首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A field experiment was conducted to study the effect of silicon (diatomaceous earth, DE) fertilization on growth, yield, and nutrient uptake of rice during the kharif season of 2012 and 2013 in the new alluvial zone of West Bengal, India. Results showed that application of silicon significantly increased grain and straw yield as well as yield-attributing parameters such as plant height (cm), number of tillers m?2, number of panicle m?2, and 1000-grain weight (g) of rice. The greatest grain and straw yields were observed in the treatment T6 (DE at 600 kg ha?1 in combination with standard fertilizer practice (SFP). The concentration and uptake of silicon, nitrogen (N), phosphorus (P), and potassium (K) in grain and straw were also greater under this treatment compared to others. It was concluded that application of DE at 600 kg ha?1 along with SFP resulted increased grain, straw, and uptake of NPK.  相似文献   

2.
Abstract

This study was conducted to investigate the effects of four boron (B) doses (control, 0 kg B ha?1; B1, 1 kg B ha?1; B2, 3 kg B ha?1; and B3, 6 kg B ha?1) in soils deficient in available B (0.19 mg B kg?1) and lime (CaCO3) content (20.7%) on yield and some yield components of five chickpea (Cicer arietinum L.) genotypes, namely Akçin‐91, Population, Gökçe, ?zmir‐92, and Menemen‐92 in central Anatolian Turkey in the 2002 and 2003 growing seasons. Plant height, pods per plant, grain yield, protein content, protein yield, thousand seed weight, and leaf B concentration were measured. Grain yields in all genotypes (except for Gökçe) were significantly increased by 1 kg ha?1 B application. Application of 1 kg ha?1 B increased the yield by an average of 5%. Genotypes studied showed significant variations with respect to their responses to additional B. Akçin‐91 gave the highest grain yield (1704.8 kg ha?1) at 3 kg B ha?1, whereas Population, ?zmir‐92, and Menemen‐92 yielded best (1468.2 kg ha?1, 1483.0 kg ha?1, and 1484.7 kg ha?1, respectively) at 1 kg B ha?1. Interestingly, Gökçe reached to the highest level of grain yield (1827.1 kg ha?1) at the control. Gökçe was a B deficiency B tolerance genotype. The other genotypes appeared to have high sensitivity to B deficiency. This study showed that B deficiency could result in significant yield losses in chickpea under the experimental conditions tested. Thus, B contents of soils for the cultivation of chickpea should be analyzed in advance to avoid yield losses.  相似文献   

3.
On-farm research was conducted to investigate the effects of nitrogen (N) and compost (C) on yield and yield components of spring maize (Zea mays L.) under conventional and deep tillage system (T) at the research farm of the University of Agriculture, Peshawar, Pakistan, during spring 2013. The experiment was laid out in a randomized complete block design with split-plot arrangement, using three replications. Three compost levels (0, 1, and 2 t ha?1) and two tillage systems (conventional and deep tillage) were allotted to the main plot, whereas N levels (60, 90, 120, and 150 kg N ha?1) were allotted to subplots in the form of urea. Nitrogen and compost levels had significantly affected all the parameters. Plots treated with 150 kg N ha?1 increased ear length (31 cm), grains ear?1 (413), thousand-grain weight (240.2 g), grain yield (3097 kg ha?1), straw yield (9294 kg ha?1), harvest index (24.7 percent), and shelling percentage (81.7 percent). Compost applied at 2 t ha?1 increased ear length (32 cm), grains ear?1 (430), thousand-grain weight (242.3 g), grain yield (2974 kg ha?1), straw yield (8984 kg ha?1), harvest index (24.6 percent), and shelling percentage (83.2 percent). Tillage system had significant effect on all parameters except ear length and harvest index. Deep tillage system produced more grains ear?1 (365), thousand-grain weight (233.3 g), grain yield (2630 kg ha?1), straw yield (8549 kg ha?1), and shelling percentage (79.6 percent). It was concluded from the results that application of 120 kg N ha?1 + 2 C t ha?1 under a deep tillage system could improve spring maize yield and yield-contributing traits under semi-arid conditions.  相似文献   

4.
Genetic differences among crop genotypes can be exploited for identification of genotypes more suited to a low‐input agricultural system. Twenty wheat (Triticum aestivum L.) genotypes were evaluated for their differential yield response, phosphorus (P) uptake in grain and straw, and P‐use efficiency at the zero‐P control and 52 kg P ha?1 rates. Substantial and significant differences were obvious among genotypes for both grain and straw yields at stress (8 mg P kg?1 soil, native soil P, no P addition) and adequate (52 kg P ha?1) P levels. Genotype 5039 produced maximum grain yield at both P levels. Relative reduction in grain yield due to P‐deficiency stress [i.e., P stress factor (PSF)] ranged between none and 32.4%, indicating differential P requirement of these genotypes. Pasban 90, Pitic 62, Rohtas 90, Punjab 85, and line 4943 did not respond to P application and exhibited high relative yield compared to those at adequate P level. FSD 83 exhibited the best response to P with maximum value for PSF (32.4%). Genotypes were distributed into nine groups on the basis of relationship between grain yield and total P uptake. Rohtas 90 and lines 4072 and 5039 exhibited high grain yield and medium P uptake (HGY‐MP). However, line 5039 with high total index score utilized less P (12.2 kg P ha?1) than line 4072 and Rohtas 90 (13.5 and 13.6 kg P ha?1, respectively). Moreover, this genotype also had greater P harvest index (PHI, %) and P physiological efficiency index (PPEI) at stress P level. Pasban 90, Pitic 62, and Pak 81 had the greatest total index score (21), mainly due to high total P uptake, but yielded less grain than lines 5039 and 4072 under low available P conditions. Line 6142 had minimum total index score (15) and also produced minimum grain yield. A wide range of significant differences in PPEI (211 to 365 kg grain kg?1 P absorbed at stress and 206 to 325 kg grain kg?1 P absorbed by aboveground plant material at adequate P) indicated differential utilization of absorbed P by these genotypes for grain production at both P levels. It is concluded from the results that wheat genotypes differed considerably in terms of their P requirements for growth and response to P application. The findings suggest that PSF, PHI, and PPEI parameters could be useful to determine P‐deficiency stress tolerance in wheat.  相似文献   

5.
A long-term experiment was conducted at the Central Research Institute for Dryland Agriculture for 13 years to evaluate the effect of low tillage cum cheaper conjunctive nutrient management practices in terms of productivity, soil fertility, and nitrogen chemical pools of soil under sorghum–mung bean system in Alfisol soils. The results of the study clearly revealed that sorghum and mung bean grain yield as influenced by low tillage and conjunctive nutrient management practices varied from 764 to 1792 and 603 to 1008 kg ha?1 with an average yield of 1458 and 805 kg ha?1 over a period of 13 years, respectively. Of the tillage practices, conventional tillage (CT) maintained 11.0% higher yields (1534 kg ha?1) over the minimum tillage (MT) (1382 kg ha?1) practice. Among the conjunctive nutrient management treatments, the application of 2 t Gliricidia loppings + 20 kg nitrogen (N) through urea to sorghum crop recorded significantly highest grain yield of 1712 kg ha?1 followed by application of 4 t compost + 20 kg N through urea (1650 kg ha?1) as well as 40 kg N through urea alone (1594 kg ha?1). Similar to sorghum, in case of mung bean also, CT exhibited a significant influence on mung bean grain yields (888 kg ha?1) which was 6.7% higher compared to MT (832 kg ha?1). Among all the conjunctive nutrient management treatments, 2 t compost + 10 kg N through urea and 2 t compost + 1 t Gliricidia loppings performed significantly well and recorded similar mung bean grain yields of 960 kg ha?1 followed by 1 t Gliricidia loppings + 10 kg N through urea (930 kg ha?1). The soil nitrogen chemical fractions (SNCFs) were also found to be significantly influenced by tillage and conjunctive nutrient management treatments. Further, a significant correlation of SNCF with total soil nitrogen was observed. In the correlation study, it was also observed that N fraction dynamically played an important role in enhancing the availability pool of N in soil and significantly influenced the yield of sorghum grain and mung bean.  相似文献   

6.
Maize crop is grown mostly in tropical/subtropical environments where drought adversely affects its production. A field experiment was conducted on sandy loam soil for four years (1999 – 2002) to study the effect of wheat straw mulch (0 and 6 t ha?1) and planting methods (flat and channel) on maize sown on different dates. Maximum soil temperature without mulch ranged from 32.2 – 44.4°C in channel and 31.6 – 46.4°C in flat planting method. Mulching, however, lowered soil temperature by 0.8 – 7.0°C in channel and 0 – 9.8°C in flat planting. Mulching, on an average, improved leaf area index by 0.42, plant height by 14 cm, grain yield by 0.24 t ha?1 and biomass by 1.57 t ha?1, respectively. Mulching improved grain yield only in flat sowing. Interaction between sowing date and planting method was significant. Seasonal variation in biomass were significantly correlated (p = 0.05) with mean air temperature during 0 – 45 days after planting (DAP) (r = ?0.95), pan evaporation during 0 – 15 DAP (r = 0.79) and negative correlation with rainfall in entire cropping season (r = ?0.89), whereas biomass increase with mulch in different cropping seasons had negative relation (r = ?0.74) with amount of rain during 0 – 15 DAP.  相似文献   

7.
In order to investigate the changes in chlorophyll fluorescence, chlorophyll, relative water content (RWC) and forage yield of corn and sorghum under various irrigation regimes and combination treatments of barley residue, zeolite and superabsorbent polymer, an experiment was conducted over 2 years in Kerman, Iran. A randomized complete block design arranged in a factorial split was used with three replications. Two irrigation regimes of normal and drought stress based on 70 and 140 mm cumulative pan evaporation, respectively, and two plant species (corn and sorghum) as factorial combinations were compared in the main plots. Five treatments, (1) 10 t ha?1 zeolite + 4.5 t ha?1 residue, (2) 60 kg ha?1 superabsorbent + 4.5 t ha?1 residue, (3) 5 t ha?1 zeolite + 30 kg ha?1 superabsorbent + 4.5 t ha?1 residue, (4) 4.5 t ha?1 residue and (5) – control, were compared in subplots. In both plants, forage yield, potential quantum yield (Fv/Fm), chlorophyll a, total chlorophyll and carotenoid contents decreased significantly under drought stress. Chlorophyll a content, SPAD index and Fv/Fm were higher in corn than in sorghum, but RWC was higher in sorghum. Corn produced higher forage yield (62.8 t ha?1) than sorghum (49.3 t ha?1). The application of 10 t ha?1 zeolite with 4.5 t ha?1 residue increased most traits more than any of the other treatments, but the superabsorbent had no significant effect on the studied traits.  相似文献   

8.
Soil salinity may reduce potassium (K) uptake due to strong competition with sodium cations at the root surface. In calcareous soils, zinc (Zn) precipitates in forms unavailable to plants. This study evaluated the responses of two wheat genotypes (C), Baccrosroshan and salinity-tolerant Line No. 4, to K and Zn fertilizers in both greenhouse and farm experiments with similar soil and water conditions. A factorial experiment with four K levels (K0 = 0, K1 = 72, K2 = 144 and K3 = 216 kg K2O ha?1) and three Zn levels (Zn0 = 0, Zn1 = 20 and Zn2 = 40 kg ha?1) based on a randomized complete block design was employed. Analysis of variance results showed significant Zn × K × C interactions on all measured traits. Despite sufficient available potassium and illite clay in the root-growing medium, plants responded to K application. Yield components, grain yield and protein content of the two genotypes increased linearly as Zn × K increased. Considering Zn2K2 and Zn2K3, Line No. 4 produced 17% higher 1000-grain weight, 30% higher weight of grains per ear and 23% higher grain yield than Baccrosroshan in the farm experiment, and 10, 50, 16% higher values, respectively, in the greenhouse experiment. Results showed a significant relationship between grain weight per ear and grain yield. The achieved results highlight the importance of K and Zn nutrition under salt-stress conditions.  相似文献   

9.
Nitrogen and sulfur play an important role in maize production. The aim of this study was to evaluate the effect of nitrogen (N) and sulfur (S) levels applied in various ratios on maize hybrid Babar yield at Peshawar in 2011 and 2013. Four N levels (120, 160, 200 and 240 kg N ha?1) and four S levels (20, 25, 30 and 35 kg S ha?1) were applied in three splits: a, at sowing; b, V8 stage; c, VT stage in ratios of 10:50:40, 20:50:30 and 30:50:20. Grains ear?1, thousand grain weight, grain yield ha?1 and soil pH were significantly affected by years (Y), N, S and their ratios, while no effect of N, S and their ratios was noted on ears plant?1. Maximum grains ear?1 (390), thousand grain weight (230.1 g) and grain yield (4119 kg ha?1) were recorded in 2013. N increased grains ear?1 (438), thousand grain weight (252 g) and grain yield (5001 kg ha?1) up to 200 kg N ha?1. Each increment of S increased grains ear?1 and other parameters up to 35 kg S ha?1, producing maximum grains ear?1 (430), thousand grain weight (245 g) and grain yield (4752 kg ha?1), while soil pH decreased from 8.06 to 7.95 with the application of 35 kg S ha?1. In the case of N and S ratios, more grains ear?1 (432), heavier thousand grains (246.7 g) and higher grain yield (4806 kg ha?1) were observed at 30:50:20 where 30% of N and S were applied at sowing, 50% at V8 and 20% at VT stage. It is concluded that 200 kg N ha?1 and 35 kg S ha?1 applied in the ratio of 30% at sowing, 50% at V8 and 20% at VT stage is recommended for obtaining a higher yield of maize hybrid Babar.  相似文献   

10.
Sorghum is one of the water- and nutrient-use efficient crops raised in dry regions worldwide. A 3 × 3 split-plot experiment in randomized complete block design was conducted to study the effects of petroleum refinery waste aqueous ammonia (NH3) on irrigated fodder sorghum for two consecutive growing seasons. The main plots consisted of 0 (control), 40, and 80 kg N ha?1, respectively, and the injection depths (surface 15 cm, and 20 cm depth) were assigned to sub-plots. A significant effect of NH3 on both fresh and dry biomass production was observed where the highest yield was recorded from the 80 kg N ha?1 than the control and 40 kg N ha?1, respectively. Sorghum biomass yield increased most when NH3 was injected at 20 cm depth as compared to other depths. Biomass nutrient content and nitrogen-use efficiency were increased when 80 kg N ha?1 was applied as compared to the control. The critical limit of K:(Ca+Mg), above which the tetany risk increases, did not exceed in sorghum biomass by NH3 fertilization. Results suggested that industrial waste NH3 equivalent to 80 kg N ha?1 injected at 20 cm depth can be a sustainable approach to fertilize irrigated sorghum growing as a forage crop.  相似文献   

11.
Lowland rice significantly contributes to world as well as Brazilian rice production and information on genotypes potassium-use efficiency is limited. A greenhouse experiment was conducted with the objective to evaluate lowland rice genotypes for potassium (K)–use efficiency. Ten genotypes were evaluated at 0 mg K kg?1 (low) and 200 mg K kg?1 (high) of soil. Grain yield and shoot dry weight were significantly affected by K as well as genotype treatments. Genotypes CNAi 8860, CNAi 8859, BRS Fronteira, and BRS Alvorada were the best in relation to K-use efficiency because they produced best grain yield at low as well as at higher K levels. Shoot dry weight, number of panicles per pot, and 1000-grain weight had highly significant (P < 0.01) association with grain yield. Spikelet sterility, however, had significant negative association with grain yield. These plant parameters were mainly influenced by genotypes, indicating importance of selecting appropriate genetic material for improving grain yield. Soil K depletion was significant at harvest, suggesting large amount of K uptake by lowland rice genotypes.  相似文献   

12.
Abstract

Rice is mostly transplanted under puddled low land soil conditions in India, where Zinc (Zn) deficiency is a common problem. The objective of this study was to find out the efficacy of split application of Zn on growth and yield of rice in an inceptisol. The split application of Zn as ZnSO4 · 7H2O performed better than its single basal application, while the split application of Zn-EDTA did not show any significant difference on yield and yield components of rice over its single basal application. Zn-EDTA was found to be better for growth and yield of rice among the two sources of Zn. The soil application of Zn at 1.0 kg ha?1 as Zn-EDTA (T7) recorded highest grain yield of 5.42 t ha?1, filled grain percentage of 90.2%, 1000-grain weight of 25.41 g and number of panicles m?2 of 452. The Zn content of grain and straw were found to be maximum in the treatment T7 i.e. 38.19 and 18.27 mg kg?1, respectively. Linear regression studies indicated that grain yield of rice is significantly influenced by Zn content of grain, Zn content of straw and DTPA extractable Zn content of soil at the level of 95.96, 96.74 and 95.57%, respectively.  相似文献   

13.
Phosphorus (P) deficiency is one of the most yield limiting factors for crop production in South American soils. Upland rice (Oryza sativa L.) is an important crop in South American cropping systems, including Brazil. A field experiment was conducted with the objective to evaluate 20 upland rice genotypes for phosphorus (P) use efficiency. The P rate used was low (0 kg P ha?1) and high [87 kg P ha?1 or 200 kg phosphorus pentoxide (P2O5) ha?1]. Plant height, shoot dry weight, grain yield, panicle number, 1000 grain weight, spikelet sterility, and grain harvest index were significantly influenced by P and genotype treatments. The P X genotype interaction was significant for grain yield, indicating that genotypes responded differently under two P rates. Overall, grain yield increased by 12% with the addition of P fertilization. Based on grain yield efficiency index, genotypes were classified into efficient, moderately efficient, and inefficient group. The genotypes that were classified as efficient in P use were BRA032048, BRA042094, BRA02601, BRA032051, BRA032033, BRA052015, BRA042156, BRA01600, BRA01506, BRA052023 and BRA042160. The inefficient genotypes in P us efficiency were BRS Primavera, BRA052045, BRA01596, and BRS Sertaneja. Grain harvest index had a significant positive association with grain yield and spikelet sterility had a significant negative association with grain yield, as expected. Average, P-use efficiency of five genotypes was about 17 kg kg?1 (kg grain yield per kg P applied).  相似文献   

14.
Reducing ammonia (NH3) volatilization is a practical way to increase nitrogen (N) fertilizer use efficiency (NUE). In this field study, soil was amended once with either cotton (Gossypium hirsutum L.) straw (6 t ha?1) or its biochar (3.7 t ha?1) unfertilized (0 kg N ha?1) or fertilized (450 kg N ha?1), and then soil inorganic N concentration and distribution, NH3 volatilization, cotton yield and NUE were measured during the next two growing seasons. In unfertilized plots, NH3 volatilization losses in the straw-amended and biochar-amended treatments were 38–40% and 42–46%, respectively, less than that in control (i.e., unamended soil) during the two growing seasons. In the fertilized plots, NH3 volatilization losses in the straw-amended and biochar-amended treatments were 30–39% and 43–54%, respectively, less than that in the control. Straw amendment increased inorganic N concentrations, cotton yield, cotton N uptake and NUE during the first cropping season after application, but not during the second. In contrast, biochar increased cotton N uptake and NUE during both the first and the second cropping seasons after application. Furthermore, the effects of biochar on cotton N uptake and NUE were greater in the second year than in the first year. These results indicate that cotton straw and cotton straw biochar can both reduce NH3 volatilization and also increase cotton yield, N uptake and NUE. In addition, the positive effects of one application of cotton straw biochar were more long-lasting than those of cotton straw.  相似文献   

15.
《Journal of plant nutrition》2013,36(7):1295-1317
Abstract

A field experiment was conducted at Central Cotton Research Institute, Multan, Pakistan on Miani soil series, silt loam soil (Calcaric, Cambisols and fine silty, mixed Hyperthermic Fluventic Haplocambids) to assess the response of four cotton (Gossypium hirsutum L.) cultivars to potassium (K) fertilization. The treatments consisted of four cotton cultivars (CIM-448, CIM-1100, NIAB-Karishma, S-12), four potassium rates (0, 62.5, 125, 250 kg K ha?1), and two sources of potassium fertilizer [muriate of potash (KCl) and sulphate of potash (K2SO4)]. The cotton cultivars differed significantly in response to various potassium fertilizer levels and its sources with respect to seed cotton yield and its components. The highest yield was obtained with the application of 250-kg K ha?1, however, it was economical to add 125 kg K ha?1. Seed cotton yield of cv. CIM-448 was considerably greater than that of the other cultivars in K-unfertilized treatments, which was related to cultivar differences in K uptake efficiency in utilizing native potassium nutrient. Potassium added as muriate of potash caused a significant depression in seed cotton yield than that of sulphate of potash. The increase in yield seemed to have resulted largely from the higher K concentration of leaf tissues at bloom stage and available soil-K because of potassium application. A significant relationship between the yield and number of bolls per plant (r = 0.92**) and boll weight (r = 0.85**) indicated that these two growth attributes were responsible for enhancing the quantum of final harvest of seed cotton.  相似文献   

16.
Maize yield is often limited by zinc (Zn) deficiency. The objectives of this study were to (i) evaluate maize yield response to Zn applied at four different rates, (ii) evaluate the yield response and agronomic efficiency of maize to the application of a complex fertilizer, MicroEssentials SZ (12N–40P–0K–10S–1Zn), compared to different rates of monoammonium phosphate (MAP) + ammonium sulfate (AS) + zinc sulfate (ZnSO4), and (iii) evaluate the association between tissue Zn concentration and soil-test Zn with the maize response to Zn fertilizer. Eleven experiments were carried out during the 2010, 2011, and 2012 growing seasons throughout eight states in the USA. Treatments consisted of four Zn rates of a physical blend of MAP + AS + ZnSO4 (0, 2.24, 4.48, 6.72, and 11.2 kg/ha Zn) and MicroEssentials SZ at a Zn rate of 2.24 kg/ha Zn. Nitrogen, phosphorus (P), and sulfur (S) rates were balanced across treatments (40 kg/ha P, 22 kg/ha S) and fertilizers were broadcast and incorporated immediately prior to planting. Treatment and location main effects were significant (P < 0.001) on corn yields, whereas the interaction treatment × location was not (P = 0.33). Maize responded positively to Zn fertilization; average yields across locations increased from 10,540 kg ha?1 without Zn to 11,530 kg ha?1 with 11.21 kg Zn ha?1 applied as a physical blend. The yield response and Zn agronomic efficiency of maize with the application of the complex fertilizer at a rate of 2.24 kg Zn ha?1 averaged 1004 kg ha?1 and 448 kg maize kg Zn?1, respectively, significantly higher (P < 0.1) than the yield response and Zn agronomic efficiency with the application of a physical blend with the same Zn rate, which averaged 293 kg ha?1 and 131 kg maize kg Zn?1, respectively. The Zn concentration in plant tissue of unfertilized plots varied greatly and was not related to the maize response to Zn fertilizer (r = 0.01; P = 0.98). With respect to soil Zn, a negative but nonsignificant relationship was found between maize response to Zn fertilizer and soil-test Zn (r = ?0.51; P = 0.16).  相似文献   

17.
Because limited information is available about the validated use of a chlorophyll meter for predicting nitrogen requirements for optimum growth and yield of wheat after application of herbicides, field experiments were carried out in the winter seasons of 2011/2012 and 2012/2013 under different weed and N fertilization treatments. Five weeded treatments, application of herbicides 25 days after sowing (DAS), hand pulling once at 55 DAS and a weedy check were combined with four N application rates. Weeds were completely absent in the non-fertilized plots, either with metribuzin or hand pulling as well as in isoproturon-treated plots fertilized with 190 or 285 kg N ha?1. The grain yield was similar in the treatments of isoproturon × 190 kg N ha?1, isoproturon + diflufenican × conditional N treatment (113.9) or 190 kg N ha?1, hand pulling × conditional N treatment (104.8) or 285 kg N ha?1 and metribuzin × 190 kg N ha?1. Under weeded practices, conditional N treatment recorded the maximum nitrogen use efficiency and almost equaled the grain protein content of the 190 kg N ha?1 application rate. N application based on SPAD readings saved about 40.0% and 44.8% N with isoproturon + diflufenican or hand pulling, respectively, compared to the recommended rate (190 kg N ha?1) without noticeable yield loss.  相似文献   

18.
Corn (Zea mays L.) is planted in two seasons per year in northern Iran (mid-April as a main crop and mid-June as a second crop). The main objective of this study was to determine whether corn yield response would differ between these two seasons and different plant populations. Two field experiments were conducted at the Agricultural Research Center of Golestan – Iran in 2007 and 2008 at different planting densities. The results showed that the values of grain yield and most traits were significantly lower in the second season. Maximum grain yield was observed at planting densities of 6.5 plants m?2 in the first season, whereas in the second season grain yield was the same for planting densities between 2.5 and 12.5 plants m?2. Based on the second-year experimental results, the following functions were fitted to show the relationship between yield ha?1 (Y) and planting densities (X) for the first and second seasons, respectively: (Y = ?167.6X 2 + 2672.2X + 511.77; R 2 = 0.992) and (Y = 1200.1 ln(X) + 2924.4; R 2 = 0.935). This study found that the optimum plant population was 6.5 plants m?2 under low heat stress, and should be reduced to 2.5–4.5 plants m?2 under heat stress conditions.  相似文献   

19.
Abstract

Maize (Zea mays L.) is a major nitrogen consuming crop, as nitrogen is considered as an important determinant of its grain yield. Though inorganic fertilizer is widely recommended, the problem of high cost and inaccessibility limit its usage by resource poor farmers. Biochar application provides a new technology for both soil fertility and crop productivity improvement. With limited research on the suitability of biochar for soil improvement practices in Ghana, our objective was to determine the synergistic effect of biochar and inorganic fertilizer on the nitrogen uptake, nitrogen use efficiency, and yield of maize. Field experiment was conducted in Ghana, KNUST, in the major and minor raining seasons. Biochar was applied at 0, 5, 10, 15, and 20 t ha?1 and fertilizer N applied at 0, 45, and 90?kg ha?1. The results showed significantly (p??1 supplemented with 45?kg N ha?1 increased N uptake by 200%, and grain yield by 213% and 160% relative to the control in the minor and major rainy seasons, respectively. The greater yield of maize recorded on biochar-amended soils was attributed to the improved N uptake and nitrogen use efficiency. In conclusion, our finding suggests that the application of combined biochar and inorganic N fertilizer is not only ecologically prudent, but economically viable and a practicable alternative to current farmers’ practice of cultivating maize in Ghana.  相似文献   

20.
It is important to develop integrated fertilization strategies for various crops that enhance the competitive ability of the crop, maximize crop production and reduce the risk of nonpoint source pollution from fertilizers. In order to study the effects of mineral nitrogen fertilization and biofertilizer inoculation on yield and some physiological traits of rapeseed (Brassica napus L.) under different levels of sulfur fertilizer, field experiments in factorial scheme based on randomized complete block design were conducted with three replications in 2012 and 2013. Experimental factors were: (1) four levels of chemical nitrogen fertilizer (0, 100, 150 and 200 kg N ha?1), (2) two levels of biofertilizer (with and without inoculation) consisting Azotobacter sp. and Azospirillum sp. and (3) two levels of sulfur application (0 and 50 kg S ha?1). Rapeseed yield, oil content of grains and studied physiological traits had a strong association with the N fertilization, biofertilizer inoculation and sulfur (S) application. Higher rates of N fertilization, biofertilizer inoculation and S application increased the grain yield of rapeseed. In the case of physiological traits, the highest value of relative water content (RWC) was recorded in 100 kg N ha?1 that was statistically in par with 150 kg N ha?1 application, while usage of 150 kg N ha?1 showed the maximum cell membrane stability (CMS). Inoculation with biofertilizer and S fertilization resulted in higher RWC and CMS in rapeseed plants. The chlorophyll content showed its maximum values in the highest level of N fertilization, biofertilizer inoculation and S application. The usage of 200 kg N ha?1 significantly decreased the oil content of rapeseed grains, but the highest grain oil content was obtained from the application of 150 kg N ha?1, Azotobacter sp. and Azospirillum sp. inoculation and S fertilization. It seems that moderate N rate (about 150 kg N ha?1) and S application (about 50 kg S ha?1) can prove to be beneficial in improving growth, development and total yield of inoculated rapeseed plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号