首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
沂蒙山区桃园棕壤斥水性对理化性质的空间响应   总被引:1,自引:0,他引:1  
以沂蒙山区典型土地利用桃园棕壤为例,在分析降雨前后桃园棕壤斥水性与理化性质空间变异的基础上,探讨了棕壤斥水性对土壤含水量、有机质含量和土壤质地的空间响应特征。按照1 m×1 m网格等间距测定降雨前后土壤实际斥水性与含水量,同时采集表层0~3 cm土壤样品,分析其有机质含量与砂粒、粉粒、黏粒含量,并借助经典统计学、地统计学与空间自相关理论对土壤斥水性及理化性质进行空间格局与空间相关性分析。结果表明:沂蒙山区桃园棕壤的斥水程度强烈,雨后斥水性显著降低;降雨前后棕壤斥水性均具有中等变异水平和较强的空间自相关性,且呈指数模型分布,各向异性显著。受结构变异和随机变异作用,斥水性空间格局沿耕作方向呈条带状分布,在其垂直方向上最小变程为1.4 m。土壤质地是影响棕壤斥水性空间变异的主要因素,斥水性与粉粒含量呈空间正相关,与砂粒和黏粒含量呈空间负相关,相关程度粉粒砂粒黏粒;棕壤斥水性与含水量呈空间负相关,相关度雨前较弱,雨后显著。  相似文献   

2.
Soil water-retention characteristics at measurement scales are generally different from those at application scales, and there is scale disparity between them and soil physical properties. The relationships between two water-retention parameters, the scaling parameter related to the inverse of the air-entry pressure (αvG, cm-1) and the curve shape factor related to soil pore-size distribution (n) of the van Genuchten water-retention equation, and soil texture (sand, silt, and clay contents) were examined at multiple scales. One hundred twenty-eight undisturbed soil samples were collected from a 640-m transect located in Fuxin, China. Soil water-retention curves were measured and the van Genuchten parameters were obtained by curve fitting. The relationships between the two parameters and soil texture at the observed scale and at multiple scales were evaluated using Pearson correlation and joint multifractal analyses, respectively. The results of Pearson correlation analysis showed that the parameter αvG was significantly correlated with sand, silt, and clay contents at the observed scale. Joint multifractal analyses, however, indicated that the parameter αvG was not correlated with silt and sand contents at multiple scales. The parameter n was positively correlated with clay content at multiple scales. Sand content was significantly correlated with the parameter n at the observed scale but not at multiple scales. Clay contents were strongly correlated to both water-retention parameters because clay content was relatively low in the soil studied, indicating that water retention was dominated by clay content in the field of this study at all scales. These suggested that multiple-scale analyses were necessary to fully grasp the spatial variability of soil water-retention characteristics.  相似文献   

3.
坡面尺度土壤特性的空间变异性   总被引:6,自引:0,他引:6       下载免费PDF全文
通过对20m长坡面土壤特性空间变异性的经典统计学分析,结果表明:(1)在同一土壤剖面内,各级粒径含量呈弱变异性,而有机质含量随土层深度的增大而逐渐降低,呈中等变异性;(2)土壤干容重的空间变异性较小,呈弱变异性,但土壤饱和导水率的空间变异性较大,呈中等变异性;(3)水分特征曲线具有一定的空间变异性,比水容量空间变异性较大,呈中等变异性。坡面土壤饱和导水率和干容重的等值线图表明,土壤饱和导水率的变化趋势并不仅仅取决于土壤干容重的相对大小,可能与有机质含量、黏粒含量以及根系分布情况等也有一定的关系。  相似文献   

4.
红壤丘陵区坡地土壤颗粒组成的空间分布特征研究   总被引:4,自引:0,他引:4  
王冬冬  高磊  陈效民  彭新华 《土壤》2016,48(2):361-367
通过分析红壤丘陵区农田坡面14个0~100 cm剖面的土壤颗粒组成,结合研究区土壤侵蚀等相关资料,拟阐明坡面尺度土壤砂粒、粉粒和黏粒含量的空间分布特征,揭示自然条件下土壤颗粒组成在水平和垂直方向上的分布规律。结果表明:坡面尺度土壤砂粒、粉粒和黏粒均呈现出中等的空间异质性,变异系数分别介于17.6%~23.2%、10.7%~15.8%和13.5%~17.0%。由于粗颗粒的沉积,花生地和橘园地均表现出坡下的砂粒含量显著高于坡上和坡中(P0.05),黏粒含量坡下显著低于其他坡位(P0.05);由于黏粒更容易随入渗过程向深层运动,两种植被类型均表现出土壤砂粒含量随深度增加而降低(P0.05)、黏粒含量随深度增加而增加的趋势(P0.05)。无论在水平方向还是垂直方向上,粉粒含量均无明显变化规律(P0.05)。砂粒含量随坡位和土壤深度的变化程度均大于粉粒和黏粒。植被类型及相应的耕作制度影响土壤颗粒的分布,土壤砂粒在水平方向上的运动在花生地表现得强于橘园地;橘园地土壤黏粒含量在垂直方向上的迁移速率大于花生地,而对粉粒含量的分布规律影响不大。  相似文献   

5.
The study of spatial variability in the chemical and physical properties of topsoil horizons of southern chernozems and chestnut soils at characteristic distances of less than 150, 150–800, and 800–2000 m proved that the spatial distribution of the studied properties is different for these two soils. In the southern chernozems, the maximum variability at short (<150 m) distances was observed for the organic carbon content and pH values. The contents of clay (<0.001 mm) and physical clay (<0.01 mm) fractions and the content of total nitrogen displayed the maximum variability at distances of 150–800 m. At distances of >800 m, the distribution of all the studied properties was characterized by quasiperiodicity. In the chestnut soils, the maximum variability in the contents of the clay, physical clay, and total nitrogen was observed at short distances, whereas the variability of the organic carbon content and pH values was maximum at distances of 150–800 m. At the distances of 800–2000 m, only the variability in the clay fraction content followed a quasiperiodic pattern.  相似文献   

6.
喀斯特坡面伴随有大量直径>25 cm的块石出露,为探明块石出露对土壤理化性质的影响,以坡面4个块石出露的农地和1个对照组为研究对象,分析土壤理化性质空间变异特征。结果表明:(1)在块石出露的农地中,土壤容重、黏粒、粉粒和砂粒的变化分别为0.87~1.42 g/cm3,25.70%~41.80%,38.11%~51.60%,13.76%~27.54%,土壤容重、黏粒和粉粒空间变异性均为弱且高于对照组,砂粒空间变异性为中等且低于对照组。(2)土壤全碳、全氮、全磷、全钾变化分别为9.82~23.13,0.94~2.15,0.65~2.93,7.38~20.35 g/kg,土壤有效磷、速效钾的变化分别为1.44~2.63,7.35~106.02 mg/kg,空间变异性均为中等且高于对照组。(3)土壤容重、黏粒、粉粒与其他土壤理化性质的之间的关系总体上呈负相关,且相关性在块石出露的农地中比对照组更显著。砂粒与黏粒之间呈显著负相关,与其他土壤化学性质之间的关系总体上呈正相关。(4)块石出露数量、出露坡度、出露比率和出露高度,对土壤理化性质的影响具有复杂性,土壤理化性质的...  相似文献   

7.
北京地区表层土壤分形特征研究   总被引:9,自引:0,他引:9  
土壤是一种具有分形特征的复杂系统.分形维数可以反映很多土壤特性.本研究考虑了7种土壤类型、4种土地利用类型,在北京地区选取了30个典型样点,对复杂地理环境表层土壤的分形特征进行了分析,探讨了分形维数与土壤质地、土壤理化性质等方面的关系.研究结果表明,在复杂地理环境条件下,土壤颗粒分形维数总体变异性较弱;分形维数与黏粒含量呈显著正相关,与(砂粒含量+粉粒含量)和黏粒含量的比值呈显著负相关.分形维数可以反映土壤质地,但仅可指示部分重要土壤的理化性质.  相似文献   

8.
Abstract

Knowledge of soil water availability for plant growth is vital for the development of plant growth simulation models. Data on soil water availability are often not available because field and laboratory measurements of soil water content are time‐consuming and tedious. The objective of this study was to develop alternative procedures to predict water content at ‐10 kPa (UL10), ‐33 kPa (U133), ‐1500 kPa (LL), and the potential available water capacity (AWC) from easily and routinely available soil properties. Multiple regression equations for soil orders of Soil Taxonomy were developed using a database containing information of about 12,000 pedons of the continental U.S., Hawaii, Puerto Rico, and some foreign countries. Regression equations with bulk density, sand, silt, clay, and organic carbon contents accounted for up to 83% of the variation in UL10 for all orders except Ultisols. For Ultisols, sand content accounted for up to 90% of the variation in UL10. Equations with clay and organic carbon contents accounted for up to 75% of the variability in UL33 for all except Aridisols, Oxisols, Vertisols, and Spodosols. For these four orders, equations with bulk density, clay, silt, and sand contents accounted for up to 81% of the variation in UL33. LL was linearly related to clay content. Clay content accounted for up to 91% of the variation in LL for all but Oxisols and Vertisols. More accurate predictions of AWC resulted when AWC was computed from UL10 and LL water content data. Equations with bulk density alone or bulk density plus silt and/or sand contents accounted for up to 83% of the variation in AWC for all except Entisols, Inceptisols, and Spodosols.  相似文献   

9.
Soil texture is an important factor governing a range of physical properties and processes in soil. The clay and fine fractions of soil are particularly important in controlling soil water retention, hydraulic properties, water flow and transport. Modern soil texture analysis techniques (x‐ray attenuation, laser diffraction and particle counting) are very laborious with expensive instrumentation. Chilled‐mirror dewpoint potentiameters allows for the rapid measurement of the permanent wilting point (PWP) of soil. As the PWP is strongly dictated by soil texture, we tested the applicability of PWP measured by a dewpoint potentiameter in predicting the clay, silt and sand content of humid tropical soils. The clay, silt, and sand content, organic matter and PWP were determined for 21 soils. Three regression models were developed to estimate the fine fractions and validated using independent soil data. While the first model showed reasonable accuracy (RMSE 16.4%; MAE 13.5%) in estimating the clay, incorporating the organic matter into the equation improved the predictions of the second model (RMSE 17.3%; MAE 10.9%). When used on all soil data, the accuracy of the third model in predicting the fine fraction was poor (RMSE 31.9%; MAE 24.5%). However, for soils with silt content greater than 30%, the model prediction was quite accurate (RMSE 7–12%; MAE 7–9%). The models were used to estimate the sand content and soil textures of soils, which proved relatively accurate. The dewpoint potentiometer can serve a dual purpose of rapidly estimating the PWP and the clay, fine fraction, and soil texture of soils in a cost efficient way.  相似文献   

10.
根据UNSODA数据库和文献中的 1 1种质地共 5 5 4个样品的颗粒大小分析和水分特征曲线资料 ,对Tyler Wheatcraft、Brooks Corey和Rieu Sposito三种分形模型在预测土壤水分特征曲线中的适用性进行了研究。结果表明 ,Brooks Corey形式的分形模型预测精度高于其它两种模型。同时本文还指出了这三种模型适用的土壤质地范围 ,即Brooks Corey模型对于中、粗质地的土壤预测效果好于另外两种模型 ,Rieu Sposito分形模型则适用于细质地土壤 ,Tyler Wheatcraft模型的预测误差界于二者之间 ,也适用于中、粗质地的土壤。  相似文献   

11.
应用土壤质地预测干旱区葡萄园土壤饱和导水率空间分布   总被引:7,自引:4,他引:3  
田间表层土壤饱和导水率的空间变异性是影响灌溉水分入渗和土壤水分再分布的主要因素之一,研究土壤饱和导水率的空间变化规律,有助于定量估计土壤水分的空间分布和设计农田的精准灌溉管理制度。为了探究应用其他土壤性质如质地、容重、有机质预测土壤饱和导水率空间分布的可行性,试验在7.6 hm2的葡萄园内,采用均匀网格25 m×25 m与随机取样相结合的方式,测定了表层(0~10 cm)土壤饱和导水率、粘粒、粉粒、砂粒、容重和有机质含量,借助经典统计学和地统计学,分析了表层土壤饱和导水率的空间分布规律、与土壤属性的空间相关性,并对普通克里格法、回归法和回归克里格法预测土壤饱和导水率空间分布的结果进行了对比。结果表明:1)土壤饱和导水率具有较强的变异性,平均值为1.64 cm/d,变异系数为1.17;2)表层土壤饱和导水率60%的空间变化是由随机性或小于取样尺度的空间变异造成;3)土壤饱和导水率与粘粒、粉粒、砂粒和有机质含量具有一定空间相关性,而与土壤容重几乎没有空间相关性;4)在中值区以土壤属性辅助的回归克里格法对土壤饱和导水率的预测精度较好,在低值和高值区其与普通克里格法表现类似。研究结果将为更好地描述土壤饱和导水率空间变异结构及更准确地预测其空间分布提供参考。  相似文献   

12.
郄亚栋  杨建军  孙华斌  何学敏  吕光辉 《土壤》2017,49(6):1243-1253
土壤粒径分布及空间变化对土壤溶质和水盐运移、土壤肥力状况等有重要意义,是土壤重要物理特性之一。基于新疆准噶尔北部、阿勒泰山南麓不同管理模式下的草地(荒漠草地、天然草地、弃耕草地、季节草地和禁牧草地),运用质地分类和分形理论探讨草地粒度特征。结果发现:研究区土壤颗粒中黏粒含量最低,最小值仅有0.17g/kg,砂粒含量最高,最大值可达900.37 g/kg,粒径分布呈现单峰特征,表明土壤发育较差;砂粒和粉粒含量之间呈极显著负相关关系,相关系数为0.999 8(P0.01),推测成土母质和地域差异导致土壤中砂粒和粉粒几乎占了全部;荒漠草地、天然草地和弃耕草地黏粒含量的平均值随着土层深度增加而减小,呈现出负相关特征,而季节草地和禁牧草地并无此特征;荒漠草地的分形维数D值最大,可能是因为灌木作为该生态系统中的优势植物,能有效地减缓荒漠草地逆向演替和消亡的进程,对土壤颗粒具有一定的细化作用;所有土壤样品分形维数D与黏粒含量均具有较强相关性,天然草地、荒漠草地和弃耕草地的分形维数D分别与粉粒和砂粒含量的相关性较强,与禁牧和季节草地的相关性较差,说明春、秋轮牧对土壤的干扰可能超过了土壤本身承载能力,对土壤颗粒组成破坏比较大,影响了土壤发育,放牧向禁牧转化时期的长短可能决定了土壤的发育是否良好。  相似文献   

13.
美国新墨西哥州卡皮林火山土壤性质的空间变异性   总被引:11,自引:0,他引:11  
D. C. WEINDORF  Y. ZHU 《土壤圈》2010,20(2):185-197
Non-agricultural lands are surveyed sparsely in general. Meanwhile, soils in these areas usually exhibit strong spatial variability which requires more samples for producing acceptable estimates. Capulin Volcano National Monument, as a typical sparsely-surveyed area, was chosen to assess spatial variability of a variety of soil properties, and furthermore, to investigate its implications for sampling design. One hundred and forty one composited soil samples were collected across the Monument and the surrounding areas. Soil properties including pH, organic matter content, extractable elements such as calcium (Ca), magnesium (Mg), potassium (K), sodium (Na), phosphorus (P), sulfur (S), zinc (Zn), and copper (Cu), as well as sand, silt, and clay percentages were analyzed for each sample. Semivariograms of all properties were constructed, standardized, and compared to estimate the spatial variability of the soil properties in the area. Based on the similarity among standardized semivariograms, we found that the semivariograms could be generalized for physical and chemical properties, respectively. The generalized semivariogram for physical properties had a much greater sill value (2.635) and effective range (7 500 m) than that for chemical properties. Optimal sampling density (OSD), which is derived from the generalized semivariogram and defines the relationship between sampling density and expected error percentage, was proposed to represent, interpret, and compare soil spatial variability and to provide guidance for sample scheme design. OSDs showed that chemical properties exhibit a stronger local spatial variability than soil texture parameters, implying more samples or analysis are required to achieve a similar level of precision.  相似文献   

14.
紫色土流失土壤的颗粒特征及影响因素   总被引:11,自引:0,他引:11  
土壤可蚀性是影响坡面水蚀过程的内在因素,与土壤质地,土壤有机质等理化性质密切相关.本研究利用田间人工模拟降雨观测资料,分析了侵蚀过程中流失土壤颗粒组成的变化.结果表明:(1)在次降雨过程中,流失土壤颗粒组成不断变化.随着降雨的进行,细砂含量逐步增加,而粉粒含量基本不变,黏粒含量逐渐减小;(2)雨强是影响流失土壤颗粒组成的重要因素.随雨强增加,细砂含量呈逐步增大的趋势,而粉粒与黏粒含量均逐步下降;(3)坡度对流失土壤颗粒组成影响比较复杂.随坡度增加,细砂含量先增大后减小,粉粒与黏粒含量先减小后增大;在20°坡度时,细砂含量最大,粉粒与黏粒含量最小.  相似文献   

15.
Identifying the vulnerability of soils to compaction damage is becoming an increasingly important issue when planning and performing farming operations. Soil compaction models are efficient tools for predicting soil compaction due to agricultural field traffic. Most of these models require knowledge of the stress/strain relationship and of mechanical parameters and their variations as a function of different physical properties. Since soil compaction depends on the soil's water content, bulk density and texture, good understanding of the relations between them is essential to define suitable farming strategies according to climatic changes. In this work we propose a new pedotransfer function for 10 representative French soils collected from cultivated fields, a vineyard and forests. We investigate the relationship between soil mechanical properties, easily measurable soil properties, water content and bulk density. Confined compression tests were performed on remoulded soils of a large range of textures at different initial bulk densities and water contents. The use of remolded samples allowed us to examine a wide range of initial conditions with low measurement variability. Good linear regression was obtained between soil precompression stress, the compression index, initial water content, initial bulk density and soil texture. The higher the clay content, the higher the soil's capacity to bear greater stresses at higher initial water contents without severe compaction. Initial water content plays an important role in clayey and loamy soils. In contrast, for sandy soils, mechanical parameters were less dependent on initial water content but more related to initial bulk density. These pedotransfer functions are expected to hold for the soils of tilled surface layers, but further measurements on intact samples are needed to test their validity.  相似文献   

16.
《Geoderma》2007,137(3-4):327-339
Our objectives were to describe the field-scale horizontal and vertical spatial variability of soil physical properties and their relations to soil map units in typical southeastern USA coastal plain soils, and to identify the soil properties, or clusters of properties, that defined most of the variability within the field. The study was conducted on a 12-ha field in Kinston, NC. A 1:2400 scale soil survey had delineated three soil map units in the field: Norfolk loamy sand, Goldsboro loamy sand, and Lynchburg sandy loam. These are representative of millions of hectares of farmland in the Coastal Plain of the southeastern USA. Sixty soil cores were taken to ∼ 1-m depth, sectioned into five depth increments, and analyzed for: soil texture as percentage sand, silt, and clay; soil water content (SWC) at − 33 and − 1500 kPa; plant available water (PAW); saturated hydraulic conductivity (Ksat); bulk density (BD); and total porosity. A penetrometer was used to measure cone index (CI) at each sample location. Variography, two mixed-model analyses, and principal components analysis were conducted. Results indicated that soil physical properties could be divided into two categories. The first category described the majority of the within-field variability and included particle size distribution (soil texture), SWC, PAW, and CI. These characteristics showed horizontal spatial structure that was captured by soil map units and especially by the division between sandy loams and finer loam soils. The second class of variables included BD, total porosity, and Ksat. These properties were not spatially correlated in the field and were unrelated to soil map unit. These findings support the hypothesis that coastal plain soil map units that delineate boundaries between sandy loams versus finer loam soils may be useful for developing management zones for site-specific crop management.  相似文献   

17.
To gain additional knowledge and better understand forest soil management on a small scale, geostatistical analytical tools were employed to examine the spatial distribution in dry aggregate mean weight diameter (MWD) and other selected soil properties and to assess the possible relationships between MWD and other soil properties. Selected properties of forest soils collected along a 300-m transact in the Nimbia Forest Reserve of Nigeria exhibited moderate to high variability in distribution with sodium ion displaying the greatest variability [coefficient of variation (CV, 91.2%)] and principal component analysis revealed the exchange complex cluster as influencing total variation of field soil properties. The autocorrelation function showed significant spatial correlation from 1 lag in soil organic carbon up to 17 lags (51 m) in soil moisture content (θ). The spherical and Gaussian semivariogram models described the spatial structure of most soil properties; however, for clay, cation exchange capacity (CEC), and soil organic carbon (SOC), an exponential model analyzed their spatial dependence.  相似文献   

18.
Soil texture is directly associated with other soil physical and chemical properties and can affect crop yield, erodibility and water and pollutant movement. Thus, maps of soil textural class are valuable for agricultural management. Conventional spatial statistical methods do not capture the complex large-scale spatial patterns of multi-class variables. Markov chain geostatistics (MCG) was recently proposed as a new approach for the conditional simulation of categorical variables. In this study, we apply an MCG algorithm to simulate the spatial distribution of textural classes of alluvial soils at five different depths in a 15-km2 area on the North China Plain. Soil texture was divided into five classes – sand, sandy loam, light loam, medium loam and clay. Optimal prediction maps, simulated maps and occurrence probability maps for each depth were generated from sample data. Simulated results delineated the distribution of the five soil textural classes at the five depths and quantified related spatial uncertainties caused by limited sample size (total of 139 points). These results are not only useful for understanding the spatial distribution of soil texture in alluvial soils, but also provide valuable quantitative information for precision agriculture, soil management and studies on environmental processes affected by surface and subsurface soil textures.  相似文献   

19.
Applying a combination of classical and geostatistical methods, we identified soil properties and their spatial variation in a 5-year grazed sand dune (GSD5) and a 20-year recovered sand dune (RSD20) in Horqin Sandy Land, northern China. The paper assesses the effect of grazing, topography and vegetation restoration on spatial heterogeneity of soil properties. The results showed that soil organic carbon, total nitrogen, very fine sand (0.1–0.05 mm) content and their coefficients of variation were lower in GSD5 than in RSD20, while soil water contents (0–20 cm and 20–40 cm depths) were higher in GSD5 than in RSD20. Geostatistical analysis revealed that the spatial structured variance accounted for the largest proportion of total sample variance in soil properties at the measured scale under grazing and restoration. The spatial autocorrelation ranges were 66.30 m for soil organic carbon and 50.80 m for total nitrogen in GSD5 less than those in RSD20 (70.00 m and 76.10 m, respectively), while the spatial autocorrelation ranges of soil particle size fractions and soil water contents in RSD20 were less than those in GSD5. Kriging-interpolated maps also showed that the heterogeneity of soil organic carbon and total nitrogen and their degree of patch fragmentation were higher in GSD5 than in RSD20. These results suggested that continuous grazing resulted in an increase in spatial variability of soil nutrient and a decrease in spatial variability of soil particle size fractions and soil water content. Soil organic carbon and total nitrogen of sand dunes are associated closely with soil particle size fractions, relative height of sampling site and vegetation cover. Spatial patterns of soil properties are most strongly related to grazing, topography and plant-induced heterogeneity in sand dune ecosystems prone to wind erosion.  相似文献   

20.
鄱阳湖沙山地区沙化土地特征及成因分析   总被引:7,自引:1,他引:6  
鄱阳湖沙山地区土地沙化属于南方荒漠化的一种典型类型,是在湖滨沙质阶地的基础上形成的,它既有别于北方的土地沙漠化,又区别于南方其它类型的荒漠化.基于野外调查的基础上对该地区土地沙化特征进行描述,同时从历史背景、当代气候特征以及鄱阳湖水位变化等几个方面对沙化的成因进行了分析.分析结果表明:(1)目前该地区土地沙化趋于变好态势;(2)历史上的海平面变化及气候特征成为鄱阳湖沙山形成的主要因素,而沙山又为该地区当代土地沙化提供了丰富的物质来源.(3)当代气候特征下,流水及固定风向的长期侵蚀为土地沙化提供了动力因素,而鄱阳湖水位的周期性变化,为土地沙化的物质循环提供了有利的环境.总的来说,鄱阳湖沙山地区的土地沙化是在历史地质地貌变迁、当代气候条件、湖泊变化以及人为活动等因素的共同作用下形成的独具特色的亚热带土地荒漠化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号