首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A laboratory incubation experiment was set up to determine the effects of atrazine herbicide on the size and activity of the soil microbial biomass. This experiment was of a factorial design (0, 5, and 50 g g–1 soil of non-labelled atrazine and 6.6×103 Bq g–1 soil of 14C-labelled atrazine) x (0, 20, and 100 g g–1 soil of urea-N) x (pasture or arable soil with a previous history of atrazine application). Microbial biomass, measured by substrate-induced respiration and the fumigation-incubation method, basal respiration, incorporation of 14C into the microbial biomass, degradation of atrazine, and 14C remaining in soil were monitored over 81 days. The amount of microbial biomass was unaffected by atrazine although atrazine caused a significant enhancement of CO2 release in the non-fumigated controls. Generally, the amounts of atrazine incorporated into the microbial biomass were negligible, indicating that microbial incorporation of C from atrazine is not an important mechanism of herbicide breakdown. Depending on the type of soil and the rate of atrazine application, 18–65% of atrazine was degraded by the end of the experiment. Although the pasture soil had twice the amount of microbial biomass as the arable soil, and the addition of urea approximately doubled the microbial biomass, this did not significantly enhance the degradation of atrazine. This suggests that degradation of atrazine is largely independent of the size of the microbial biomass and suggests that other factors (e.g., solubility, chemical hydrolysis) regulate atrazine breakdown. A separate experiment conducted to determine total amounts of 14C-labelled atrazine converted into CO2 by pasture and arable soils showed that less than 25% of the added 14C-labelled atrazine was oxidised to 14CO2 during a 15-week period. The rate of degradation was significantly greater in the arable soil at 24%, compared to 18% in the pasture soil. This indicates that soil microbes with previous exposure to atrazine can degrade the applied atrazine at a faster rate.  相似文献   

2.
Root activity and carbon metabolism in soils   总被引:4,自引:0,他引:4  
Summary Two different soils were amended with 14C-labelled plant material and incubated under controlled laboratory conditions for 2 years. Half the samples were cropped with wheat (Triticum aestivum) 10 times in succession. At flowering, the wheat was harvested and the old roots removed from the soil, so that the soil was continuously occupied by predominantly active root systems. The remaining samples were maintained without plants under the same conditions. During the initial stages of high microbial activity, due to decomposition of the labile compounds, the size of the total microbial biomass was comparable for both treatments, and the metabolic quotient (qCO2-C = mg CO2-C·mg–1 Biomass C·h–1) was increased by the plants. During the subsequent low-activity decomposition stages, after the labile compounds had been progressively mineralized, the biomass was multiplied by a factor of 2–4 in the presence of plants compared to the bare soils. Nevertheless, qCO2-C tended to reach similar low values with both treatments. The 14C-labelled biomass was reduced by the presence of roots and qCO2-14C was increased. The significance of these results obtained from a model experiment is discussed in terms of (1) the variation in the substrate originating from the roots and controlled by the plant physiology, (2) nutrient availability for plants and microorganisms, (3) soil biotic capacities and (4) increased microbial turnover rates induced by the roots.  相似文献   

3.
The fumigation technique for the estimation of microbial biomass-C was applied at different periods after amendment of three agricultural soils with 14C-labelled glucose, cellulose and wheat roots. By daily monitoring of evolved CO2 and 14CO2 it was recognized that the CO2 from the degradation of the amendment had an interfering effect on biomass calculations. Biomass estimations were valid only when CO2 from the degradation of the amendment had slowed, 3 days after glucose amendment, 14 days after addition of cellulose, and 28 days after amendment with wheat roots.Fumigated, reinoculated soils degraded glucose faster than did the corresponding control samples, causing an overestimation of biomass-C. By contrast biomass-C was underestimated in soils amended with cellulose or wheat roots due to lower rates of degradation of the added C-sources in fumigated samples. The reduced capacity for degradation of complex organic materials may be due to smaller decomposer populations in inoculated fumigated soils; populations recovered within 20 days to only 10–20% of their original biomass-C content. Re-establishment of biomass in fumigated samples was tested with inocula in amounts increasing to 10, 50 and 100% of corresponding control samples. The K-factor was not influenced by these treatments. Estimates of biomass in soil during the rapid phase of degradation of wheat roots were influenced by the amount of inoculum.  相似文献   

4.
A method is proposed for studying the dynamic behaviour of the soil microbial population involved in the degradation of 2,4-D. The method is based on in situ specific-labelling of that population following treatment of the soil with 14C-labelled herbicide and investigating the kinetics of the incorporation of radioactivity by the soil microflora in treated soil samples subjected to the chloroform-fumigation technique after varying periods of exposure. Non-degraded herbicide still present in the soil after fumigation did not affect the overall flush of CO2 and was not further broken down at a sufficient rate to appreciably contribute to 14CO2 evolution. The validity of the method to assess the soil biomass of the 2,4-D degrading population together with its time variations is discussed in relation to the position of the 14C on the pesticide molecule.  相似文献   

5.
Microbial mineralization rates of a 14C-labelled PCB mixture were determined in PCB-contaminated Capitol Lake, LA, sediment under controlled pH and redox conditions. Mineralization rates were inferred from the activity of 14CO2 evolved from the sediment suspensions. Sediment pH and redox potential significantly affected PCB mineralization. Mineralization rates were higher under moderately aerobic conditions (microaerophilic) ( + 250 mV) than under aerobic conditions ( + 500 mV) or anaerobic conditions (0 mV and ?200 mV). PCB mineralization rates in moderately aerobic sediment were 30 to 40 fold higher than those in anaerobic sediment. Sediment conditions in the oxidized surface layer would promote PCB mineralization. Sediment pH and redox potential were shown to be two sediment parameters which can be managed to enhance degradation of PCBs in contaminated sediment.  相似文献   

6.
The degradation of14 C-Carbofuran was studied in sterilized, unsterilized and green manure amended clay soil under moist and flooded conditions overa period of 30 days. The14 C mass balance showed that carbofuran did not undergo any degradation in sterilized moist soil. In sterilized flooded soil bound residues were formed to the extent of about 47% of the applied radioactivity at the end of 30 days. Carbofuran underwent considerable degradation in unsterilized moist and flooded soils. In moist soil about 48% of the applied14 C activity was recovered as bound activity while in flooded soil, about 23% of the activity was bound. Green manure amendment resulted in formation of more bound residues under moist conditions while it enhanced the degradation of carbofuran under flooded conditions. In flooded amended soil about 44% of the appliedl4 C-activity was recovered as against about 54% in the unamended flooded soil. The notable degradation products formed under flooded soil conditions were 3-keto carbofuran and 3-hydroxy carbofuran.  相似文献   

7.
Abstract

Degradation and leaching of 14C-labelled simazine in coarse sandy soils at 15 + 1°C were investigated using radiometric and mass-spectrometric methods. During 6 months incubation approx. 4–7% of the applied 14C-simazine was evolved as 14CO2. 4–9% of the simazine still remained in the soil. Addition of hen manure or acidification by addition of peat did not clearly influence the rate of degradation of simazine, whereas mechanical treatment significantly increased its degradation. In a nitrogen atmosphere the rate of degradation of simazine was reduced.

9–15% of the simazine or its radioactive metabolites leached through a 33 cm sandy moraine soil column (diameter 6 cm) in ca. 1770 mm of precipitation over a 4 month period, and 2% was leached from a fine sand soil under the same conditions.  相似文献   

8.
Degradation and biocide effect of chemical plant protecting agents and pesticides in soils by the example of the insecticide Kelevan By the example of the insecticide Kelevan it is proved that by means of a combined test plan degradation and biocide effect of chemical plant protecting agents and pesticides in soils can be tested simultaneously. For this test two different test soils as described in leaflet No. 36 of the Biologische Bundesanstalt (BBA), Braunschweig, are each divided in test samples of about 200 g dry matter. To answer the question whether besides the biotic an abiotic degradation of Kelevan and its primary subsequent products takes place in top soil, too, one part of the soil samples was sterilized by overheated steam. Afterwards these and the non-sterilized soil samples were treated with known amounts of Kelevan[cage-U-14C] and in accordance to leaflet No. 36 of the BBA stored in the dark at 22°U65% r. h. or under field conditions for different periods. To investigate the effect of Kelevan and its metabolites on microorganisms in top soil, further soil samples were treated with increasing amounts of Kelevan and also stored for different periods. At the end of storage periods on an average W,2 % of applicated radioactivities were recovered in the soil samples with Kelevan[cage-U-14C]. Whereas readioactivities of sterilized soil samples were nearly quantitatively extractable, increasing radioactivity amounts were held back under the same extraction conditions by the native soil samples, which were present as organic residue components of Kelevan(cagc-U-14C) and not as 14C-containing carbonate. During degradation, in both test soils as well under laboratory conditions as under field conditions, about one third of Kelevan[cage-U-14C] was transferred within 30 months via Kelevan acid[cage-U-14C] to Chlordecon[cage-U-14C] and about two thirds were transferred into various unknown 14C-labelled degradation products. The results of microbiological investigation prove that microorganisms were evidently neither selected nor decimated in both test soils by Kelevan and its degradation products.  相似文献   

9.
Biotic and abiotic decomposition of organic matter in soils The problem area of organic matter decomposition in soils by biotic, abiotic and photochemical mechanisms is tested under administration of uniformly 14C-labelled wheat straw, humic of fulvic acids; furthermore by the use of conventional methods. In four separate test runs, based on Hapludalf-Ah soil, formed in loess, as well as on Ah soil of a spodic Dystrochrept in pleistocene sand, measurements over years - altogether 57 measurement cycles - revealed similar decomposition rates of 14C fulvic and 14C humic acid. The approximate magnitudes of turnover were: biotic: abiotic (Hg-sterilization): biotic + UV-irradiation: abiotic + UV-irradiation = 100:20:70:50. The sterilized samples continued to release CO2. Biotic + UV showed losses, compared with biotic, by partial UV sterilization. Abiotic + UV indicated increasing CO2 release, compared with abiotic only, due to additional photochemical decomposition. In a larger program with radioactive as well as conventional methods of CO2 measurement decomposition rates in different soils were tested under biotic, abiotic and photochemical condition in presence of metal ions, such as iron, aluminium, copper, zinc, lead and mercury. The impact by the added metals can be summerized as follows: Calcium and aluminium are favoring the organic matter decomposition under biotic conditions, while mercury, lead, copper, zinc and iron are rather inhibitive. Contrary, under biotic/steril conditions copper and especially mercury, further zinc and lead, at lower extent also calcium, impede CO2 liberation. Since there are but small differences among the various test soils, soil own parameters seem to exert under abiotic conditions low importance only. Under UV irradiation calcium had in the biotic milieu high, in the steril/abiotic milieu a lower increasing effect upon COz liberation. Also iron indicates a stimulating effect under contemporary UV irradiation, which at lower level applies to lead and mercury too, particularly in connection with the sandloess Hapludalf of Harburg. Based on the observed CO2 release also under abiotic/steril conditions final tests were conducted with calcinated quartzsand in contrast to soil, otherwise again under biotic, abiotic, as well as biotic or abiotic + UV conditions. Also in these calcinated sands 14CO2 release from the 14C labelled straw continued. Addition of increasing amounts of aluminiumlactate causes decreasing 14CO2 rates. An even stronger inhibition was produced by addition of zinclactate.  相似文献   

10.
In this study, we investigated the effects of lanthanum (La), one of the rare earth elements (REEs), on microbial biomass C as well as the decomposition of 14C-labelled glucose in a fluvo-aquic soil in 28 days. The soil was collected from the field plots under maize/wheat rotation in Fengqiu Ecological Experimental Station of Chinese Academy of Sciences, Henan Province, China. Application of La decreased soil microbial biomass C during the experimental period, and there was a negative correlation (P < 0.01) between microbial biomass and application rate of La. La increased microbial biomass 14C after 14C glucose addition, and the increase was significant (P < 0.05) at the rates of more than 160 mg kg−1 soil. La slightly increased 14CO2 evolution at lower rates of application but decreased it at higher rates 1 day after 14C glucose addition, while there was no significant effect from days 2 to 28. For the cumulative 14CO2 evolution during the incubation of 28 days, La slightly increased it at the rates of less than 120 mg kg−1 soil, while significantly decreased (P < 0.05) it at the rate of 200 mg kg−1 soil. The results indicated that agricultural use of REEs such as La in soil could decrease the amount of soil microbial biomass and change the pattern of microbial utilization on glucose C source in a short period.  相似文献   

11.
Soil was amended with 14C-labelled unripe straw only (C:N ratio ca. 20), with 14C-labelled unripe straw plus unlabelled ripe straw (C:N ratio ca. 100) or with 14C-labelled unripe straw plus glucose. Half the samples with 14C-labelled straw and half the samples with 14C-labelled plus unlabelled straw were cropped with rape plants. A decreased rate of mineralization of the 14C-labelled straw was found in the planted soil compared with the unplanted soil. The reduction was most profound in the soil amended with both labelled and unlabelled straw, indicating that at least part of the reduction was due to competition between plants and microorganisms for mineral N. No other explanations for the decrease in mineralization in the presence of plants were found. The soil amended with glucose which simulated the effect of root exudates showed an increased rate of mineralization. Therefore, the reduction in the presence of plants was probably not due to microbial use of the rhizodeposition in favour of the labelled straw. Only a minor part of the reduction was apparently due to uptake of labelled C by the plant, as only small amounts were found in the roots and shoots at harvest. The difference in 14C mineralization between treatments was not reflected in the number of bacteria in the soil at harvest. The number of bacteria, which was determined by plate counts and direct microscopy, was the same in all the soils, rhizosphere soils as well as bulk soils.  相似文献   

12.
Dimethylsilanediol (DMSD) is the ultimate hydrolysis product of silicone (polydimethylsiloxane = PDMS) polymer in soil. Our previous paper showed that it would volatilize from soil, and the present study investigates the importance of microbial degradation in removing DMSD from soil. DMSD (14C-labeled) was thus incubated (1 mg kg-1) for 30 wk at 25 °C in soils from a permanent grass field, a corn field, a deciduous woodland, and a pine woodland. Release of14 CO2 varied from 0.4 to 1.6% wk-1. For 3 of the soils, 14CO2 increased with higher microbial biomass, while organisms in the deciduous woodland soil were more active in degrading DMSD than organisms in the other soils. After 30 weeks, most of the remaining 14C in the soil had moved from freely available water extractable to less available acid and base extractable fractions. Similar incubations with 2% plant litter showed extensive transfer of the DMSD into the litter layer. Incubations with a microbial inhibitor showed less DMSD degradation, while cold storage of soils almost completely stopped degradation. These results suggest that microbial degradation is an important mechanism of DMSD loss from soil.  相似文献   

13.
The effect of freshly added substrate on carbon turnover of a microbial population and the priming action on stabilized soil organic constituents were investigated in the laboratory. 13C-labelled glucose. NH4NO3, or both were added to samples of a Brown Chernozemic soil which had been initially amended with 14C-glucose and incubated 2 months under field conditions. At the end of 14 days laboratory incubation. 39 per cent and 33 per cent of the 13C had been respired as CO2 from the glucose and glucose plus NH4NO3 treatments, respectively. These two treatments resulted in a marked priming of native 12C during the second and third days of incubation and a second priming peak during the fifth day. In contrast, there was only a small priming action of the 14C-labelled materials. Addition of NH4NO3 by itself had no effect on the amount of 12C or 12C respired.Appreciable amounts of 14C were mineralized following treatments known to partially sterilize soil. Freezing and thawing was more effective than wetting and drying, but less effective than CHCl3 vapour in releasing stabilized 14C materials. The amount of labelled-14C mineralized during incubation after treatment with chloroform vapour was greater than could he accounted for by the decrease in soil biomass.  相似文献   

14.
The aim of this study was to evaluate the redox mediating capacity of anthraquinone-2,6-disulfonate (AQDS) immobilized on granular activated carbon (GAC) during the reductive decolorization of direct blue 71 (DB71) under microbial and chemical conditions. The immobilization of AQDS on GAC was conducted by adsorption, and it has obtained an uptake capacity of 0.227 mmol g?1. The anchorage of AQDS on GAC improved its electron transfer capacity (ETC) up to 2.05 times higher than the raw material. Similarly, the addition of GAC-AQDS increased up to 1.75- and 1.16-fold the rate of decolorization (k d ) of DB71 under microbial and chemical conditions, respectively, in comparison to the unmodified GAC. Surprisingly, a higher k d value was achieved in incubations without either GAC or GAC-AQDS because of the generation of aromatic amines, from the reduction DB71, taking into account that these species may act as a catalyst in the DB71 reduction process. In contrast, adsorption of aromatic amines on either GAC or GAC-AQDS decreased its redox mediating capacity as evidenced by spectrophotometric screenings of the decolorized solution and the supporting material. The development of materials with enhanced both redox and adsorption properties, as the GAC used in this study, offers a promising way to increase the redox conversion of recalcitrant pollutants commonly found in industrial wastewaters.  相似文献   

15.
在温室盆栽条件下,采用Biolog微平板法和氯仿熏蒸浸提法,研究了玉米施用等养分量的无机肥、有机无机复混肥和生物复混肥后土壤微生物群落功能多样性及土壤微生物量的变化。结果表明:生物复混肥处理的土壤微生物平均颜色变化率(AWCD)、微生物群落Shannon指数(H)和微生物群落丰富度指数(S)均最高;施用生物复混肥可明显提高土壤微生物对碳源的利用率,尤其是多酚化合物类和糖类;不同处理土壤微生物碳源利用特征有一定差异,生物复混肥在第1主成分上的得分值为正值,其他各处理在第1主成分上的得分值基本上为负值,起分异作用的主要碳源是糖类和羧酸类。在玉米生长期间各处理土壤微生物量大致呈先升高后逐渐平稳的趋势,且土壤微生物量碳、氮、磷的含量均以生物复混肥处理最高,最高值分别为333.21mg.kg 1、53.02 mg.kg 1和22.20 mg.kg 1。研究表明,生物复混肥的施用比等养分量的有机无机复混肥处理能显著提高土壤微生物群落碳源利用率、微生物群落丰富度和功能多样性,显著增加土壤微生物量碳、氮、磷的含量,有利于维持良好的土壤微生态环境。  相似文献   

16.
 This study examines the effect of soil P status and N addition on the decomposition of 14C-labelled glucose to assess the consequences of reduced fertilizer inputs on the functioning of pastoral systems. A contrast in soil P fertility was obtained by selecting two hill pasture soils with different fertilizer history. At the two selected sites, representing low (LF) and high (HF) fertility status, total P concentrations were 640 and 820 mg kg–1 and annual pasture production was 4,868 and 14,120 kg DM ha–1 respectively. Soils were amended with 14C-labelled glucose (2,076 mg C kg–1 soil), with and without the addition of N (207 mg kg–1 soil), and incubated for 168 days. During incubation, the amounts of 14CO2 respired, microbial biomass C and 14C, microbial biomass P, extractable inorganic P (Pi) and net N mineralization were determined periodically. Carbon turnover was greatly influenced by nutrient P availability. The amount of glucose-derived 14CO2 production was high (72%) in the HF and low (67%) in the LF soil, as were microbial biomass C and P concentrations. The 14C that remained in the microbial biomass at the end of the 6-month incubation was higher in the LF soil (15%) than in the HF soil (11%). Fluctuations in Pi in the LF soil during incubation were small compared with those in HF soil, suggesting that P was cycling through microbial biomass. The concentrations of Pi were significantly greater in the HF samples throughout the incubation than in the LF samples. Net N mineralization and nitrification rates were also low in the LF soils, indicating a slow turnover of microorganisms under limited nutrient supply. Addition of N had little effect on biomass 14C and glucose utilization. This suggests that, at limiting P fertility, C turnover is retarded because microbial biomass becomes less efficient in the utilization of substrates. Received: 18 October 1999  相似文献   

17.
It has previously been shown that treatment of soil with periodate and tetraborate releases much of the carbohydrate and destroys an equivalent proportion of the soil aggregates. The residual carbohydrate is proportionately richer in glucose, arabinose and xylose, sugars characteristic of plant remains, than the whole soil. The effect of sodium periodate (0.02 M, 6–168 h) and sodium tetraborate (0.1 M, 6 h) treatment of soil on carbohydrates of different origin was examined using 14C-labelled soil in which the label was present in microbial products arising from 7 and 28 day incubations of 14C-glucose in soil, or in both plant and microbial materials resulting from 12 week incubations of 14C-labelled barley leaf and 1 year incubations of 14C-labelled ryegrass in soil. Arabinose and xylose were the sugars most resistant to periodate in the glucose incubated soil; in the ryegrass incubation arabinose, xylose and glucose were more persistent than galactose, mannose and rhamnose. In the barley leaf incubation arabinose was more persistent than galactose and rhamnose. Thus periodate oxidation did not distinguish between sugars of different origin in soil and it was concluded that in the case of arabinose and xylose the persistence related to differences in chemical structures rather than to physical factors such as particle size of the plant fragments. The composition of the more stable residue can therefore not be used as an indication of polysaccharide origin in any comparison of the relative effects of plant and microbially derived material as aggregating agents.  相似文献   

18.
Five microbial species (Aspergillus flavus, Trichoderma viride, Streptomyces sp., Arthrobacter sp., Achromobacter liquefaciens) were cultivated in liquid media containing 14C-labelled glucose. The decomposition of these microorganisms was recorded in four different soils after chloroform fumigation by a technique related to that proposed by Jenkinson and Powlson, to determine the mineralization rate of microbial organic matter (Kc coefficient). Three treatments were used: untreated soil, fumigated soil alone and fumigated soil supplied with 14C-labelled cells. Total evolved CO2 and 14CO2 were measured after 7 and 14 days at 28°C.The labelled microorganisms enabled the calculation of mineralization rate Kc (Kc = mineralized microbial carbon/supplied microbial carbon). The extent of mineralization of labelled microbial carbon depended on the type of soil and on the microbial species. Statistical analysis of results at 7 days showed that 58% of the variance is taken in account by the soil effect and 32% by the microorganism effect. Between 35 and 49% of the supplied microbial C was mineralized in 7 days according to the soil type and the species of microorganism. Our results confirmed that the average value for Kc = 0.41 is acceptable, but Kc variability according to soil type must be considered.The priming effect on organic C and native microbial biomass mineralization, due to microbial carbon addition was obtained by comparison between the amount of non-labelled CO2-C produced by fumigated soils with or without added labelled microorganisms: this priming effect was generally negligible.These results indicate that the major portion of the error of microbial biomass measurement comes from the Kc estimation.  相似文献   

19.
The effects of modified heavy metal (HM) availability on the microbial community structure and on the microbe-mediated degradation of herbicide isoproturon (IPU) were evaluated in soil with a long-term HM contamination. The fate of 14C-ring labelled IPU was investigated for over 60 days under controlled microcosm conditions. Phosphate mineral apatite and a water solution of Pb, Zn, and Cd salts were previously homogeneously mixed into the soil material to reduce and to increase the proportion of bioavailable HM, respectively. The availability of Pb, Zn, and Cd was determined by HM fractionation and plant uptake 110 days after the addition of amendments, shortly before IPU addition. Apatite treatment reduced the availability of HM, but did not affect the microbial biomass and the microbial community structure on the genotype level (total soil DNA-RAPD). However, it changed the microbial community structure on the phenotype level, based on the composition of phospholipid fatty acids (PLFA) at the end of the degradation experiment. The degradation of IPU did not change. In contrast to apatite treatment, HM supplementation increased the bioavailability of Pb, Zn and Cd, which resulted in biomass reduction and changes of microbial community structure on the genotypic (total soil DNA-RAPD) and phenotypic (PLFA) level. Increased bioavailability of HM also significantly reduced the rate of IPU degradation and mineralisation. The total mineralisation over a period of 60 days decreased from 12 to 5% of initial 14C. Increased HM bioavailability did not influence the degradation pathways and kinetics of IPU.  相似文献   

20.
The effect of three land use types on decomposition of 14C-labelled maize (Zea mays L.) residues and soil organic matter were investigated under laboratory conditions. Samples of three Dystric Cambisols under plow tillage (PT), reduced tillage (RT) and grassland (GL) collected from the upper 5 cm of the soil profile were incubated for 159 days at 20 °C with or without 14C-labelled maize residue. After 7 days cumulative CO2 production was highest in GL and lowest in PT, reflecting differences in soil organic C (SOC) concentration among the three land use types and indicating that mineralized C is a sensitive indicator of the effects of land use regime on SOC. 14CO2 efflux from maize residue decomposition was higher in GL than in PT, possibly due to higher SOC and microbial biomass C (MBC) in GL than in PT. 14CO2 efflux dynamics from RT soil were different from those of PT and GL. RT had the lowest 14CO2 efflux from days 2 to 14 and the highest from days 28 to 159. The lowest MBC in RT explained the delayed decomposition of residues at the beginning. A double exponential model gave a good fit to the mineralization of SOC and residue-14C (R2 > 0.99) and allowed estimation of decomposition rates as dependent on land use. Land use affected the decomposition of labile fractions of SOC and of maize residue, but had no effect on the decomposition of recalcitrant fractions. We conclude that land use affected the decomposition dynamics within the first 1.5 months mainly because of differences in soil microbial biomass but had low effect on cumulative decomposition of maize residues within 5 months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号