共查询到20条相似文献,搜索用时 11 毫秒
1.
Microorganisms play a key role in the response of soil ecosystems to the rising atmospheric carbon dioxide (CO2) as they mineralize organic matter and drive nutrient cycling. To assess the effects of elevated CO2 on soil microbial C and N immobilization and on soil enzyme activities, in years 8 (2006) and 9 (2007) of an open-top chamber experiment that begun in spring of 1999, soil was sampled in summer, and microbial biomass and enzyme activity related to the carbon (C), nitrogen (N) and phosphorus (P) cycling were measured. Although no effects on microbial biomass C were detected, changes in microbial biomass N and metabolic activity involving C, N and P were observed under elevated CO2. Invertase and dehydrogenase activities were significantly enhanced by different degrees of elevated CO2. Nitrifying enzyme activity was significantly (P < 0.01) increased in the August 2006 samples that received the elevated CO2 treatment, as compared to the samples that received the ambient treatment. Denitrifying enzyme activity was significantly (P < 0.04) decreased by elevated CO2 treatments in the August 2006 and June 2007 (P < 0.09) samples. β-N-acetylglucosaminidase activity was increased under elevated CO2 by 7% and 25% in June and August 2006, respectively, compared to those under ambient CO2. The results of June 2006 samples showed that acid phosphatase activity was significantly enhanced under elevated CO2. Overall, these results suggested that elevated CO2 might cause changes in the belowground C, N and P cycling in temperate forest soils. 相似文献
2.
Decomposition rates of the [2-14C]-glucose and [2-14C]-glycine in four different soils of the long-term field trial of Moscow were investigated in a 3-months laboratory experiment in which 14CO2 respiration was measured. A model with three decomposition components and two distribution parameters was developed and validated with the data of the experiment. The decay rate constants of free [2-14C]-glucose (4–32 day-1) were slower than those of [2-14C]-glycine (16–44 day-1). The calculated use efficiency for microbial biosynthesis of the second carbon atom was 47% for glucose and 31% for glycine. The potential half-life of labelled carbon in the microbial soil biomass ranged from 0.6 to 4.4 days, depending on the soil type and the initial amount of added substrate. The calculated total utilisation of carbon by the soil biomass from glycine was about 2–5 times lower than that of glucose.The modelled 14C incorporation into the microbial soil biomass reached its maximum on the first day of the incubation experiment and did not exceed 22% of the 14C input. Both of the investigated substances decomposed most rapidly in the soil samples from sites that have not being fertilised with organic or mineral fertilisers during an 81-years period. 相似文献
3.
Yasuhiro Usui Mahamed Ismail Mohammed Mowjood Tatsuaki Kasubuchi 《Soil Science and Plant Nutrition》2013,59(6):853-857
In the daytime, the CO2 concentration in the air close to the water surface of a ponded paddy field was lowest and it increased with the distance above the water surface, while an inverse relation was observed in the nighttime. On the other hand, the pH of the ponded water changed significantly throughout a day and was expected to affect atmospheric CO2 in the vicinity of the water surface, because the solubility of CO2 in water depends on the pH. In this study, we investigated the relationship between the changes in the pH of the ponded water and the response of the CO2 concentration in the air above the water. The pH of the ponded water of the paddy field increased in the daytime and decreased in the nighttime, so that the water was alkaline in the daytime and weakly acidic in the nighttime. We found that the daily changes in the atmospheric CO2 concentration gradient almost corresponded to the daily changes in pH. The increase of the pH of the ponded water in the daytime was due to the absorption of dissolved CO2 by photosynthetic bacteria and micro-algae within the ponded water. Furthermore, we compared the pH with RpH, defined as the pH at which the CO2 concentration of the water is in equilibrium with that of the air, to determine whether CO2 was absorbed by or emitted from the ponded water. In the daytime, the pH value of the ponded water was higher than that of the RpH, and the water could therefore absorb CO2 , whereas during the nighttime, since the pH value of the ponded water was lower than that of the RpH, the water was expected to emit CO2. These results show that the ponded water absorbed CO2 from the air above the water surface in the daytime and emitted CO2 in the nighttime. 相似文献
4.
湘北红壤丘岗稻田土壤有机碳、养分及微生物生物量空间变异 总被引:4,自引:0,他引:4
通过对湘北典型红壤丘岗254个稻田耕层样(01~8.cm)进行分析,比较了微地形对稻田土壤有机碳、氮、磷和微生物生物量的影响。结果表明,丘岗底部稻田土壤有机碳、全氮、微生物生物量碳、微生物生物量氮、可溶性氮含量分别比丘岗中下部稻田高14.6%1、3.6%、24.6%、20.4%和95.8%,丘岗中下部稻田土壤Olsen-P含量比丘岗底部稻田高33.3%,差异均达极显著水平(P0.01)。不同部位稻田土壤全磷、微生物生物量磷含量和有效磷库(微生物生物量磷与Olsen-P之和)含量差异不显著。此外,丘岗底部稻田土壤碳磷比、微生物生物量碳磷比和微生物商比丘岗中下部稻田高12.7%,28.5%,8.2%,其差异达显著(P0.05)或极显著(P0.01)水平。但微生物生物量氮/全氮、微生物生物量磷/全磷、土壤碳氮比和微生物生物量碳氮比差异不显著。 相似文献
5.
《Soil Science and Plant Nutrition》2013,59(6):769-773
Abstract An anaerobic incubation experiment was conducted to investigate methane (CH4) production potential in soil samples collected from a paddy field after exposure to free-air CO2 enrichment (FACE). The FACE experiment with two CO2 levels, ambient and ambient + 200 p.p.m.v CO2 during the rice growing season, was conducted at Shizukuishi, Iwate Prefecture, Japan. The soil was a wet Andosol. Soil samples were taken from the surface (0–1 cm) and the sub-surface (1–10 cm) soil layers 2 months after rice harvest. Sub-samples of the fresh soils were put into glass bottles and submerged under N2 gas headspace during the incubation. The results showed that, prior to incubation, the contents of total C and dissolved organic C (DOC) were significantly greater in FACE soil than ambient soil. During the incubation, CH4 production potential was approximately 2–4-fold higher in FACE soil than ambient soil and approximately 500–1,000-fold greater in surface soil than sub-surface soil. In general, the FACE soil contained more DOC than ambient soil, particularly in the surface soil layer. These findings suggest that FACE treatment exerted long-term positive effects on CH4 production and increased organic C content in this paddy soil, particularly in the surface soil layer. 相似文献
6.
Maxim Dorodnikov Yakov Kuzyakov Guido L.B. Wiesenberg 《Soil biology & biochemistry》2011,43(3):579-589
Turnover of C and N in an arable soil under Free Air Carbon Dioxide (FACE) experiment was studied by the use of 13C natural abundance and 15N-labeled fertilizers. Wheat was kept four growing seasons under ambient and elevated CO2 concentrations and fertilized for three growing seasons. Density fractionation of soil organic matter (SOM) allowed to track 13C and 15N in free particulate organic matter (fPOM; <1.6 g cm−3), particulate organic matter occluded within aggregates with two densities (oPOM 1.6, oPOM 1.6-2.0 g cm−3), and in mineral-associated organic matter (>2.0 g cm−3) fractions. Elevated CO2 and N fertilization did not significantly affect C and N contents in the bulk soil. Calculated mean residence time (MRT) of C and N revealed the qualitative differences of SOM density fractions: (i) the shortest MRTC and MRTN in fPOM confirmed high availability of this fraction to decomposition. Larger C/N ratio of fPOM under elevated vs. ambient CO2 indicated an increasing recalcitrance of FACE-derived plant residues. (ii) There was no difference in MRT of C and N between lighter and heavier oPOMs probably due to short turnover time of soil aggregates which led to oPOM mixing. The increase of MRTC and MRTN in both oPOMs during the experiment confirmed the progressive degradation of organic material within aggregates. (iii) Constant turnover rates of C in the mineral fraction neither confirmed nor rejected the assumed stabilization of SOM to take place in the mineral fraction. Moreover, a trend of decreasing of C and N amounts in the Min fraction throughout the experiment was especially pronounced for C under elevated CO2. Hence, along with the progressive increase of CFACE in the Min fraction the overall losses of C under elevated CO2 may occur at the expense of older “pre-FACE” C. 相似文献
7.
Owing to the continuously increasing concentration of atmospheric CO2, it has become a priority to understand if soil organic matter (SOM) will behave as a sink or a source of CO2 under future environmental changes. Although many studies have addressed this question, a clear understanding is still missing, particularly with respect to long-term responses. In this study, we quantified soil C stores and dynamics in relationship to soil aggregation and pool composition in a Californian chaparral ecosystem exposed for 6 years to a gradient of atmospheric CO2 concentrations, ranging from pre-industrial levels 250 to 750 μl l−1 CO2. Fossil fuel-derived CO2 depleted in 13C was used for the fumigation, thus providing a tracer of C input from the vegetation to the soil.Long-term CO2 exposure invariably affected soil aggregation, with a significant decrease in the macroaggregate fraction at highest CO2 levels relative to the other two size fractions (i.e. microaggregates and silt and clay). This soil structural change most likely reduced the stability and protection of SOM, and C content generally decreased in most fractions over the CO2 treatments, and induced faster turnover of recently fixed C at high CO2 levels. The strongest response was found in the C content of the microaggregates, which decreased significantly (P<0.05) with rising levels of CO2. We conclude that increasing atmospheric CO2 concentrations will decrease soil C in chaparral ecosystems, and that the microaggregate fraction is the most responsive to increasing concentrations of atmospheric CO2. 相似文献
8.
The interactive effects of moisture and organic amendments (farmyard manure (FYM), crop residue (CR) and green manure (GM) (Sesbania aculeata) on gaseous carbon (C) emission, soil labile C fractions, enzymatic activities and microbial diversity in tropical, flooded rice soil were investigated. The amendments were applied on equal C basis in two moisture regimes, that is, aerobic and submergence conditions. The CO2 production was significantly higher by 22% in aerobic than in submergence condition; on the contrary, the CH4 production was 27% higher under submergence condition. The labile C fractions were significantly higher in GM by 26% under aerobic and 30% under submergence conditions, respectively, than control (without any kind of fertilizer or amendments). Eubacterial diversity identified by PCR-DGGE method (polymerase chain reaction coupled with denaturant gradient gel electrophoresis) was higher under GM followed by FYM, CR, and control and it is pronounced in submerged condition. GM favored the labile C accumulation and biological activities under both submergence and aerobic conditions, which makes it most active for soil–plant interactions compared to other organic amendments. Considering environmental sustainability, the use of GM is the better adoptable option, which could enhance labile C pools, microbial diversities in soil and keep soil biologically more active. 相似文献
9.
紫色水稻土轻组有机质的季节动态研究 总被引:1,自引:0,他引:1
以位于重庆市北碚区西南大学试验农场(30°26′N,106°26′E)的紫色水稻土为研究对象,利用重液(NaI,密度1.8 g·cm-3)对土壤中轻组组分进行提取,对土壤中轻组有机质在整个油菜生长季的季节变化情况进行分析与讨论。结果表明:表层(0~30 cm)土壤轻组物质(LF)的含量为2.95%~5.51%,平均值为4.38%;土壤轻组有机碳含量(LFOC)和轻组氮含量(LFN)的变化范围分别为1.44~3.72 g·kg-1和0.08~0.17 g·kg-1,其平均值分别为2.79 g·kg-1和0.14 g·kg-1。LFOC具有明显的季节变化(P<0.05),其含量在油菜生长中期最高,其次是生长后期,而在生长初期最低;LFN的季节变化趋势与LFOC一致,但季节差异性不显著(P>0.05)。轻组有机碳分配比例(LFOC/SOC)的变化范围为9.21%~24.47%,具有明显的季节变化(P<0.05),其变化趋势与LFOC的季节变化一致;而轻组氮的分配比例(LFN/TN)变化范围为4.55%~12.58%,无明显的季节变化。轻组C/N比值季节变化范围为18.52~25.04,平均值为20.66,全土C/N比值的变化范围为9.04~14.36,平均值为11.66,说明轻组有机质的生物可利用性较土壤总有机质高。相关分析表明,轻组有机碳、氮含量分别与根系生物量、根系碳含量、根系氮含量呈极显著(P<0.01)或显著(P<0.05)正相关;回归分析表明,土壤轻组有机碳、氮含量变化的40%~60%可由根系生物量、根系碳氮含量决定,说明根系是调控紫色水稻土轻组有机碳、氮季节变化的主要生态因子。 相似文献
10.
Soil organic matter(SOM)in boreal forests is an important carbon sink.The aim of this study was to assess and to detect factors controlling the temperature sensitivity of SOM decomposition.Soils were collected from Scots pine,Norway spruce,silver birch,and mixed forests(O horizon)in northern Finland,and their basal respiration rates at five different temperatures(from 4 to 28℃)were measured.The Q_(10) values,showing the respiration rate changes with a 10℃ increase,were calculated using a Gaussian function and were based on temperature-dependent changes.Several soil physicochemical parameters were measured,and the functional diversity of the soil microbial communities was assessed using the MicroResp?method.The temperature sensitivity of SOM decomposition differed under the studied forest stands.Pine forests had the highest temperature sensitivity for SOM decomposition at the low temperature range(0–12℃).Within this temperature range,the Q_(10) values were positively correlated with the microbial functional diversity index(H'_(mic))and the soil C-to-P ratio.This suggested that the metabolic abilities of the soil microbial communities and the soil nutrient content were important controls of temperature sensitivity in taiga soils. 相似文献
11.
Fujiyoshi Shibahara Shigekazu Yamamuro Kazuyuki Inubushi 《Soil Science and Plant Nutrition》2013,59(2):167-178
The effects of annual application of rice straw or cow manure compost for 17–20 y on the dynamics of fertilizer N and soil organic N in Gley paddy fields were investigated by using the 15N tracer technique during the rice cropping season. The chloroform fumigation-extraction method was evaluated to determine the properties of soil microbial biomass under submerged field conditions at the tillering stage before mid-summer drainage, with special reference to the fate of applied NH4 +-15N. The transfer ratios from applied NH4 +-15N to immobilized N in soil and to uptake N by rice during given periods varied with the rice growth stages and were affected by organic matter application. The accumulated amounts of netmineralized soil organic N (net-Mj ), immobilized N (Ij ), and denitrified N (Dj ) during the cropping season were estimated to be 14.0–22.5, 6.3–11.2, and 3.4–5.3 g N m-2, respectively. Values of net-Mj and Ij were larger in the following order: cow manure compost plot > rice straw plot > plot without organic matter application, and their larger increase by the application of cow manure compost contributed to a decrease of the Dj values, as compared with rice straw application. Values of E N extra extractable soil total N after fumigation, increased following organic matter application, ranging from 2.1 to 5.4 g N m-2. Small residual ratios of applied 15N in the fraction E N at the end of the given period indicated that re-mineralization of newly-assimilated 15N through the easily decomposable fraction of microbial biomass had almost ended. Thus, the applicability to paddy field soils of the chloroform fumigation-extraction method was confirmed. 相似文献
12.
L. DENDOOVEN E. RAMREZ-FUENTES R. ALCNTARA-HERNNDEZ C. VALENZUELA-ENCINAS K. B. SNCHEZ-LPEZ M. LUNA-GUIDO V. M. RUZ-VALDIVIEZO 《土壤圈》2015,25(2):230-239
Flooding an extremely alkaline(pH 10.6) saline soil of the former Lake Texcoco to reduce salinity will affect the soil carbon(C)and nitrogen(N) dynamics.A laboratory incubation experiment was done to investigate how decreasing soil salt content affected dynamics of C and N in an extremely alkaline saline soil.Sieved soil with electrical conductivity(EC) of 59.2 dS m-1 was packed in columns,and then flooded with tap water,drained freely and conditioned aerobically at 50%water holding capacity for a month.This process of flooding-drainage-conditioning was repeated eight times.The original soil and the soil that had undergone one,two,four and eight flooding-drainage-conditioning cycles were amended with 1000 mg glucose-14C kg-1 soil and 200 mg NH4+-N kg-1soil,and then incubated for 28 d.The CO2 emissions,soil microbial biomass,and soil ammonium(NE4+),nitrite(NO2-) and nitrate(NO3-) were monitored in the aerobic incubation of 28 d.The soil EC decreased from 59.2 to 1.0 dS m1 after eight floodings,and soil pH decreased from 10.6 to 9.6.Of the added 14C-labelled glucose,only 8%was mineralized in the original soil,while 24%in the soil flooded eight times during the 28-d incubation.The priming effect was on average 278 mg C kg-1 soil after the 28-d incubation.Soil microbial biomass C(mean 66 mg C kg-1 soil) did not change with flooding times in the unamended soil,and increased 1.4 times in the glucose-NH4+-amended soil.Ammonium immobilization and NO2- concentration in the aerobically incubated soil decreased with increasing flooding times,while NO3- concentration increased.It was found that flooding the Texcoco soil decreased the EC sharply,increased mineralization of glucose,stimulated nitrification,and reduced immobilization of inorganic N,but did not affect soil microbial biomass C. 相似文献
13.
小麦和玉米秸秆腐解特点及对土壤中碳、氮含量的影响 总被引:33,自引:4,他引:33
通过室内模拟培养试验,揭示了不同水分条件下小麦和玉米秸秆在土壤中的腐解特点及对土壤碳、氮含量的影响。结果表明,1)水分条件对有机物质腐解的影响较大,在32 d的培养期间,相对含水量为60%(M60)时,土壤CO2释放速率始终低于含水量80%(M80)的处理。M60条件下释放的CO2-C量占秸秆腐解过程中释放碳总量的40.1%,而M80条件下达到51.5%;M60条件下,添加秸秆土壤中有机碳含量平均提高2.24 g/kg,显著高于M80条件下的1.43 g/kg。2)添加玉米秸秆的土壤,在培养期内CO2释放速率始终高于小麦秸秆处理,CO2-C累积释放量和有机碳净增量分别为408.35 mg/pot和2.12 g/kg;而小麦秸秆处理分别仅为378.94 mg/pot和1.56 g/kg,两种秸秆混合的处理介于二者之间。3)与未添加秸秆相比,土壤中添加小麦或玉米秸秆后,土壤有机碳、微生物量碳、全氮和微生物量氮含量均显著提高,且数量上总体趋势表现为:玉米秸秆两种秸秆混合小麦秸秆。可见,适宜水分条件有利于秸秆腐解过程中秸秆中碳向无机碳方向转化,而不利于向土壤有机碳方向转化;且玉米秸秆比小麦秸秆更易腐解。秸秆在土壤中腐解对补充土壤碳、氮作用很大,可改善土壤微生物生存条件,提高土壤质量。 相似文献
14.
《Communications in Soil Science and Plant Analysis》2012,43(22):2867-2882
ABSTRACT Elevated concentrations of carbon dioxide (e[CO2]) affect plant growth and physiological characteristics, including metal accumulation, and the activity of anti-oxidant enzymes. These effects were investigated in cadmium (Cd) tolerant wheat (Triticum aestivum L.) and sorghum (Sorghum bicolor (L.) Moench.) cultivars. Plants were grown at the ambient and elevated CO2 levels, with four concentrations of Cd (0, 10, 20 and 40 mg kg?1) added to the soil. After 60 days, subsamples were tested for chlorophylls and carotenoids, protein, enzyme activities and morphological characteristics. Results showed that e[CO2] increased plant height, leaf area, and the dry weight of shoots and roots (P < 0.01). In addition, it decreased the Cd concentration in the shoots and roots of wheat, and increased the same concentrations for sorghum. With increasing Cd, the activities of the anti-oxidants, SOD and GSH-px increased in wheat. The differences in enzyme activity parallel the changes in Cd concentration in the plants of both species. 相似文献
15.
Soil cultivation changes and usage of agricultural wastes can have profound impacts on greenhouse gas (GHG) emission from soil. In this study, the effects of soil cultivation and organic amendment on GHG emission were investigated using aerobic incubation. Surface soil (0–20 cm) from (1) rice–legume consecutive rotation (Rice) and (2) recently (<3 years) converted from rice field to plastic-covered intensive vegetable and flower production (VegC) were collected in Kunming, P.R. China. Rose (Rosa rugosa Thunb.) residues and cattle manure were applied at 5% by weight. Results indicated that N2O and CO2 fluxes were significantly influenced by soil cultivation, organic amendment, incubation time and their interaction (p <0.05). Applying cattle manure increased, while rose residue decreased, cumulative N2O emissions from soil (84 days). Rose residue application significantly increased cumulative CO2 emissions with peak values of 6371 (Rice) and 7481 mg kg?1 (VegC), followed by cattle manure addition figure of 2265 (VegC) and 3581 mg kg?1 (Rice). Both were significantly higher (p <0.05) than the un-amended Control at 709 (VegC) and 904 mg kg?1 (Rice). Our study demonstrates that a low C/N ratio in cattle manure is better than a high C/N ratio in rose residue in regard to reducing the global warming potential of agricultural soil. 相似文献
16.
Steffen Kolb Antonio Carbrera Claudia Kammann Peter Kämpfer Ralf Conrad Udo Jäckel 《Biology and Fertility of Soils》2005,41(5):337-342
In the Giessen free-air CO2 enrichment (GiFACE) experiment, 5 years of CO2 enrichment led to decreased CH4 uptake rates of the investigated meadow soil. In soils, CH4 is mainly oxidised by methanotrophic bacteria. In the present study, abundances of methanotrophic bacteria and total bacteria in soil samples from the GiFACE experiment were quantified by applying pmoA- and 16S rRNA gene-targeted real-time PCR and fluorescence in situ hybridisation (FISH). Methanotrophic bacteria of the Methylosinus group (Alphaproteobacteria) and the Methylobacter/Methylosarcina group (Gammaproteobacteria) were detectable by real-time PCR as well as by FISH. Both quantitative analytical approaches revealed that abundances of either bacteria or methanotrophic bacteria in soil samples from sites under CO2-enriched atmosphere were decreased. Compared to ambient site, only 46 and 30.5% of methanotrophic bacteria and 38 and 63.2% of total bacterial cell numbers could be detected under CO2-enriched atmosphere by FISH and real-time PCR, respectively. These results suggest that significantly decreased abundances of methanotrophic bacteria could explain reduced CH4 uptake rates. 相似文献
17.
High concentrations of Se in soil might have negative effects on microorganisms. For this reason, the effect of organic substrate
addition (glucose + maize straw) on Se volatilisation in relation to changes in microbial biomass and activity indices was
investigated using an artificially Se-contaminated soil. Microbial biomass N was reduced on average by more than 50% after
substrate addition, but adenylate energy charge (AEC) and metabolic quotient qCO2 were both increased. The Se content decreased by nearly 30% only with the addition of the organic substrate at 25°C. No significant
Se loss occurred without substrate at 25°C or with substrate at 5°C. In the two treatments with substrate addition, the substrate-derived
CO2 evolution was about 30% lower with Se addition than without. In contrast, Se had no effect on any of the other soil microbial
indices analysed, i.e. microbial biomass C, microbial biomass N, adenosine triphosphate (ATP), AEC, ATP-to-microbial biomass
C, and qCO2. 相似文献
18.
Soil pore size distribution(PSD) directly influences soil physical,chemical,and biological properties,and further knowledge of soil PSD is very helpful for understanding soil functions and processes.In this study,PSD of three clayey soils collected from the topsoil(0-20 cm) of Vertisols in Northern China was analyzed using the N_2 adsorption(NA) and mercury intrusion porosimetry(MIP) methods.The effect of soil organic matter(SOM) on the PSD of clayey soils was also evaluated.The differential curves of pore volume of clayey soils by the NA method exhibited that the pores with diameter 0.01 μm accounted for more than 50%in the pore size range of 0.001 to 0.1 μm.The differential pore curves of clayey soils by the MIP method exhibited three distinct peaks in pore size range of 60 to 100,0.3 to 0.4 and 0.009 to 0.012 μm,respectively.In the three clayey soils,the ultramicropores(5-0.1μm) were determined to be the main pore class(on average 35.5%),followed by macropores( 75 μm,31.4%),cryptopores(0.1-0.007μm,16.0%),micropores(30-5 μm,9.7%) and mesopores(75-30 μm,7.3%).The SOM greatly affected the pore structure and PSD of aggregates in clayey soils.In particular,SOM removal reduced the volume and porosity of 5-100 μm pores while increased those of 5 μm pores in the 5-2 and 2-0.25 mm aggregates of clayey soils.The increase in the volume and porosity of 5 μm pores may be attributed to the disaggregation and partial emptying of small pores caused by the destruction of SOM. 相似文献
19.
Modifications of humic (HA) and fulvic (FA) acids in their solutions and in sterile soil by microfungal species and two well-known HA degraders were studied by measurement of total oxidizable carbon (OC), absorbances, enzyme activities and CO2 release. The effect of glucose on FA and HA, and also minerals on FA utilization was also observed. Microfungi affected HA more than FA. Common microfungal species decolorized HA and decreased their molecular size (evaluated in terms of A4/A6 ratio). Some of them decreased aromaticity of HA and FA as the only carbon sources. They did not affect OC, although released CO2 from FA. Under higher availability of mineral nutrients, the FA aromaticity increased and FA decolorization decreased. The molecular size of HA decreased in the presence of glucose. In the FA medium complemented by minerals, the known basidiomycete HA degrader, Trametes versicolor, decreased the amount of aromatic compounds in contrast to microfungal species Alternaria alternata, Clonostachys rosea, Exophiala cf. salmonis, Fusarium coeruleum, F. redolens, Penicillium canescens, Phoma sp. and another basidiomycete Phanerochaete chrysosporium. No microfungal species exhibited lignin peroxidase activity. On the other hand, activities of manganese peroxidase (MnP) were recorded for all species incubated in FA. Carbon dioxide produced from soil inoculated by microfungi negatively correlated with the decolorization, aromaticity and OC of/in FA reisolated from the soil. The results support the hypothesis that soil microfungi can attack both HA and FA and can represent an important factor in their transformations in arable soils. The enzyme involved in FA modifications is probably fungal MnP. We enriched a group of known HA and FA degraders and showed some abilities of a few frequent soil microfungal species. This can be one of the first but important step towards learning the functioning of carbon release from the big reservoir represented by humic substances in arable soils. 相似文献
20.
The effects of H2 gas treatment of an agricultural soil cultivated previously with a mixture of clover (Trifolium pratense) and alfalfa (Medicago sativa) on CO2 dynamics and microbial activity and composition were analyzed. The H2 emission rate of 250 nmol H2 g−1 soil h−1 was similar to the upper limit of estimated H2 amounts emitted from N2 fixing nodules into the surrounding soil ([Dong, Z., Layzell, D.B., 2001. H2 oxidation, O2 uptake and CO2 fixation in hydrogen treated soil. Plant and Soil 229, 1-12.]). After 1 week of H2 supply to soil samples simultaneously with H2 uptake net CO2 production declined continuously and this finally led to a net CO2 fixation rate in the H2-treated soil of 8 nmol CO2 g−1 soil h−1. The time course of H2 uptake and CO2 fixation in the soils corresponded with an increase in microbial activity and biomass of the H2-treated soil determined by microcalorimetric measurements, fluorescence in situ hybridization analysis (FISH) and DNA staining (DAPI). Shifts in the bacterial community structure caused by the supply of H2 were recorded. While the H2 treatment stimulated β-and γ-subclasses of Proteobacteria, it had no significant effect on α-Proteobacteria. In addition, FISH-detectable bacteria of the Cytophaga-Flavobacterium-Bacteroides phylum increased in numbers. 相似文献