首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to evaluate the combined effects of salinity stress and Zinc (Zn) applications on wheat growth, an experiment was conducted with the treatments included four Zn levels (0, 10, 20, and 40 mg/kg of dried soil) and three levels of sodium chloride (NaCl) salinity of irrigation water (0, 100, and 200 mM NaCl). Salinity caused a significant reduction in chlorophyll a and b content. The activity of catalase (CAT), superoxide dismutase (SOD), and glutathione reductase (GR) was enhanced as salinity level was increased. The significant enhancement in concentration of sodium due to the salinity was alleviated by Zn addition. Potassium content was increased by Zn treatments. A substantial increase was observed in leaf Zn concentration as the applied level of Zn was increased. Overall, these results indicate some positive and negative interactions of salinity and Zn application, which could be helpful in management of the saline soil and water.  相似文献   

2.
Growth, activity of antioxidant enzymes viz. glutathione reductase (GR), superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and guaiacol peroxidase (GPX), and some metabolic processes related to ammonium metabolism were investigated in a salt‐tolerant Spatina alterniflora. In comparison to 0 mM–NaCl treatment, growth of S. alterniflora plant increased significantly at 200 mM NaCl, but was highly inhibited at 500 mM NaCl. Ammonium concentration in the leaves and roots increased 2.1–3.4 times when plants were treated with 500 mM NaCl. Under 200 mM NaCl, antioxidant‐enzyme activities increased, however, at 500 mM the antioxidant system was unable to compensate reactive oxygen species induced by NaCl. At this high level of salinity, ammonium production through nitrate reductase (NR) was inhibited, but no significant changes in the activities of glutamine synthetase (GS) or glutamate dehydrogenase (GDH) were found. We conclude that the accumulation of ammonium under high salt stress was not due to inhibition of the assimilatory activities of GS or GDH. Ammonia accumulation under high salinity may result from amino acid and protein catabolism activated by reactive oxygen species (ROS) and/or a lack of carbon skeletons to incorporate ammonium into organic molecules due to a decrease in photosynthetic activity in salt‐stressed plants.  相似文献   

3.
The effect of potassium sulfate (K2SO4) on adaptability of sugarcane to sodium chloride (NaCl) stress was investigated under hydroponic conditions. Two sugarcane cultivars, differing in salinity tolerance, were grown in half strength Johnson's solution at 80 mM NaCl with 0, 2.5 and 5.0 mM potassium (K) as K2SO4. Salinity disturbed above and below-ground dry matter production in both sugarcane cultivars. However, salt sensitive cultivar showed more reduction in shoot dry matter and higher root:shoot ratio compare to the salt tolerant cultivar under. Application of K significantly (p < 0.05) improved dry matter production in both sugarcane cultivars. The concentration of Na was markedly increased with increasing salinity; however, the application of K reduced its uptake, accumulation and distribution in plant tissues. Salinity induced reduction in K concentration, K-uptake, K utilization efficiency (KUE) and K:Na ratio in both sugarcane cultivars was significantly improved with the addition of K to the saline growth medium.  相似文献   

4.
Alfalfa (Medicago sativa L.) yield and nutrient contents may be affected under salinity condition. Thus, this experiment was conducted to determine the effect of three salinity levels (60, 120, and 180 mM NaCl) on shoot and root dry weights, and mineral contents of three alfalfa cultivars. With the increasing salinity levels sodium (Na) and magnesium (Mg) contents increased; but potassium (K), nitrogen (N), phosphorous (P), calcium (Ca), zinc (Zn), and copper (Cu) contents and root and leaf weights decreased; however, changes in these traits depended on cultivar and salinity level. However, Rehnani, a tolerant cultivar, had the lowest Na and Mg contents and the highest K, N, P, Ca, Zn, and Cu contents and dry weights under all of the salinity levels. Moreover, leaf dry weight and leaf P content had the highest correlation with salt tolerance suggesting that these traits may be used as a marker for selecting salts that are tolerant among genotypes in alfalfa.  相似文献   

5.
The effects of salt stress on plant growth parameters, lipid peroxidation and some antioxidant enzyme activities [superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7), glutathione reductase (GR; EC EC 1.6.4.2) and ascorbate peroxidase (APX, EC 1.11.1.11) activity] were studied in the leaves of mustard. Plants were exposed to two different concentrations of NaCl stress (100 and 150 mM) for 45 days and were sprayed with GA3 (75 ml pot?1, conc. 75 mg l?1) once a week. Salt stress resulted in decrease in the growth and biomass yield of mustard but the exogenous application of GA3 enhanced these parameters significantly. Application of GA3 counteracted the adverse effects of NaCl salinity on relative water content, electrolyte leakage and chlorophyll (Chl) content. GA3 was sufficient to attenuate partially the stimulatory effect of NaCl supply on proline and glycinebetaine biosynthesis. GA3 reduced lipid peroxidation in the leaves, which was increased during salt stress. The activity of all the antioxidant enzymes was increased significantly during salt stress in mustard. The exogenous application of GA3 decreased the enzyme activity. The results of the present study indicate that usage of GA3 reduces the harmful effects of salinity and increases resistance to salinity in mustard plant.  相似文献   

6.
We studied the effects of salinity stress on biomass production, photosynthesis, water relations, and activity of antioxidant enzymes in two cultivars of common bean (‘HRS 516’ and ‘RO21’). Seedlings were raised in nutrient solution supplemented with increasing concentrations of sodium chloride (NaCl) at 0, 50, and 100 mM. After 10 days of salinity treatment, the plants were sampled to determine the enzyme activity, protein content and dry biomass. Plant biomass and activities of most antioxidant enzymes were adversely affected by salinity stress. Leaf osmotic potential was found to be directly proportional to salt stress. The cultivar, ‘HRS 516’ accumulated less sodium (Na+) than ‘RO21’. Under salinity, superoxide dismutase (SOD) enzyme activity increased 3 folds in both bean cultivars (‘HRS 516’ and ‘RO21’) compared to other antioxidants (APX, CAT, and GR). While not neglecting other possible factors, photosynthesis and biomass remains reliable indicators of plant functioning in response to salinity stress.  相似文献   

7.
Two cucumber cultivars (Cucumis sativus L.) exposed to three cadmium (Cd) concentrations (0, 1, and 5 μM) were supplemented or un-supplemented with silicon (Si) (1 mM). Exposure to 1 μM Cd had no effect on shoot and root dry mass, whereas exposure to 5 μM Cd significantly reduced plant growth. Addition of Si stimulated the growth of Cd-treated cucumber. Exposure to 5 μM Cd significantly increased shoot Cd concentration and decreased iron (Fe) and zinc (Zn) concentration. Plants supplied with Si had lower Cd and higher Zn and Fe compared with unsupplied plants. Exposure to Cd resulted in a higher production of malondialdehyde (MDA). Si nutrition partly ameliorated lipid peroxidation induced by Cd toxicity. Activities of superoxide dismutase (SOD), guaiacol peroxidase (GPX), and catalase (CAT) decreased, whereas ascorbate peroxidase (APX) activity increased in response to 5 μM Cd. Induction of APX activity might play an important role in the response of cucumber to Cd toxicity.  相似文献   

8.
The effect of the micronutrient manganese (Mn) on the physiological performance of green gram [Vigna radiata (L.) R. Wilczek] under saline condition was studied in the present work. Green gram was grown under controlled conditions and treated with different concentrations of sodium chloride (NaCl): 100, 200, and 300 mM. The plant samples were analyzed from 25 to 65 days of plant growth at every 10-day interval. Significant difference was observed in leaf area index, membrane stability index, nitrate reductase enzyme activity, total chlorophyll, and carotenoid content in treated plants. A drastic reduction was recorded at 200 and 300 mM NaCl treated plants in the parameters. The concentration 100 mM resulted in a slight increase of the parameters. Foliar application of Mn as manganese chloride (MnCl2) was found to improve the physiological parameters in green gram at 200 and 300 mM salinity level and was useful in alleviating the detrimental effects of NaCl.  相似文献   

9.
Three rice genotypes, IR 74802, IR 73104 and IR 72593, along with FL 478 and IR 29 as resistant and susceptible controls, respectively, were subjected to 21 days' salinity stress at the seedling stage in modified yoshida solution with two salt levels (60 and 120 mM NaCl). The results indicated that there was a profound increase in proline and ascorbic acid levels, and in the activity of nitrate reductase and antioxidant enzymes, i.e. catalase, peroxidase and ascorbate peroxidase, as well as malondialdhyde and membrane stability index, which were associated with salt tolerance. Salt stress had a significant and drastic effect on all parameters when the salinity level increased to 120 mM NaCl. The increased enzyme activity was directly related to an increased membrane stability index, as in IR 72593, which is identified as the most tolerant among the genotypes tested. It is clearly confirmed that predicting tolerance at the early seedling stage is the best way to assess the salinity tolerance level by utilizing physiological parameters, especially antioxidant enzyme activities which are found to be closely associated with salinity tolerance. Physiological adaptation of the plant to NaCl salt stress resulted in enhanced activity of stress-related enzymes and low sodium uptake in tolerant genotypes.  相似文献   

10.
This study investigated the effects of foliar application of normal and nano-sized zinc oxide on the response of sunflower cultivars to salinity. Treatments included five cultivars (‘Alstar’, ‘Olsion’, ‘Yourflor’, ‘Hysun36’ and ‘Hysun33’), two salinity levels [0 and 100 mM sodium chloride (NaCl)], and three levels of fertilizer application. Fertilizer treatments were the foliar application of normal and nano-sized zinc oxide (ZnO). Foliar application of ZnO in either forms increased leaf area, shoot dry weight, net carbon dioxide (CO2) assimilation rate (A), sub-stomatal CO2 concentration (Ci), chlorophyll content, Fv/Fm, and Zn content and decreased Na content in leaves. The extent of increase in chlorophyll content, Fv/Fm and shoot weight was greater as nano-sized ZnO was applied to the normal form. The results show that the nano-sized particles of ZnO compared to normal form has greater effect on biomass production of sunflower plants.  相似文献   

11.
The response of four cultivars of pepper (Capsicum annuum L.), Yolo Wonder, HDA 103, HDA 174, and SC 81 to sodium chloride (NaCl) salinity was studied in hydroponic culture by comparing three different NaCl concentrations: 0 mM, 50 mM, and 100 mM. For all cultivars, growth was reduced when NaCl concentration in the growth medium increased. However, cultivar behavior as a function of the NaCl concentration was not homogenous. The HDA 174 displayed the best growth when NaCl concentration was high, while Yolo Wonder was the most sensitive to salinity. The SC 81 showed intermediate behavior since its growth was low at all treatment levels, but it reacted only slightly to increasing salinity. The analytical results showed that growth was very closely linked to the zinc (Zn) content of the blade: the best growth was observed when the percentage of Zn in the blade was low, whereas high Zn content was linked to sharp reduction in growth. The most tolerant cultivar, HDA 174, showed an original response: the sodium (Na) was strongly accumulated in the leaf blade, whereas the other cultivars tended to avoid Na accumulation. This corresponded to an adaptation observed for halophyte plants.  相似文献   

12.
《Journal of plant nutrition》2013,36(10-11):2165-2176
Abstract

The effects of Fe limitation and bicarbonate addition to the nutrient medium on the organic acid metabolism were investigated in the root tips of various grapevine genotypes. Cuttings of two limestone‐tolerant and two limestone‐susceptible Vitis genotypes were grown for four weeks in nutrient solutions containing 10 or 0.5 µM Fe. The effect of bicarbonate addition (5 mM) was studied for two of these genotypes. Compared to 10 µM, Fe limitation (0.5 µM) significantly increased citrate concentration in root tips after 2 weeks, and malate concentration after 4 weeks. When Fe limitation and bicarbonate addition were combined, citrate and malate concentrations were significantly increased after 2 weeks. Fe limitation or addition of 5 mM bicarbonate had a larger effect on citrate than on malate concentrations. Addition of 5 mM bicarbonate discriminated more clearly tolerant and susceptible genotypes than Fe limitation. High malate and citrate concentrations in the roots were associated to high PEPC activities. These results confirm that root organic acid metabolism is involved in grapevine response to Fe deficiency stress. If verified on a larger range of genotypes, a procedure using bicarbonate effect on root tip citrate concentration could be proposed to screen limestone‐tolerant Vitis rootstocks.  相似文献   

13.
Olive trees (Olea europaea L.) are considered moderately tolerant to salinity, with clear differences found among cultivars. One‐year‐old self‐rooted olive plants of the Croatian cv. Oblica and Italian cv. Leccino were grown for 90 d in nutrient solutions containing 0, 66, or 166 mM NaCl, respectively. The shoot length and the number of nodes and leaves for both cultivars were not affected by salinity up to 66 mM NaCl. However, at 166 mM NaCl, growth of Leccino was reduced earlier and to a higher extent than growth of Oblica. After 10 d of exposure to 66 and 166 mM NaCl, increased activity of superoxide dismutase (SOD) was observed in Leccino, whereas there was almost no response in Oblica. Reduced SOD activity in Leccino at 166 mM NaCl was observed after prolonged stress (90 d), whereas in Oblica SOD was increased at 66 mM compared to control or 166 mM NaCl. Electrolyte and K+ leakage were increased and relative water content decreased as NaCl concentration increased with similar intensity of response measured in both cultivars. Oblica exhibited an ability to keep a higher K+ : Na+ ratio at all salinity levels compared to Leccino, but since no difference was found in leaf K+ concentration, this was mainly achieved by less Na+ ions reaching the younger leaves. The antioxidative system represents a component of the complex olive salt‐tolerance mechanism, and it seems that the role of SOD in protection from oxidative stress depends on sodium accumulation in leaves.  相似文献   

14.
Abstract

Growth and nutrient acquisition in sour orange (Citrus aurantium L.) were studied under salt stress in vitro. Microshoots were transferred to Murashige and Skoog (MS) solid proliferation media containing 8.9 µM BA (6‐Benzyladenine) and 0.5 µM NAA (naphthaline acetic acid). Salinity was induced by incorporating different concentrations [0.0 (control), 50, 100, 150, 200, or 300 mM] of sodium chloride (NaCl) to the culture media. Microshoots were exposed to direct or gradual salinity shock. Slight reduction was obtained in growth (shoot length, shoot number, leaf number, and dry weight) when microshoots were directly exposed to NaCl stress from 0.0 to 150 mM. At 200 and 300 mM NaCl, growth parameters were adversly affected and microshoots died thereafter. Gradual NaCl shock was studied by transferring microshoots sequentialy every week to different NaCl concentraions (0.0, 50, 100, 150, 200, or 300 mM). Growth was monitored at each concentration until the end of the last week of incubation at 300 mM NaCl. Growth (shoot length, shoot number or leaf number, and dry weight) generally decreased with elevated salinity level, but was less impaired than the direct shock. The percentage of shoot content of phosphorus (P), potassium (K), and iron (Fe) in the direct Nail shock experiment were reduced with elevated salinity level. This reduction was less in the gradual shock treatments. Sodium Chloride level strongly reduced Fe acquisition under both direct and gradual salinity stress. Tissue contents of sodium (Na), zinc (Zn), and manganese (Mn) were increased with the imposed salinity treatments in both experiments.  相似文献   

15.
The interactive effect of salicylic acid and sodium chloride (NaCl) salinity on wheat (Triticum aestivum L.) cv. ‘Inqlab’ (salt‐sensitive) and cv. ‘S‐24’ (salt‐tolerant) was studied in a sand‐culture pot experiment in a net house. Wheat seeds soaked in water and 100 ppm salicylic acid solution for 6 h were sown in sand salinized with 0, 50, and 100 mM NaCl. Pots were irrigated with quarter‐strength Hoagland's nutrient solution. Fourteen‐day‐old seedlings were harvested, and growth parameters (leaf and root length, leaf and root dry weight) were recorded. Chlorophyll a and b content; soluble sugar (reducing, nonreducing, and total sugars) content; nitrate (NR) and nitrite reductase activity (NiR); soluble proteins, and total soluble amino acid content of fresh leaves were determined. Sodium chloride salinity significantly reduced growth parameters. Salicylic acid treatment alleviated the adverse salinity effect on growth. Salinity decreased the chlorophyll a and b content and chlorophyll a/b ratio in both varieties, but a decrease in the chlorophyll a/b ratio was less in salt‐tolerant wheat variety (‘S‐24’), which could be a useful marker for selecting a salt‐tolerant variety. Salinity (NaCl) stress considerably increased the accumulation of reducing sugars, nonreducing sugars, and total soluble sugars in leaves of 14‐day‐old wheat seedlings of both varieties. The salt‐tolerant variety (‘S‐24’) accumulated a higher sugar content, which also could be a useful marker for selecting a salt‐tolerant variety for slat‐affected areas. Salinity caused a reduction in nitrate reductase and nitrite reductase activity. The salt‐tolerant variety (‘S‐24’) showed resistance to a decrease of nitrate reductase activity under salinity. This could be a useful criterion for selecting salt‐tolerant varieties. In response to salinity, wheat seedlings accumulated soluble proteins and amino acids, which might reflect a salt‐protective mechanism.  相似文献   

16.
Abstract

The influence of silicon (Si) (2.5 mM), sodium chloride (NaCl) (100 mM), and Si (2.5 mM) + NaCl (97.5 mM) supply on chlorophyll content, chlorophyll fluorescence, the concentration of malondialdehyde (MDA), H2O2 level, and activities of superoxide dismutase (SOD; E.C.1.15.1.1.), ascorbate peroxidase (APx; E.C.1.11.1.11.), catalase (CAT; E.C.1.11.1.6.), guaiacol peroxidase (G-POD; E.C.1.11.1.7.) enzymes, and protein content were studied in tomato (Lycopersicon esculentum Mill c.v.) leaves over 10-day and 27-day periods. The results indicated that silicon partially offset the negative impacts of NaCl stress with increased the tolerance of tomato plants to NaCl salinity by raising SOD and CAT activities, chlorophyll content, and photochemical efficiency of PSII. Salt stress decreased SOD and CAT activities and soluble protein content in the leaves. However, addition of silicon to the nutrient solution enhanced SOD and CAT activities and protein content in tomato leaves under salt stress. In contrast, salt stress slightly promoted APx activity and considerably increased H2O2 level and MDA concentration and Si addition slightly decreased APx activity and significantly reduced H2O2 level and MDA concentration in the leaves of salt-treated plants. G-POD activity was slightly decreased by addition of salt and Si. Enhanced activities of SOD and CAT by Si addition may protect the plant tissues from oxidative damage induced by salt, thus mitigating salt toxicity and improving the growth of tomato plants. These results confirm that the scavenging system forms the primary defense line in protecting oxidative damage under stress in crop plants.  相似文献   

17.
Turfgrass cover is an inevitable component in the urban landscapes of the United Arab Emirates. Tolerance to abiotic stress like salt, drought, and high temperature is a potential factor to be considered in the selection of turfgrass for the landscapes in the arid regions. Three Seashore paspalum genotypes, four Bermudagrass cultivars along with tall fescue as a control were screened for enzymatic changes under four different saline irrigation levels of 5,000, 10,000, 15,000, and 20,000 mg L?1 of salinity. Irrigation with potable water served as the control. Turfgrasses were maintained in a field experiment under factorial randomized block design for a period of two years under sustained saline conditions by working out the leaching fraction to maintain the precise level of salinity in each treatment throughout the experimental period. The activities of antioxidant enzymes such as superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POD), polyphenol oxidase (PPO), and catalase (CAT) were assayed in each of the saline water treated turfgrass types. The SOD activity was found to be high in Yukon (bermudagrass) and Sea Dwarf paspalum. In the paspalum group, Salam and Sea Dwarf showed the highest SOD activity under saline condition. In Bermuda types, Yukon and SR 9554 showed the highest SOD activity compared to other bermuda types. Compared to other cultivars, Sea Isle 2000 (Paspalum type), SR 9554, and Yukon (Bermuda types) exhibited more APX activity without any significant differences among themselves. There was an elevated activity of POD initially, followed by gradual reduction upon increasing the salinity level. Salam cultivar maintained stable POD activity even at the elevated salinity levels. The paspalum types showed relatively high level of PPO activity compared to other types under salinity. Yukon cultivar showed a significantly higher activity of PPO when the salinity level was raised from 15,000 to 20,000 mg L?1. A significant increase with respect to CAT activity was exhibited in Sea Dwarf under elevated level of salinity. Saline water irrigation brought about a significant effect on the antioxidant enzyme systems to impart oxidative stress tolerance in turfgrass species.  相似文献   

18.
The impact of salinity (0–400 mM NaCl) on the germination of four Tunisian accessions (Tabarka, Mahdia, Sfax, and Jerba) of the halophyte Cakile maritima was assessed. Moderate salinity (50–150 mM NaCl) slightly inhibited the germination of Sfax, Mahdia, and Jerba seeds, since more than 75% of the sown seeds germinated. Salt adverse impact was more pronounced in Tabarka seeds, which showed significantly less germination capacity, even under salt‐free conditions (40%). Although increasing salinity drastically inhibited the germination in Tabarka, Sfax was the most tolerant accession, especially at 200–300 mM sodium chloride (NaCl). Assessing germination kinetics using a mathematical model indicated that high salinity impaired and delayed the germination process. Such an effect resulted from the combination of osmotic and toxic components, especially at the greatest concentrations (300–400 mM NaCl). These findings point out that the successful establishment of this halophyte at the earliest ontogeny stages is both accession‐ and salt‐dependent.  相似文献   

19.
Twenty genotypes of wheat resulting from different crossings between some wheat parental lines were compared for salt stress (control and gradually increasing salinity). Ion content in root, shoot, and flag leaves and also the root and shoot dry weights were measured. Based on these results, eight genotypes among the twenty were selected as susceptible, semi-tolerant, and tolerant genotypes for evaluating their biochemical characteristics. Results indicated that concentration of sodium (Na+) and potassium (K+) in shoot, root, and flag leaves of stressed plants were, respectively, higher and lower than that in the non-stressed plants. Overall, salinity stress caused reductions in root and shoot dry weights and relative water content (RWC), but enhancement in pigments content. Concentrations of the total carbohydrate, total protein, and soluble proline were higher in plants under salt stress condition. Salinity stress induced higher production in hydrogen peroxide (H2O2) and malondialdehyde (MDA) and also higher activity of catalase (CAT) and ascorbic peroxidase (APX) as antioxidant enzymes, but lower activity of peroxidase (POD). Genotypes 4s, Arg, and 386dh had generally higher enzymatic activity and other tolerant indices, and hence they can be introduced as tolerant genotypes for more study by the plant breeders. On the other hand, genotype 278s was most susceptible based on the most results.  相似文献   

20.
Sunflower (Helianthus annuus L.) is an important oilseed crop with clear sensibility to salt stress. In this study, we evaluated silicon (Si) effect on the nitrogen metabolism and antioxidant enzyme activity in sunflower plants subjected to salinity. A 4 × 4 factorial arrangement of treatments in a completely randomized design with four replicates was used, consisting of four concentrations of Si (0.0; 1.0; 1.5; and 2.0 mM) and four concentrations of NaCl (0; 50; 100; and 150 mM) in the nutrient solution. The salinity reduced the nitrate content, but the increasing Si concentration in the medium improved the nitrate uptake, leading this ion to accumulate in salt-stressed plants, particularly in the roots. The nitrate reductase activity and the proline and soluble N-amino contents were also significantly increased by Si in salt conditions. The salinity increased electrolyte leakage and reduced the activity of enzymes superoxide dismutase, ascorbate peroxidase and catalase in sunflower plants, but these decreases were reversed by Si at 2 mM, thus alleviating the effects of salinity on these variables. We conclude that Si is able to positively modulate nitrogen metabolism and antioxidant enzyme activities in sunflower plants in order to alleviate the harmful effects of salinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号