首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

The accident at Fukushima 1 Nuclear Power Plant in 2011 caused contamination by radioactive cesium (134Cs and 137Cs) in surrounding areas. After this accident, concerns about Cs contamination, including food safety, have limited industrial activities and reconstruction in Fukushima. Sorghum (Sorghum bicolor (L.) Moench) is an annual C4 crop that can be used as biofuel feedstock due to its high biomass. Use of Cs-contaminated fields to produce biofuel feedstock would be more acceptable than use for food or feed crops due to the lower risk of human internal exposure to radioactive Cs. In addition, high-biomass sorghum might be suitable for removal of Cs from fields (phytoremediation). For both applications, it is important to use accessions showing the appropriate level of accumulation of radioactive Cs (low for biofuel feedstock, high for phytoremediation). Here, we examined the accumulation of radioactive Cs in the aerial parts of 56 sorghum accessions grown in Fukushima. Accessions were cultivated in a low-level-contaminated field in 2011 and in a highly contaminated field in a planned evacuation zone in 2012. After cultivation, activity concentrations from 134Cs and 137Cs were measured in the aerial plant parts. In 2011, the activity concentrations of 134Cs and 137Cs were 58.2–350 and 58.6–450 Bq kg?1 dry weight, respectively. In 2012, the concentrations of 134Cs and 137Cs were 54.2–1320 and 57.1–1960 Bq kg?1 dry weight, respectively. Relative to the median values of the accessions grown each year, 3 showed lower activity concentrations and 2 showed higher activity concentrations of radioactive Cs under both cultivation conditions. In contrast to a previous report, there was no significant correlation between biomass and Cs activity concentration. Because both biomass and Cs concentration are important in classifying accessions for use in phytoremediation, we also calculated the Cs accumulation index (single-plant biomass × Cs activity concentration) for each accession. The accession AKLMOI WHITE showed the highest values in both years, suggesting that this accession has the high per-plant accumulation capacity for radioactive Cs. Our data collected from actual contaminated fields is irreplaceable for choosing sorghum accessions for cultivation in Cs-polluted sites such as Fukushima.  相似文献   

2.
The effects of aluminum on the uptake and translocation of N in two hybrid cultivars of sorghum with differential tolerance to aluminum were studied.

Aluminum decreased the amount of N accumulated and the % of N in the aerial parts of the plants. In the roots the amount of N accumulated also decreased but the % of N increased, in both cultivars. Besides an effect on dry matter yield, Al probably reduces the uptake of N and its translocation to the aerial parts of the plant. Apparently, this impairment on N translocation resulted from Al effects on the root pressure.

Aluminum not only reduced the amount of N translocated but also changed the sap composition. The % of NO3 ‐N decreased while the % of amino acid‐N increased suggesting an Al effect on N uptake and also on protein degradation. Asparagine and glutamine contributed about 80% of the free amino acid fraction; however, their proportions changed in presence of Al. Therefore, Al also interfered with the synthesis and/or interconversion of these amino acids.  相似文献   


3.
This research aimed to determine the optimum nitrogen fertilization rate on three soils for producing biomass sweet sorghum (Sorghum bicolor cultivar M81E) and corn (Zea mays cultivar P33N58) grain yield and to compare their responses. The research was conducted in Missouri in rotations with soybean, cotton, and corn. Seven rates of nitrogen (N) were applied. Sweet sorghum dry biomass varied between 11 and 27.5 Mg ha?1) depending on year, soil type, and N rate. Nitrogen fertilization on the silt and sandy loam soils had no effect (P > 0.05) on sweet sorghum yield grown after cotton and soybean. However, yield increased in the clay soil. Corn grain yielded from 1.3 to 12.9 Mg ha?1, and 179 to 224 kg N ha?1 was required for maximum yield. Increasing biomass yield required N application on clay but not on silt loam and sandy loam in rotations with soybean or cotton.  相似文献   

4.
The Ethiopian region is characterised by a wide range of agro-climatic conditions, which accounted for the enormous resources of agro-biodiversity that exist in the country. The most important of these resources is the immense genetic diversity of the various crop plants in the country. Of these, one of the most on farm genetically diverse crops is sorghum. Since the advent of formal breeding in particular after green revolution, genetic diversity of most crops has been threatened worldwide. In order to assess on farm genetic erosion (GE), various research methodologies were employed. These were focused group interviews with 360 farmers, on farm monitoring and participation with 120 farmers, key informant interviews with 60 farmers and development agents, and semi-structured interviews with 250 farmers. Besides, diversity fairs were done with over 1200 farmers. Notwithstanding the complexity of assessing GE, it was assessed by various methods; namely, by temporal method (comparing 1960 and 2000 collections), area method, and semi-structured interview method at individual, community or wereda level and causes of varietal loss from other various perspectives. Farmers perceived GE as the reduced importance of the variety as indicated by lower proportion in the varietal portfolio. The five most important factors for varietal loss at individual farmers’ level were reduced benefit from the varieties, drought, Khat expansion, reduced land size and introduction of other food crops respectively. GE was not affected by wealth groups and ecological regions. Farmers do not make simple replacement as a strategic mechanism for genetic resources management. GE at regional level was quantified by temporal and spatial method. There was a complementation not rivalry between farmer varieties (FVs) and improved varieties (IVs). The whole process of GE is explained by three models, namely: Bioecogeographic enhanced genetic erosion model, Farmer induced genetic erosion model and Farmer-cum-bioecogeographic genetic erosion model. As aforementioned, sorghum genetic erosion behaviour is completely different from other food crops such as tetraploid wheat. The prediction in the late seventies that complete erosion of FVs by IVs by the end of the eighties, the principle of GE that competition between IVs and FVs, favours the former and results in the replacement of the latter is not valid in the context of sorghum in Ethiopia. Hence, maintenance of the on farm genetic diversity of sorghum is a reality but GE is rhetoric.  相似文献   

5.
Nutrient deficiency, high rate of evapotranspiration, and insufficient and erratic rainfall are the critical challenges for crop production in the dryland areas (DLAs) of Sub-Saharan Africa, including Tanzania, where 61% of arable land is prone to drought. In addressing these challenges, field trials were conducted in central Tanzania to evaluate the interactive effects of ripping and tie-ridges with organic (FYM) and inorganic fertilizers (N) on the mitigation of the critical period of soil moisture stress (CPSMS) for sorghum yield performance. Both in situ rainwater harvesting techniques (IRWHT) and flat-cultivated land were integrated with 8 Mg FYM ha–1, 70 Kg N ha–1, and a combination of 35 Kg N ha–1 and 4 Mg FYM ha–1 (N+ FYM). Among the IRWHT, tie-ridges stored a significant water volume of 577 and 457 m3 ha–1, which mitigated the CPSMS by the maximum of 95% and 37% for the above-average rainfall and below-average rainfall season, respectively. However, it only registered the highest grain yield (2.02 Mg ha–1) and biomass (3.46 Mg ha–1) in a below-average rainfall season. The highest overall grain yield (5.73 Mg ha) and biomass (12.09 Mg ha–1) were harvested in ripping with combined fertilizer treatments in an above-average rainfall season, while the lowest grain yield (0.5 Mg ha–1) and biomass (1.2 Mg ha–1) were registered in the flat-cultivation control in the below-average rainfall season. In the latter season, IRWHT increased the mitigation potential in the order; flat cultivation < ripping < tie-ridges; and sorghum yield, highly correlated with drought mitigation index. The results showed that sorghum grain yield and final biomass performance depend on the influence of IRWHT applied, rainfall amount, soil moisture level, integrated fertilizer, and length of the CPSMS. In the above-average rainfall seasons, fertilizers mask the influence of the IRWHT. The opposite is true in the below-average rainfall season. Although ripping N+ FYM resulted in the highest overall yield, the study recommends practicing tie-ridges integrated with N+ FYM due to regular occurrences of low and unreliable rainfall in the dryland areas.  相似文献   

6.
Multivariate methods, including principal component, cluster and discriminant analyses, were used to assess the patterns of morphological variation and to group 415 sorghum accessions for 15 quantitative characters. The first five principal components explained 79% of the total variation with plant height and days to 50% flowering being the most important characters in the first principal component. Cluster analysis grouped the accessions into ten clusters. A greater proportion of accessions of similar adaptation zones and accessions from regions of origin with similar agro-climatic conditions were grouped together. Moreover, discrimination of accessions was more pronounced when discriminant analysis was based on zone of adaptation rather than regions of origin. Based on the observed patterns of variation, it is concluded that the morphological variation in the material studied is structured by environmental factors. The implications of the results for plant breeding and germplasm conservation programmes arediscussed.  相似文献   

7.
The effects of aluminum on the accumulation of sugars, amino acids and organic acids in two hybrid cultivars of sorghum were studied.

The concentration of these organic compounds increased in the roots of the Al‐treated plants, mainly in the tolerant cultivar. The composition of the organic acid fraction showed a significantly higher accumulation of trans‐aconitate and malate in the tolerant cultivar as compared with the sensitive one. The higher levels of these acids in the Al‐treated plants could be interpreted as being indicative of a chelating detoxifying mechanism of aluminum in these plants.  相似文献   


8.
The extent and patterns of distribution of genetic variation among 80 sorghum (Sorghum bicolor (L.) Moench) germplasm accessions from Ethiopia and Eritrea were investigated using RAPD with 20 oligonucleotide primers. The primers generated a total of 147 polymorphic bands across the 80 accessions with a mean of 7.35 bands per primer. Estimation of the extent of variation by the Shannon-Weaver diversity index revealed an intermediate level of overall variation (H = 53), although the levels varied among regions of origin of the accessions. Partitioning of the total variation revealed considerable variation (77%) within the region of origin of the accessions and the remainder (23%) among regions of origin. Similarly, a large portion (94%) of the total variation was found within the adaptation zones compared to among the adaptation zones (6%). The results suggest a weak differentiation of the sorghum material both on regional and agro-ecological bases, which could be ascribed to the high rate of outcrossing in cultivated sorghum and its free natural hybridization with its wild and weedy relatives, as well as to seed movement by humans. The average genetic dissimilarity was found to be 36% among the 80 accessions and 13% among the 15 regions of origin. Cluster analysis failed to group accessions of the same region or the same adaptation zone, which further confirmed the weak differentiation of the material studied. The clustering pattern of the regions of origin was broadly concordant with previous clustering patterns obtained using morphological characters, in which regions with broad agro-climatic conditions were grouped together.  相似文献   

9.
 The effects of applying either inorganic fertilizer or leaf mulch of Acacia saligna (Labill.) H.L. Wend. on yields of Sorghum bicolor (L.) were compared with an unfertilized control under the high leaching conditions of runoff irrigation in a dry tropical environment. The N use efficiency and transfer from 15N-labelled (NH4)2SO4 or acacia leaves to the sorghum differed in quantity and quality. Only 6% of the applied mulch N was retrieved in the crop, in contrast to 21% of the fertilizer N. The proportions of N in the crop derived from the fertilizers were small, amounting to 7% and 28%, respectively, in the mineral fertilizer and mulch treatments. However, the application of inorganic fertilizer and mulch significantly increased crop grain yield (P<0.05 and P<0.1, respectively), biomass production and foliar N contents (P<0.05). The inorganic fertilizer improved crop yields to a larger extent than mulching. At the same time, more N was lost by applying (NH4)2 SO4 than leaf mulch: only 37% of the N of applied (NH4)2 SO4 was found in the crop and the soil (0–0.3 m), but 99% of the mulched N. High NO3 contents in the topsoil of the inorganic fertilized sorghum treatments indicated the risk of N leaching. However, more important may have been gaseous N losses of surface-applied NH4 +. From a nutrient conservation point of view, mulches should be given preferance to inorganic fertilizers under high soil pH and leaching conditions, but larger improvements of crop yields could be achieved with mineral fertilizers. Received: 29 July 1998  相似文献   

10.
Rare earth elements (REE) of mine tailings have caused various ecological and environmental problems. Revegetation is one of the most cost-effective ways to overcome these problems, but it is difficult for plants to survive in polluted tailings. Arbuscular mycorrhizal fungi (AMF) can provide biotic and abiotic stress tolerance to its host plant and has widely adopted for the revegetation of degraded ecosystems. However, little is known about whether AMF plays role in facilitating the revegetation of REE of mine tailings. The objective was to investigate the uptake of nutrients and REE when plants are inoculated with AMF. A greenhouse pot experiment was conducted on the effects of Glomus mosseae and Glomus versiforme for the growth, nutritional status, and uptake of REE and heavy metals by maize (Zea mays L.) or sorghum (Sorghum bicolor L. Moench) grown in REE of mine tailings. The results indicated that symbiotic associations were successfully established between AMF and the two plant species. G. versiforme was more effective than G. mosseae at promoting plant growth by significantly increasing the uptake of nitrogen (N), phosphorus (P), and potassium (K) and decreasing carbon:nitrogen:phosphorus (C:N:P) stoichiometry. The shoot and root dry weights of the two plant species were increased by 211–387% with G. versiforme inoculation. Maize and sorghum exhibited significant differences in the REE concentrations in response to the colonization by AMF. The shoot and root lanthanum (La), cerium (Ce), praseodymium (Pr), and neodymium (Nd) concentrations of the maize inoculated with G. versiforme were decreased by approximately 70%, whereas those in the roots of sorghum were increased by approximately 70%. G. mosseae only significantly decreased the La, Ce, Pr, and Nd concentrations in the maize shoots. Inoculation with AMF also significantly decreased the concentration of certain heavy metals in the shoots and roots of maize and sorghum. These findings indicate that AMF can alleviate the effects of REE and heavy metal toxicity on plants and enhance the ability of plants to adapt to the composite adversity of REE in mine tailings.  相似文献   

11.
Changes in the diversity of landraces in centres of diversity of cultivated plants need to be assessed in order to monitor and conserve agrobioversity—a key-element of sustainable agriculture. This notably applies in tropical areas where factors such as increased populations, climate change and shifts in cropping systems are hypothesized to cause varietal erosion. To assess varietal erosion of staple crops in a country subjected to various anthropogenic and natural environmental changes, we carried out a study based on a comparison of the diversity of pearl millet and sorghum varieties collected in 79 villages spanning the entire cereal-growing zone of Niger over a 26 year period (1976–2003). For these two crops, the number, name and type of varieties according to important traits for farmers were considered at different spatial scales (country, region, village) at the two collection dates. The results confirmed the high diversity of millet and sorghum varieties in Niger. No erosion of varietal diversity was noted on a national scale during the period covered. Some changes were observed but were limited to the geographical distribution of certain varieties. This highlights that farmers’ management can preserve the diversity of millet and sorghum varieties in Niger despite recurrent and severe drought periods and major social changes. It also indicates that rainfed cereal cropping systems in Niger should remain to be based on millet and sorghum, while reinforcing farmers’ seed systems.  相似文献   

12.
Genetic Resources and Crop Evolution - In sorghum, milo source of male sterility has been used for developing all the hybrids so far and it created the narrow cytoplasmic base. In addition, it also...  相似文献   

13.
为探究施肥多因子耦合对黄瓜产量、品质、肥料利用率等方面的综合调控,获取适宜的基质栽培营养液配方。以'博耐526'黄瓜为试材,通过四因素(N、K、Ca、Mg)五水平(1/2)二次正交旋转组合设计,共23个处理,利用四元二次回归分析建立了N、K、Ca、Mg对黄瓜产量品质综合评分的回归模型,分析了双因素与三因素耦合效应对黄瓜产量品质综合评分的影响。结果表明,各因素对黄瓜产量品质综合评分的影响程度由大到小依次为氮、钾、钙、镁,黄瓜产量品质综合评分随各因素的增加均呈现先增加后减小的趋势。N-K和N-Ca的耦合效应显著(P<0.05),而其余因素耦合效应不显著(P>0.05);N-K耦合效应对黄瓜产量和品质综合得分的影响为负,而N-Ca耦合效应为正。同时建立了黄瓜产量品质综合评分、氮、钾和钙利用率的多目标优化模型,利用遗传算法对该模型进行模拟寻优,得到优化的氮,钾,钙和镁浓度分别为14.83、6.89、3.55和4.17 mmol/L。在此条件下,黄瓜的单株产量、可溶性蛋白、维生素C和可溶性总糖含量分别比山崎黄瓜专用配方处理显着提高了21.07%,40.91%,53.33%和11.48%,有机酸和硝酸盐含量比山崎黄瓜专用配方处理显著降低,此结果可为基质栽培黄瓜高产优质和营养液科学管理提供指导依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号