首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 474 毫秒
1.
During the Spring of 1972 through the Spring of 1973 samples of rivers tributary to Lake Ontario and streams in the Genesee River Basin (New York) were analyzed for N and P forms by chemical methods, then incubated in darkness or bioassayed with algae to estimate the percentage of total N, organic N, total P or particulate P which could eventually become available for algal growth in Lake Ontario. The total available P in the river water samples could be estimated by adding to the soluble orthophosphate 0.2 of the difference between the soluble orthophosphate and the total phosphate. The total available N can be estimated from the sum of the inorganic N (NH3 and NO3 ?) plus 0.5 times the total organic N concentration  相似文献   

2.
Voutsa  D.  Manoli  E.  Samara  C.  Sofoniou  M.  Stratis  I. 《Water, air, and soil pollution》2001,129(1-4):13-32
A 2-yr (1997–1998) survey aiming at the establishment of national data bases concerning the quality of surface waters has been conducted in the major river systems of Macedonia, N. Greece. This paper presents the physicochemical parameters(pH, conductivity, total suspended solids, temperature and DO),the organic pollution parameters (BOD5, COD) and the major N and P species (NO3 -, NO2 -,NH4 +,organic N, orthophosphates and total P) determined at 25 sampling sites located on main rivers, tributaries, streams andditches that drain the major rural, agricultural, urban and industrial areas of N. Greece. Use of multivariate statistics is also made to identify the principal factors which influencethe chemistry of the water in individual river systems.The eutrophication status of the examined systems was evaluatedby means of N/P ratios. Mean N/P ratios showed large variationsamong sampling sites ranging from potential N- to P-limitationconditions. N/P ratios at particular sampling sites showed also great temporal variability thus suggesting temporary states of N- or P- limitation. Most frequently, highest ratio values wereobserved during winter and early spring. Comparisons are made between data from this study region and literature on rivers elsewhere.  相似文献   

3.
The N balance has been studied in detail in the basins of small rivers under agricultural management and forest use. The N content of the watershed territory of large forests was found to be practically balanced. In the river basin where the land was intensively farmed for 10 yr, N input increased five times through mineral fertilizers, and one-and-a-half times through organic fertilizers. Consequently, the amount of N returned to the atmosphere as a result of denitrification increased by one-and-a-half times, and that leached into the ground water, increased from 0.8 to 6.5 mg 1?1 N.  相似文献   

4.
太湖流域农村黑臭河流表层沉积物营养盐的污染特征   总被引:1,自引:0,他引:1  
[目的]分析农村黑臭河道沉积物中营养盐的空间分布情况和形态构成特征并给予分析与评价,为认识河流污染现状、黑臭河流治理和太湖富营养化防治提供基础数据。[方法]以江苏省宜兴市周铁镇掌下浜(北段)为例,沿河流从上游到入河河口共采集了13个沉积物表层样,分析其总氮(TN)、总磷(TP)、氨氮(NH_4~+-N)、硝氮(NO_3~--N)、有机氮(Org-N)、有机碳(TOC)的空间分布特征,并对表层沉积物中碳(C)、氮(N)、磷(P)的组分分布进行耦合分析以及污染状况评价。[结果]Org-N是河流表层沉积物中氮素的主要成分,平均值为2 193.69mg/kg,占TN质量分数的90.86%;各采样点处TN,Org-N,TP和TOC含量从上游到下游总体呈现波动中上升趋势,最高值分别是最低值的2.98,3.46,6.29和1.59倍;NH_4~+-N含量的变化趋势是缓慢上升而后急速下降,而NO_3~--N含量呈现出缓慢下降而后急速上升;各采样点C/N均值为12.07,有机物以外源输入为主,TOC与TN含量具有极显著正相关(p0.01,n=13);C/P均值为2.04,TOC与TP具有显著正相关(p0.05,n=13);N/P均值为2.04,TN与TP具有极显著正相关(p0.01,n=13),N,P污染具有同源性。[结论]太湖流域农村黑臭河流沉积物环境状况属有机污染,其中氮污染程度属有机氮污染状态。  相似文献   

5.
The contribution of organic resources to the restoration of soil fertility in smallholder farming systems in East Africa is being tested as an alternative to costly fertilizers. Organic inputs are expected to have advantages over fertilizers by affecting many biochemical properties controlling nutrient cycling. Our study examined changes in soil C and N, C and N mineralization, microbial biomass C (MBC) and N (MBN), and particulate organic matter (POM) in a P-limiting soil in western Kenya after applications of organic residues and fertilizers to overcome P limitation to crops. Leaf biomass from six different tree (shrub) species was incorporated into the soil at 5 Mg ha–1 for five consecutive maize growing seasons, over 2.5 years. Triple superphosphate was applied separately at 0, 10, 25, 50, and 150 kg P ha–1 in combination with 120 kg N ha–1 as urea. Soil inorganic N, soil organic C, mineralizable N, and total C in all POM fractions and total N in the 53- to 250-m POM fraction increased following addition of all organic residues compared to the control. Whether there was an advantage of organic residue incorporation over inorganic fertilizer use depended on the soil parameter studied, the organic residue and the rate of fertilization. Most differences were found in N mineralization where 14.4–21.6 mg N kg–1 was mineralized in fertilizer treatments compared to 25.2–30.5 mg N kg–1 in organic residue treatments. C and N mineralization and the 53- to 250-m POM fractions were the most sensitive parameters, correlating with most of the studied parameters. Organic residues can contribute to improved soil nutrient cycling while the magnitude of their contribution depends on the biochemical properties of the residues.  相似文献   

6.
In forest soils where a large fraction of total phosphorus (P) is in organic forms, soil micro-organisms play a major role in the P cycle and plant availability since they mediate organic P transformations. However, the correct assessment of organic P mineralization is usually a challenging task because mineralized P is rapidly sorbed and most mineralization fluxes are very weak. The objectives of the present work were to quantify in five forest Spodosols at soil depths of 0-15 cm net mineralization of total organic P and the resulting increase in plant available inorganic P and to verify whether net or gross P mineralization could be estimated using the C or N mineralization rates. Net mineralization of total organic P was derived from the net changes in microbial P and gross mineralization of P in dead soil organic matter. We studied very low P-sorbing soils enabling us to use lower extractants to assess the change in total inorganic P as a result of gross mineralization of P in dead soil organic matter. In addition, to enable detection of gross mineralization of P in dead soil organic matter, a long-term incubation (517 days) experiment was carried out. At the beginning of the experiment, total P contents of the soils were very low (19-51 μg g−1) and were essentially present as organic P (17-44 μg g−1, 85-91%) or microbial P (6-14 μg g−1; 24-39%). Conversely, the initial contents of inorganic P were low (2-7 μg g−1; 9-15%). The net changes in the pool size of microbial P during the 517 days of incubation (4-8 μg g−1) and the amounts of P resulting from gross mineralization of dead soil organic matter (0.001-0.018 μg g−1 day−1; 0.4-9.5 μg g−1 for the entire incubation period) were considerable compared to the initial amounts of organic P and also when compared to the initial diffusive iP fraction (<0.3 μg g−1). Diffusive iP corresponds to the phosphate ions that can be transferred from the solid constituents to the soil solution under a gradient of concentration. Net mineralization of organic P induced an important increase in iP in soil solution (0.6-10 μg g−1; 600-5000% increase) and lower increases in diffusive iP fractions (0.3-5 μg g−1; 300-2000% increase), soil solid constituents having an extremely low reactivity relative to iP. Therefore, soil micro-organisms and organic P transformations play a major role in the bioavailability of P in these forest soils. In our study, the dead soil organic matter was defined as a recalcitrant organic fraction. Probably because gross mineralization of P from this recalcitrant organic fraction was mainly driven by the micro-organisms’ needs for energy, the rates of gross mineralization of C, N and P in the recalcitrant organic fraction were similar. Indirect estimation of gross mineralization of P in dead soil organic matter using the gross C mineralization rate seems thus an alternative method for the studied soils. However, additional studies are needed to verify this alternative method in other soils. No relationships were found between microbial P release and microbial C and N releases.  相似文献   

7.
博、精河下游河岸带土壤速效养分空间异质性分析   总被引:1,自引:0,他引:1  
以新疆博尔塔拉河、精河下游河岸带土壤为研究对象,针对土壤中的有机质、碱解氮、速效磷、速效钾等指标进行定量测定,运用地统计学方法分别对博尔塔拉河、精河流域土壤养分空间分布特征进行了分析.结果表明:博尔塔拉河下游河岸带土壤有机质、碱解氮变异程度大于精河下游河岸带,土壤速效磷、速效钾变异程度相近;两河土壤速效养分垂直分异规律为:土壤有机质、碱解氮含量均随土层深度的增加而递减;水平分异规律为:距离艾比湖入湖口越远,土壤中速效养分平均含量越小.总体而言,博尔塔拉河下游河岸带土壤速效养分高于精河下游河岸带土壤速效养分,精河土壤养分空间异质性较小.  相似文献   

8.
Soil organic matter (SOM) content is a key indicator of riparian soil functioning and in the provision of ecosystem services such as water retention, flood alleviation, pollutant attenuation and carbon (C) sequestration for climate change mitigation. Here, we studied the importance of microbial biomass and nutrient availability in regulating SOM turnover rates. C stabilisation in soil is expected to vary both vertically, down the soil profile and laterally across the riparian zone. In this study, we evaluated the influence of five factors on C mineralisation (Cmin): (i) substrate quantity, (ii) substrate quality, (iii) nutrient (C, N and P) stoichiometry, (iv) soil microbial activity with proximity to the river (2 to 75 m) and (v) as a function of soil depth (0–3 m). Substrate quality, quantity and nutrient stoichiometry were evaluated using high and low molecular weight 14C-labelled dissolved organic (DOC) along with different nutrient additions. Differences in soil microbial activity with proximity to the river and soil depth were assessed by comparing initial (immediate) Cmin rates and cumulative C mineralised at the end of the incubation period. Overall, microbial biomass C (MBC), organic matter (OM) and soil moisture content (MC) proved to be the major factors controlling rates of Cmin at depth. Differences in the immediate and medium-term response (42 days) of Cmin suggested that microbial growth increased and carbon use efficiency (CUE) decreased down the soil profile. Inorganic N and/or P availability had little or no effect on Cmin suggesting that microbial community growth and activity is predominantly C limited. Similarly, proximity to the watercourse also had relatively little effect on Cmin. This work challenges current theories suggesting that areas adjacent to watercourse process C differently from upslope areas. In contrast, our results suggest that substrate quality and microbial biomass are more important in regulating C processing rates rather than proximity to a river.  相似文献   

9.
Restoration of soils burned by a wildfire using composted amendments of different origin (biosolids and municipal organic wastes) and final particle size (screened and unscreened) was studied after 6 and 12 months of application in a field trial in semiarid NW Patagonia. Composts were applied at 40 Mg ha−1. A fertilized treatment with soluble N (100 kg ha−1) and P (35 kg ha−1), and a non-treated control were also included. As indicators of soil response, chemical (electrical conductivity, pH, organic C, total N, extractable P), biological (potential microbial respiration, potential net N mineralization, N retained in microbial biomass) and physical (temperature and soil moisture) properties were evaluated. Plant soil cover was also estimated. Soil chemical and biological properties showed a high response to organic amendment addition, more evident after the wet season (12 months of application). Soil organic C, total N and extractable P increased significantly with biosolids composts (BC), and soil pH with municipal composts (MC). Potential microbial C respiration and net N mineralization were similar for both MC and BC, and significantly higher than in the control and the inorganic fertilized treatment; when calculated on C or N basis the highest values corresponded to MC. Results imply that in terms of organic C accretion, BC were more effective than MC due to higher amounts of total and recalcitrant C. Screened and unscreened composts did not differ significantly in their effects on soil properties. The increase of organic C with BC did not contribute to increase soil moisture, which was even higher in control plots after the wet season; higher plant cover and water consumption in amended plots could also explain this pattern. Inorganic fertilization enhanced higher plant cover than organic amendments, but did not contribute to soil restoration.  相似文献   

10.
In this study, three types of cropping systems with different nutrient management strategies were studied on a clay soil with the aim of comparing leaching of N, P and K and obtaining knowledge on nutrient budgets. A conventional cropping system with cereals and application of mineral fertilizers (CON) was compared with two organic cropping systems, one without animal manure in which green manure crops were used for N supply (OGM) and one where animal manure (cattle slurry) was applied (OAM). Leaching and crop uptake of N, P and K, and soil mineral N were measured in pipe‐drained plots over a 6‐year period. The mean annual leaching loads of N were moderate and did not differ significantly (P > 0.05) between treatments; 13 kg N ha?1 in CON, 11 kg N ha?1 in OGM and 7.4 kg N ha?1 in OAM. Average annual P leaching showed greater variation than N leaching and was significantly greater in OGM (0.81 kg ha?1 year?1) than in CON (0.36 kg ha?1) and OAM (0.41 kg ha?1). For all cropping systems, removal in harvested crops was the most important export of nutrients from the field and constituted between 80 and 94% of total N outputs (harvested and leached N). Yields of cereals in the organic systems were considerably less (15–50%) than in the CON system, leading to a less efficient use of N than in the conventional system.  相似文献   

11.
Nitrogen (N) and phosphorus (P) concentrations were determined in sediment samples along the bed of Catatumbo river in both Colombian and Venezuelan territories until the river outlet in Maracaibo lake. Total phosphorus was determined by digestion with HCl followed by analysis using the ascorbic acid method and total nitrogen was done using the standard microkjeldahl method plus nitrate-nitrite. Ammonium, orthophosphate and nitrate were determined using standard methods after extraction steps. The mean concentrations along the river bed were found in an interval of 0.035 and 1.492 mg g-1 dry sed. for nitrogen and 0.027 and 1.039 mg g-1 dry sed. for phosphorus at 95% confidence level. The mean molar ratio N/P in the river bed was 4.42 and 3.46 for river outlet zones in the lake, which indicates that nitrogen is the limiting nutrient. For comparison with previous results of lake sediments from sites near the river outlet it was concluded that Catatumbo river is a significant source of nutrients to the Maracaibo Lake system because sediment nutrients concentrations from Catatumbo river were higher than the ones in Maracaibo Lake. Statistic studies showed significant differences between countries, zones and similar behaviour in the river bed as related to the affluent rivers.  相似文献   

12.
Abstract

A field experiment investigating amendments of organic material including farmyard manure, paper factory sludge and crop residues combined with fly ash, lime and chemical fertilizer in a rice-peanut cropping system was conducted during 1997–98 and 1998–99 at the Indian Institute of Technology, Kharagpur, India. The soil was an acid lateritic (Halustaf) sandy loam. For rice, an N:P:K level of 90:26.2:33.3 kg ha?1 was supplied through the organic materials and chemical fertilizer to all the treatments except control and fly ash alone. The required quantities of organic materials were added to supply 30 kg N ha?1 and the balance amount of N, P and K was supplied through chemical fertilizer. Amendment materials as per fertilization treatments were incorporated to individual plots 15 days before planting of rice during the rainy season. The residual effects were studied on the following peanut crop with application of N:P:K at 30:26.2:33.3 kg ha?1 through chemical fertilizer alone in all treatments, apart from the control. An application of fly ash at 10 t ha?1 in combination with chemical fertilizer and organic materials increased the grain yield of rice by 11% compared to chemical fertilizer alone. The residual effect of both lime and fly ash applications combined with direct application of chemical fertilizer increased peanut yields by 30% and 24%, respectively, compared to chemical fertilizer alone. Treatments with fly ash or lime increased P and K uptake in both the crops and oil content in peanut kernel compared to those without the amendments. Alkaline coal fly ash proved to be a better amendment than lime for improving productivity of an acid lateritic soil and enriching the soil with P and K.  相似文献   

13.
长期定位施肥对黑垆土剖面养分分布特征的影响   总被引:17,自引:4,他引:17  
对黄土高原旱地 15年连续施肥后土壤剖面养分分布的研究发现 ,施化肥对土壤剖面有机质、全N、全P含量的影响深达 100cm以下 ,所有施肥处理有机质、全N、全P、NO3--N、有效P含量在耕层 (0~20cm)都有不同程度增加 ;40~60、60~80cm土层有机质、全N、全P都低于长年不施肥处理 ,造成土壤下层养分的亏缺。长期大量施用氮肥造成N素养分下淋累积 ;长期大量施用磷肥土壤耕层有效P显著提高 ,而 20cm以下土层变化不大。  相似文献   

14.
研究结果表明,有机、无机肥施用后,土壤微生物量C、N、P开始增加很快,随着时间的推移,土壤微生物量C又有所降低,但生物量N和P则基本保持稳定。硫铵施入土壤后,微生物对肥料15N的生物固持10天后达到最高峰,以后被固持在体内的15N有一部分被逐渐释放出来,但一个月后仍有17%左右的15N被固持在微生物体内。硫铵与有机肥配合施用时,微生物对硫铵15N固持比例有所增加。有机肥中的15N被微生物固持的比例也较大,在肥料施入20天左右达到最大值,一个月后仍有19-25%存在于微生物体内。硫铵施用一个月后15N损失高达18%,有机肥中的N也有少量被损失。  相似文献   

15.
The microbial biomass C, N and P of soils all over China were determined in this study to study their affecting factors. The results, about 100-417 mg C kg-1 soil, 18-51 mg N kg-1 soil and 4.4-27.3 mg P kg-1 soil, showed the biomass C, N and P in linear relationship with the soil total organic C, toal N and soil organic P. The ratios of C: N and C:P, ranging from 5.6 to 9.6 and from 11.2 to 48.4 respectively, were affected by soil pH, texture, crop rotation, macroclimate, etc. The ratio of C:N in soil biomass increases gradually from the north to the south in China.  相似文献   

16.
Microbial mineralization and immobilization of nutrients strongly influence soil fertility. We studied microbial biomass stoichiometry, microbial community composition, and microbial use of carbon (C) and phosphorus (P) derived from glucose-6-phosphate in the A and B horizons of two temperate Cambisols with contrasting P availability. In a first incubation experiment, C, nitrogen (N) and P were added to the soils in a full factorial design. Microbial biomass C, N and P concentrations were analyzed by the fumigation-extraction method and microbial community composition was analyzed by a community fingerprinting method (automated ribosomal intergenic spacer analysis, ARISA). In a second experiment, we compared microbial use of C and P from glucose-6-phosphate by adding 14C or 33P labeled glucose-6-phosphate to soil. In the first incubation experiment, the microbial biomass increased up to 30-fold due to addition of C, indicating that microbial growth was mainly C limited. Microbial biomass C:N:P stoichiometry changed more strongly due to element addition in the P-poor soils, than in the P-rich soils. The microbial community composition analysis showed that element additions led to stronger changes in the microbial community in the P-poor than in the P-rich soils. Therefore, the changed microbial biomass stoichiometry in the P-poor soils was likely caused by a shift in the microbial community composition. The total recovery of 14C derived from glucose-6-phosphate in the soil microbial biomass and in the respired CO2 ranged between 28.2 and 37.1% 66 h after addition of the tracer, while the recovery of 33P in the soil microbial biomass was 1.4–6.1%. This indicates that even in the P-poor soils microorganisms mineralized organic P and took up more C than P from the organic compound. Thus, microbial mineralization of organic P was driven by microbial need for C rather than for P. In conclusion, our experiments showed that (i) the microbial biomass stoichiometry in the P-poor soils was more susceptible to additions of C, N and P than in the P-rich soils and that (ii) even in the P-poor soils, microorganisms were C-limited and the mineralization of organic P was mainly driven by microbial C demand.  相似文献   

17.
梁子湖湿地土壤养分的空间异质性   总被引:12,自引:5,他引:12  
2003年10月利用地统计学方法对梁子湖湿地保护区内一块63.9km2区域的土壤养分的空间变异进行了研究。以400m400m的网格采集了101个表层(015cm)土壤样品。分析结果表明,土壤养分有较大的空间变异,土壤有机质、全氮、全磷、速效氮变异系数分别是36.0%、30.6%1、3.7%和29.3%;速效磷的变异系数最高为50.4%。土壤有机质、全氮、全磷、速效氮和速效磷的理论模型均为球状模型。土壤有机质、全氮、全磷、速效氮具有中等空间自相关性,随机变异分别是68.5%、68.3%、75%和71.5%;速效磷的自空间相关性较弱,变异为82.4%。5种养分的空间自相关距离比较接近,变程在2853m~963m之间。通过克里格插值进行土壤养分空间插值制图显示,土壤养分表现出空间分布的相似性。  相似文献   

18.
《Journal of plant nutrition》2013,36(10):2303-2313
ABSTRACT

The changes in soil nutrient status following the application of different fertilizer types were studied in field experiments involving maize-melon intercrop relayed into a cassava-soybean intercrop between 1995 and 1997. The soil at the experimental site was a Kanhaplic Haplustalf, which was under continuous cultivation with arable crops for seven years and fallow for four years. The effects of organic and inorganic fertilizers were investigated singly and in combination. The type of fertilizer had no significant effect on the soil pH, although, cropping significantly lowered the pH from 6.0 to 5.7. Cropping also significantly reduced the soil organic matter and total nitrogen (N). The soil organic matter (OM) and total N were most depleted with organic fertilizer application. Complementary application of organic and inorganic fertilizers limited the degree of depletion from 31.0 to 12.1 g kg?1 of OM and 1.8 to 0.6 g kg?1 total N. Soil available P was increased (60%) by inorganic fertilizer while the organic fertilizer increased it by 145% and the combined fertilizer by 186%. Exchangeable calcium (Ca) was depleted by about 12% with organic fertilizer application, 15% by inorganic fertilizer and about 19% with complementary application of organic and inorganic fertilizers. Exchangeable sodium (Na) was reduced from 0.43 to about 0.38 cmol kg?1 while magnesium (Mg) was increased from 0.5 to about 0.6 cmol kg?1.  相似文献   

19.
The nature of organic P in soil organic matter was studied by evaluating the incorporation of serine, phosphoserine, ethanolamine, phosphoethanolamine and glycerophosphate into model humic polymers prepared by chemical oxidation of polyphenols. Elemental and functional group analysis indicated that the composition of model humic polymers ranged as follows: organic C, 50.6–56.8%; total acidity, 7.86–11.87m-equiv g?1; carboxyl, 1.42–2.00 m-equiv g?1; total hydroxyl, 6.79-10.0 m-equiv g?1; ash, 6.4–13.9%; E4/E6 ratio, 5.34–6.19; organic N, 0.70–1.65% and organic P, 0.254–0.942%. These values are within the ranges reported for soil humic substances. The only non-phenolic compounds incorporated into model humic polymers were those containing free amino groups. The P content of model polymers was not increased by the presence of KH2PO4, glycerophosphate, serine or ethanolamine whereas phosphoserine and phosphoethanolamine resulted in model polymers containing 0.254 and 0.942% P, respectively. Further characterization studies of the model polymer containing phosphoethanolamine (HA-PE) showed that most of the C (83.2%), N (79.8%) and P (75.3%) was in the humic acid fraction. Gel filtration of HA-PE showed that 0.5% of the polymer was present in high molecular weight (mol. wt) components (mol. wt > 100,000) and 74.8% of the polymer was in two components of mol. wt 10,000–50,000. The majority of the organic P in HA-PE was associated with the medium molecular weight fractions (79.2%) while 16.8% of the P was associated with materials possessing mol. wt < 10,000. Attempts to demonstrate the presence of organic P functional groups contained in HA-PE by infrared spectroscopy was limited by the relatively small amounts of organic P incorporated into the model humic polymers. The results obtained show that a portion of the unidentified organic P in soil humic substances may arise from the incorporation of organic compounds containing both amino and phosphate ester functional groups during oxidative polymerization of polyphenols.  相似文献   

20.
A method for determining microbially available N and P in an organic soil   总被引:3,自引:0,他引:3  
Summary A bioassay of microbially available soil N and P is described. It is based on the addition of glucose together with N or P to soil, followed by monitoring of the respiration rate. The addition of glucose + N resulted in an immediate increase in the soil respiration rate followed by a short period of exponential increase, reflecting the growth of microorganisms on the added substrate. The exponential phase levelled off, when lack of P prevented further growth of the soil microorganisms. The soil respiration rate then remained constant for several hours before decreasing, when glucose became limiting. The addition of glucose + P resulted in a lower plateau of the soil respiration rate, indicating that microbial growth was more limited by N than P in this forest soil (0.28 and 0.79 mg CO2 g-1 organic matter h-1, respectively). Additions of the limiting nutrient resulted in a proportional increase in the constant level of the soil respiration rate. This was used to calculated the increase in the soil respiration rate per mg N (0.71 mg CO2 h-1) or mg P (4.6 mg CO2 h-1) added to this particular soil. Microbially available N was then calculated in two ways from the regression equation (0.15 or 0.40 mg g-1 organic matter) and P (0.13 or 0.17 mg g-1 organic matter). A comparison with 2 M KCl extraction showed that in nutrient-poor forest soils the microbially available N was 6.3 or 18.5 times higher than the KCl extractable N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号