首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil nutrient status is one of the most important constituents of land productivity. The research presented in this article is aimed at describing the influence of nitrogen, phosphorous, and potassium availability on crop yields across the major soil types of Hungary, under different climatic conditions. For this purpose, historical times series data from a 5-year period (1985–1989) regarding soil, land management, and crop yield of more than 80,000 fields, representing approximately 4 million ha of arable land, were statistically analyzed. The database was recently recovered from statistical archives stored in the format of digital records of the early 1980s and were used to study the productivity of major soil types for winter wheat cropping under balanced fertilizer input. Calculations were made to quantify the effects of soil nutrient levels. The evaluation was also performed for optimal and suboptimal climate conditions. Results show that the effect of nitrogen availability (as obtained from organic-matter content) had the largest influence on winter wheat yields. Up to a 26% difference in yields was observed, both on those soils with balanced material regimes and on those with leaching material regimes, under optimal climatic conditions. The effect of different levels of phosphorous was most significant under optimal climatic conditions on soils with balanced material regimes, reaching up to 17% difference between soils with very low and high phosphorous levels. The effect of different levels of potassium was the least significant in soils with balanced material regimes (maximum 8% difference among categories) and somewhat more pronounced in soils with leaching material regimes. Differences between the effects of nutrient levels due to climatic variation were also observed. According to our findings, stable production can be planned on croplands with average nutrient availability, regardless which of the two soil types they belong to. On the other hand, yield gap can be detected on fields with both low and high nutrient levels among optimal and suboptimal years, for all three nutrients [nitrogen–phosphorus–potassium (N–P–K)] of the analysis. Although our findings are based on historical data, most of the main relationships described are valid under current climatic and management conditions as well.  相似文献   

2.
Abstract. A methodology is presented that explores soil survey information at the national level (1:1 M), generating sustainability indicators for wheat cultivation in Uruguay. Potential yields were calculated for simplified crop production situations under several constraints, such as limitation of water availability calculated from soil physical properties and climatic conditions, and limitation of nutrient availability calculated from soil fertility and climatic conditions. Land quality sufficiency was examined by comparing these yields with the constraint-free yield conditioned only by solar radiation, temperature and the crop's photosynthetic properties. Crop growth was simulated only for areas suitable for the defined agricultural use. Model runs were repeated with inclusion of a topsoil loss scenario over 20 years as defined from an erosion risk analysis. Comparison between crop growth simulations for the two situations, gives an indication of the changes in land quality status, which supplies an indicator for agroecological sustainability.
On the basis of crop growth simulation it is concluded that wheat production constraints in Uruguay appear to be mainly related to water availability limitations, while nutrient availability is near optimal for the suitable soils. The simulated loss of topsoil impacts most on soil physical properties, expressed in reduced water-limited yields. Soil fertility status, evaluated by change in nutrient-limited yields, was little affected by the scenario.  相似文献   

3.
The evolution of Russian concepts concerning the assessment of soil suitability for cultivation in relation to several campaigns on large-scale plowing of virgin steppe soils is examined. The major problems of agricultural land use in steppe areas—preservation of rainfed farming in the regions with increasing climatic risks, underestimation of the potential of arable lands in land cadaster assessments, and much lower factual yields in comparison with potential yields—are considered. It is suggested that the assessments of arable lands should be performed on the basis of the soil–ecological index (SEI) developed by I. Karmanov with further conversion of SEI values into nominal monetary values. Under conditions of land reforms and economic reforms, it is important to determine suitability of steppe chernozems for plowing and economic feasibility of their use for crop growing in dependence on macroeconomic parameters. This should support decisions on optimization of land use in the steppe zone on the basis of the principles suggested by V. Dokuchaev. The developed approach for assessing soil suitability for cultivation was tested in the subzone of herbaceous–fescue–feather grass steppes in the Cis-Ural part of Orenburg oblast and used for the assessment of soil suitability for cultivation in the southern and southeastern regions of Orenburg oblast.  相似文献   

4.
Abstract

Resource conservation with respect to nitrogen (N) was compared in organic and conventional cultivation of winter and spring wheat. Sustainability was measured in the nitrogen use efficiency of plant‐available N. The amounts of N entering each system and the amounts removed in the harvested crop and remaining as unused mineral nitrogen in the soil at harvest were determined. Net surpluses and losses during the growing season were also monitored, and the environmental variables influencing N harvest in the different cultivation systems were identified. The study was carried out in three different cultivation systems: conventional animal production (CONV), organic animal production (ORG1), and organic cereal production (ORG2). On average for all years and sampling occasions in winter wheat, there were approximately 60 kg more mineral nitrogen left in the soil during the growing season in CONV than in ORG1, and coefficients of variation were higher in CONV. The maximum values were considerably higher in CONV than in ORG1 (p=0.06–0.09), which increased the risk of leaching in the former, particularly in winter wheat cultivation. Nitrogen use efficiency in winter and spring wheat cultivation was 74% in whole crop conventional winter wheat and 81% in organic. Nitrogen use efficiency in harvested winter wheat grain was 44% for CONV and 49% for ORG1. ORG1 spring wheat was as efficient as ORG1 winter wheat, whereas ORG2 spring wheat used 73% of N in the whole crop and 39% in grain. Multivariate regression analysis showed that climate affected CONV and ORG1 winter wheat differently. High temperature in May increased grain yields in ORG1, but the converse was true for CONV. Large unused mineral N reserves at harvest coincided with large N harvest in CONV winter wheat. Residual fertility effects from the preceding crop produced high yields in ORG1 winter and spring wheat but had no effect in CONV. Generally, an increase in N reserves between plant development stages 13 and 31 was positive for both CONV and ORG1 winter wheat. Both winter and spring wheat require most N during this period, so the potential for improvement seems to lie in increasing mineralization (e.g., by intensified weed harrowing early in stage 13 in winter wheat and between stages 13 and 31 in spring wheat). Cultivation of winter wheat in ORG1 was a more efficient use of nitrogen resources than CONV. CONV efficiency could be improved by precision fertilization on each individual field with the help of N analysis before spring tillage and sensor‐controlled fertilization.  相似文献   

5.
In this study, we have attempted to develop a land suitability model for saffron, an agronomic crop, which is economically viable, environmentally bearable and socially equitable at Khost Province of Afghanistan. The objective was to determine different land suitability classes for saffron cultivation using Analytical Hierarchy Process (AHP) and Geographic Information System (GIS). A decision tree was developed encompassing the physical, economic and social criteria. We used the secondary data (meteorological, remote sensing) from available sources and also substantial primary data generated from soil survey, interviews and experts’ opinion. A total of 30 physical and socio-economic factors were included in the analysis. The final land suitability result showed that out of the total land area of Khost Province, 1.5, 4.5, 8.6 and 85.4% areas were highly suitable, moderately suitable, marginally suitable and not suitable, respectively. This modelling approach can be applied to determine the suitability of land for other crops covering a wider geographical region of Afghanistan.  相似文献   

6.
河北省冬小麦生育期气象条件定量评价模型   总被引:9,自引:2,他引:9  
运用模糊数学理论,分别建立了气温、降水量和日照时数对河北省冬小麦生长发育适宜程度的隶属函数模型,据此模型分别计算了逐句的平均气温、降水量和日照时数对冬小麦生长发育的隶属度,运用一元积分回归方法确定各旬的权重系数,进而计算各发育期内光、温、水对冬小麦生长发育的隶属度,达到定量评价冬小麦生育期气象条件的目的。2005年度(2004.10—2005.06)和2006年度(2005.10—2006.06)对所建模型进行验证应用,得出:温度和日照的隶属度较高,而降水隶属度较低且变化幅度较大,说明评价年的温度和日照条件能够满足冬小麦生长发育,自然降水偏少是冬小麦产量形成的限制因素。  相似文献   

7.
安徽省冬小麦品种生态气候适宜性分析和精细化区划   总被引:5,自引:0,他引:5  
利用安徽省78个气象站1971-2000年冬小麦生长阶段气象资料和地理信息,选取影响冬小麦品种分布和生长的主要气象因子建立区划指标,采用多元回归模型和GIS空间内插技术对指标要素栅格化,并通过温度和水分两级指标,形成千米网格的安徽省冬小麦品种生态气候适宜性精细化区划图,用安徽省耕地数据掩膜(mask)得到相应耕地意义的区划分布图,并进行分区评述。结果表明,以气温和降水为指标,可将安徽省冬小麦品种的生态气候适宜性划分为5大区11个亚区,分区结果能反映气候变暖背景下安徽省冬小麦生态气候适宜性的分布特点以及各区域温度适宜性和水分适宜性的差异。因冬季气温的南北差异,安徽省适宜种植的冬小麦品种自北向南冬性程度降低。冬小麦生产中的主要问题是水分失衡,北部水分不足,南部过多,制约了稳产高产。根据区划结果,应增强北部冬小麦主产区的抗旱能力,适当扩大沿淮和江淮丘陵北部地区半冬性品种种植面积,尽量压缩南部地区冬小麦种植面积,以全面提高安徽省冬小麦生产水平。  相似文献   

8.
Site effects of small-scale yield variation in the Tertiary hills north of Munich (Germany) and conclusions for site specific farming The effect of numerous soil factors on small-scale yield variation of winter wheat and spring barley were examined: soil structure and soil texture, soil nitrate content and soil water at different times, PCAL-, KCAL-, Nt- and Ct-content, pH, soil microbiology characteristics, relief, root growth and important plant diseases. The varying annual influence of soil parameters on crop yield was interrelated with climatic factors. In soils with low sand content soil productivity was largely influenced by soil structure. This effect was less pronounced on soils with medium sand content. On sandy soils, however, yield was reduced by available water capacity. Yield potential was also lowered by frequent cereal growing associated with take-all root desease of winter wheat. High yield variation from year to year confirmed that a site-specific crop management should consider annual variability of yield in addition to soil conditions and yield measurement. Site-specific N fertilization should be adapted to the actual progress of plant growth.  相似文献   

9.
为了评价苜蓿翻耕后进行不同轮作模式的水分适应性和经济效益,提出黄土高原区生态效益和经济效应较好的草田轮作模式。该文测定了6a生苜蓿草地翻耕后轮作农田和休闲地的土壤水分及作物产量,并进行经济效益分析。结果表明,不同草田轮作模式的土壤水分恢复作用存在差异。苜蓿地轮作第2年收获后,以苜蓿-休闲-休闲模式土壤水分状况最好,0~300cm土层土壤水分已接近连作农田水平,且100~340cm土层土壤水分较耕前出现了恢复现象;而苜蓿-冬小麦-冬小麦模式最差,土壤水分恢复层出现在120~320cm土层;6a生苜蓿地翻耕后经过2a轮作,0~500cm土层土壤水分仍未达到连作农田水平。轮作2a冬油菜平均籽粒产量和平均籽粒水分利用效率较连作冬油菜分别增加了34.9%、44.4%(P<0.05),轮作2a冬小麦平均籽粒产量和平均籽粒水分利用效率较连作冬小麦分别提高了45.0%、42.9%(P<0.05);效益分析表明,轮作2a冬小麦的平均产投比是连作2a冬小麦的近1.5倍,是轮作2a冬油菜的2.5倍,是连作2a冬油菜的3.4倍,6a生苜蓿地翻耕后轮作冬小麦比轮作冬油菜具有更高经济效益。该研究结果为黄土高原苜蓿草地可持续利用,建立稳定的旱地农业生态系统提供了理论依据。  相似文献   

10.
以宁南山区河川乡为例,开展黄土高原乡级尺度的土地利用适宜性研究。根据河川乡自然与社会经济的实际情况,从土地利用的地形、土壤养分、土壤侵蚀、水源条件等方面建立土地利用适宜性评价指标体系,采用层次分析法确定评价指标权重,将GIS空间分析方法与综合指数评价模型相结合,对河川乡土地的适宜性与适宜程度进行了定量评价。结果表明:河川乡土地可以划分为高度宜农地、中度宜农地、宜林地、宜林牧地和宜牧地,它们占总面积的比例分别为7.34%,13.49%,2.47%,41.37%,35.33%。评价结果可为河川乡土地利用格局的优化提供理论依据和数据基础。  相似文献   

11.
基于主产区气象观测站和农业气象站实测气象资料和作物发育期资料,计算冬小麦和油菜生长季的气候适宜度和灾害指数等参数,评价该阶段气象条件对夏收粮油作物的利弊影响。结果显示:2021/2022年度冬小麦、油菜生育期内,产区大部光热充足、土壤墒情适宜,冻害、干旱等农业气象灾害影响程度偏轻,气候适宜度高于上年和近5a平均值,气象条件利于夏收粮油作物生长发育和产量形成;成熟收获期间多晴好天气,收获进度快、质量高。但北方冬麦区秋播期多雨渍涝,冬小麦播种期明显推迟,冬前壮苗比例偏少、分蘖不足。江南和贵州等油菜产区冬季持续阴雨寡照,影响油菜发育进程。  相似文献   

12.
基于GIS的台湾青枣在福建引扩种的气候适宜性区划   总被引:2,自引:1,他引:1  
为合理利用福建气候资源、优化台湾青枣在福建的种植布局,基于GIS开展台湾青枣在福建引扩种的气候适宜性区划。根据台湾青枣的生长气象指标、生命周期和生产管理特点,选取≥10℃年活动积温(∑T≥10℃)、年平均气温(Tavg)、90%保证率年极端最低气温(T90%JDW)、年降水量(R)、年日照时数(S)5个气象因子作为区划指标,构建台湾青枣的气候适宜性区划指标体系;采用专家打分法和层次分析法对区划指标进行权重分析,建立气候适宜指数算法;基于气象要素值、经度、纬度、海拔高度,通过线性回归建立5个区划指标的小网格推算模型;结合小网格推算模型和气候适宜指数算法,开展台湾青枣在福建引扩种的气候适宜性区划;采用前期相关研究成果、青枣种植现状对区划结果的可靠性进行验证。结果表明:台湾青枣的适宜种植区主要分布在泉州市辖区以南的沿海县市和漳州市的部分内陆县市;次适宜区主要分布在福建中部沿海地区及龙岩南部的永定、上杭部分乡镇,该区种植青枣可能遭受寒冻害,应注意低温防护;其余县市为不适宜种植区。区划结果与前期研究成果和青枣种植现状一致。研究结果可为台湾青枣在福建的引种、扩种和种植结构调整提供参考。  相似文献   

13.
Cotton (Gossypium sp.) is a major crop grown under rainfed conditions in Vertisols and associated soils in semi-arid tropical (SAT) regions of Peninsular India. In recent years, cotton productivity has declined due to various biophysical factors including pest and diseases, seasonal water stress soil degradation and poor crop management practices. In this study, we compare two methods for evaluating the suitability of Vertisols for cotton in contrasting two agro-ecological regions viz., sub-humid moist (SHM) region and semi-arid dry(SAD) were characterized. Twelve cotton growing Vertisols (seven from SHM and five from SAD) were evaluated for their suitability for cotton cultivation using soil quality index (SQI) and modified Sys-FAO method. SQIs were calculated using the weighted additive index from transformed scores of selected indicators by principal component analysis. For Sys-FAO method both biophysical and soil characteristics were considered for suitability evaluation. We found that the soils of SHM region were moderately suitable for cotton cultivation with soil moisture as the major limiting factor, whereas the soils of SAD region are marginally suitable due to high exchangeable sodium percentage and poor hydraulic conductivity. From this, it may be concluded that the weighted SQI has better agreement with the cotton yield.  相似文献   

14.
The effects of mouldboard ploughing, shallow tined cultivation and direct drilling on yields of winter wheat, barley, oats and oilseed rape were compared over 10 years. Three field experiments were conducted on two non-calcareous clays (stagnogleys) and a weakly structured silty soil (argillic brown earth). Two spring N levels were applied to the winter wheat plots on the clay soil in three years and to the winter barley plots on the silty soil in one year. This paper reports the soil bulk density and water content at sowing and the crop growth, yield components and yields obtained during the later years of the study: 1979–1984 on the clayey soils and 1981–1984 on the silty soil.

In the years when cereals were grown, differences in yield between cultivation treatments were small and inconsistent. Oilseed rape yielded significantly more after direct drilling than ploughing because of better establishment and uniformity of growth.

The success of continuous reduced tillage depended on both burning crop residues and good weed control.  相似文献   


15.
为探明不同栽培措施下全膜覆土穴播种植对不同基因型冬小麦生产的土壤水分状况、产量和品质的影响,为旱作冬小麦覆膜适水种植与农业绿色可持续高质量生产提供依据。采用普通聚乙烯地膜覆土穴播(PE)和生物降解地膜全膜覆土穴播(BM)2种覆盖材料种植方式,以传统露地穴播(LD)为对照,研究不同栽培措施对冬小麦土壤水分状况、产量、水分利用效率和主要品质的影响。结果表明,在干旱气候和作物耗水影响下,地膜覆盖处理较LD降低0—300 cm土层土壤平均含水量,BM较PE显著降低0—300 cm土层土壤水分。冬小麦全生育期耗水量BM较LD和PE分别增加22.0,23.0 mm,全生育期土壤水分消耗量BM>LD>PE。"陇鉴110"2个种植季地膜覆盖均较露地栽培显著增产;2018—2019年种植季,"陇鉴111"PE、BM较LD分别增产40.3%和29.7%,2019—2020年种植季,受严重倒伏影响PE、BM较LD分别减产2.5%,3.5%。与LD相比,地膜覆盖降低冬小麦籽粒品质,BM较PE极显著提升面团稳定时间和形成时间,"陇鉴110"籽粒平均蛋白质含量、湿面筋含量和弱化度分别较"陇鉴111"增加10.6%,11.1%,10.3%。因此,生物降解地膜覆盖可 起到与聚乙烯地膜类似的蓄水保墒功能,但在旱作区冬小麦生产中,生物降解地膜覆盖要依据品种耗水特性及地膜栽培适应性,选择适宜的品种。  相似文献   

16.
农业技术和气候变化对农作物产量和蒸散量的影响   总被引:4,自引:2,他引:2  
随着农业生产条件的改善、品种改进和有利的气象条件的变化, 世界各地的作物产量得到大幅度提高, 但作物的蒸散量却未出现大幅度提高。本文以石家庄气象站1955~2007 年的气象资料为基础, 分析了河北省冬小麦和夏玉米生长期间主要气象因素变化, 结合中国科学院栾城农业生态系统试验站长期定位灌溉试验的研究结果, 分析了农业生产条件和气象因子变化对冬小麦和夏玉米产量及耗水量的影响。结果表明,1955~2007 年冬小麦和夏玉米生长季的气象因子发生了变化, 日照时数、相对湿度、风速、气温日较差显著降低, 最低气温、平均气温和积温显著升高, 气象因子的变化对作物总蒸散量未产生明显影响, 但由于降水减少,作物生长期间的灌溉需水量呈增加趋势。长期灌溉试验结果表明, 随着农业生产条件的变化和品种的改良, 冬小麦和夏玉米的产量不断增加, 而耗水量的增加幅度小于产量增加幅度, 夏玉米的耗水量呈稳定状态。节水技术的推广和应用对维持耗水量稳定起着非常关键的作用。  相似文献   

17.
渭北旱塬不同田间管理措施下冬小麦产量及水分利用效率   总被引:15,自引:4,他引:15  
水分是限制旱地作物产量最主要的因素,提高自然降水利用效率是增加旱地作物产量的有效途径。2001~2003年在渭北旱塬粉砂壤土上的田间试验研究表明,不同田间管理措施对冬小麦的产量及水分利用效率有显著的影响。秸秆覆盖不仅增加雨水入渗,提高上层土壤含水量,而且促进水分向下运输。在覆盖第二年小麦产量较常规种植显著增加,同时覆盖下土壤有机质含量有较快增加的趋势。夏季休闲期种植填闲作物将不影响下一季作物的水分状况,短期内填闲作物对土壤有机质,小麦产量及水分利用效率也没有影响。  相似文献   

18.
河北省冬小麦气候适宜度及其时空变化特征分析   总被引:8,自引:0,他引:8  
为定量评价气象要素对作物生长的影响,采用逐日气象要素和统计方法,建立了河北省冬小麦各生育期气候适宜度评价模型,并分析了1981-2010年逐年冬小麦各生育期气温、降水、日照和气候适宜度的时空变化特征。结果表明:冬小麦生育期内日照和气温适宜度较高,降水适宜度最低且变异系数最大。日照适宜度以冬小麦分蘖期最小,变异系数最大;降水适宜度以拔节-抽穗期最小,变异系数最大;气温适宜度以越冬-返青期最小,分蘖期变异系数最大。全麦区气温适宜度高值区分布在西北部,低值区分布在东南部;降水适宜度高值区分布在东北部,低值区分布在东南部;日照适宜度高值区分布在北部,低值区分布在南部。多年气候适宜度变化趋势为:全生育期日照适宜度显著下降,气候适宜度缓慢下降,气温和降水适宜度无明显变化趋势。气候适宜度下降主要由各生育期日照、越冬期和灌浆期气温适宜度下降引起。  相似文献   

19.
本文回顾了中国科学院栾城农业生态系统试验站(以下简称栾城试验站)建站初期20 世纪80 年代以来在农田节水方面开展的研究。20 世纪80 年代以作物优化灌溉制度为研究重点, 解决生产实际问题; 20 世纪90 年代围绕土壤-植物-大气系统水分传输和界面调控开展了系统研究, 为农田节水措施的形成提供理论基础和技术途径; 近10 年来进一步深化了农田节水生理生态研究, 并根据多年研究积累, 形成了综合节水技术模式, 进行推广应用。未来栾城试验站农田节水工作将更加突出多学科渗透交叉, 以提高农田水分利用效率和效益为目标, 加强基础研究和节水技术的示范应用。  相似文献   

20.
为建立冬小麦气候适宜度量化评价方法,本文基于云模型理论,依据光、温和水界限指标,采用"3En"法则确定云参数,建立日照、气温和降水对小麦生长影响的云模型。运用积分回归法,确定权重系数,采用加权综合法和几何平均法,确定不同生育期和全生育期气候适宜度,利用1954—2013年安徽省宿州市各县(区)冬小麦单产和1995—2013年观测地段产量因素等资料进行检验。结果表明,日照适宜度可用左半云,气温和降水适宜度可用梯形云来表达。计算的冬小麦全生育期气候适宜度,与宿州市各县(区)冬小麦气候产量呈显著或极显著正相关关系;与观测地段的冬小麦气候产量、千粒重、每穗籽粒数和乳熟期株高呈显著正相关,相关系数分别为0.588 0(P0.01)、0.756 1(P0.01)、0.670 7(P0.01)和0.464 3(P0.05)。返青—拔节期、抽穗—乳熟期2个时期的气候适宜度与单位面积穗数、每穗籽粒数的相关系数分别为0.558 9(P0.05)、0.710 7(P0.01)和0.736 1(P0.01)、0.744 2(P0.01),拔节—抽穗期气候适宜度与单位面积穗数的相关系数为0.649 8(P0.01)。1954—2013年宿州市日照与降水适宜度以每10年0.005和0.008的速度降低,气温适宜度以每10年0.028的速率升高。研究结果可作为评价宿州冬小麦对气候条件的适应性及制定相应策略的参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号