于第1、7、1、7、10和11染色体上;处理后30 d检测到8个QTLs,分别位于第3、8、3、10、3、8、10和4染色体上。处理后15 d,在第1染色体RM297-RM212区间检测到同时控制相对冠干重和相对总干重的QTL,与氮循环有关,此染色体区域可能富含关键的氮代谢基因。定位结果表明,两个时间检测出的低氮耐性QTL的差异表达与水稻不同发育阶段基因的时空表达密切相关,从而反映在低氮耐性位点的差异上。  相似文献   

18.
杨梅生长指标与果实品质间的相关性分析   总被引:1,自引:0,他引:1  
为了明确成熟期不同品种杨梅(早鲜早色和东魁)的营养生长指标与果实外观、品质性状间的相互关系,在成熟采收期,分别对杨梅7个营养生长指标、10个果实外观性状和13个果实品质性状进行测定分析。结果表明,杨梅30个性状指标的变异系数范围为2.546%~31.021%,其中维生素C(Vc)含量、果实硬度(HN)和春梢长度(BL)的变异系数较大,分别为31.021%、22.092%和15.245%。糖酸比(AS)与果实色度值L*b*C,叶片长度(LL)、宽度(LW)、厚度(LT)显著负相关,说明通过杨梅果实颜色可以预测AS,且在AS的形成过程中杨梅LL、LW和LT发挥了重要作用;叶绿素(Chl)相对含量、HN与杨梅果实多个外观品质、营养品质指标间呈显著正相关,表明在生产上可以通过提高Chl相对含量改善果实品质;杨梅BL与果实外观品质、营养品质等13个性状均为显著性负相关,证明杨梅结果枝以中短果枝为宜。本研究结果为利用营养生长指标进行优良品质性状的选择提供了一定的理论参考。  相似文献   

19.
Drought is an important limiting factor which can cause major loss in barley productivity. A field experiment was conducted to investigate the effects of irrigation regimes on assimilate remobilization and photosynthetic characteristics of five barley cultivars in 2012 and 2013. There were four levels of irrigation including well-watered [soil moisture content in root depth kept at 100% field capacity (FC)], mild drought (75% FC), severe drought (50% FC), and very severe drought (25% FC). Results showed that Karoon and Valfajr cultivars had the maximum net photosynthetic rate (Pn) ranged from 16.3 to 19.3 µmol CO2 m?2 s?1 under very severe drought. Stomatal conductance (gs) was affected by drought so that Karoon and Valfajr had the lowest gs under severe and very severe drought. By improving the drought, remobilization efficiency in Karoon and Valfajr increased from 18.3% in well-watered to 54.1% under severe drought. In both years under severe and very severe drought, maximum 1000-grain weight and grain yield was obtained in Valfajr and Karoon. Overall, in arid areas, applying suitable irrigation regimes such as mild or severe drought can control soil drying, so that suitable cultivars such as Karoon and Valfajr can rehydrate overnight, and yield might not be inhibited severely.  相似文献   

20.
Drought is a problem of the expanding universe which seriously influences crop production and quality. Approximately one-third of the cultivated area of the world suffers from constantly inadequate supplies of water. The present study aimed to determine the effects of drought and rewatering on activities of antioxidant enzymes, chlorophyll, proline, and relative water contents (RWC). In this experiment, six maize hybrids (Sc260, Sc370, Sc500, Sc647, Sc700, and Sc704) were examined in a pot study during the maize-growing season of 2011. Results indicated that the growth of hybrids was retarded under drought stress conditions and regained growth speed during rewatering. RWC, chlorophyll, and carotenoid contents were markedly decreased by the water deficit and reached normal values during rewatering in Sc647, Sc704, and Sc700. Our findings also indicated significantly higher activity levels of peroxidase and catalase and proline content in water-stressed plants than in well-watered plants, which decreased when the plants were rewatered, showing an inverse relationship to gluthatione reductase activity. According to the results, the better upregulation of the protective mechanism in Sc704 and Sc647 probably induced higher drought resistance. We concluded that antioxidant enzyme activity could provide a useful tool for depicting drought tolerance in maize hybrids in arid and semiarid regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号