共查询到20条相似文献,搜索用时 15 毫秒
1.
Li CP Salvador AS Ibrahim HR Sugimoto Y Aoki T 《Journal of agricultural and food chemistry》2003,51(23):6808-6815
Food proteins were phosphorylated by heating in a dry state in the presence of phosphate. When casein, whey protein isolate (WPI), and egg white proteins (EWP), which were lyophilized from their solutions in a phosphate buffer, were dry-heated at various temperatures and pH levels for 1-5 days, EWP was more highly phosphorylated than casein and WPI. Phosphorylation of EWP was promoted with a decrease of pH from 7.0 to 3.0 when the incubation temperature was raised from 55 to 100 degrees C. The phosphorus content of EWP increased from 0.08 to 0.64% by dry-heating at pH 3.0 and 85 degrees C for 5 days in the presence of phosphate. The electrophoretic mobility of EWP increased with an increase in the phosphorylation level. The heat-induced polymerization of EWP by dry-heating was not affected by the presence of phosphate. Although the solubility of EWP decreased by dry-heating at pH 3.0-5.5, the phosphorylation depressed the insolubilization at low pH. The phosphate bonds in phosphorylated EWP (P-EWP) were stable at pH 2.0-10.0 and were more acid-labile and base-stable than phosphoesters of egg riboflavin-binding protein (RfBP). (31)P NMR spectral data suggested that besides phosphoesters, phosphodiester and polyphosphate bonds were introduced in P-EWP. Heat stability of EWP was improved, and calcium phosphate-solubilizing ability of EWP was enhanced by phosphorylation. 相似文献
2.
Li CP Hayashi Y Shinohara H Ibrahim HR Sugimoto Y Kurawaki J Matsudomi N Aoki T 《Journal of agricultural and food chemistry》2005,53(12):4962-4967
Ovalbumin (OVA) was phosphorylated by dry-heating in the presence of pyrophosphate at pH 4.0 and 85 degrees C for 1 and 5 days, and the physicochemical and structural properties of phosphorylated OVA were investigated. The phosphorus content of OVA increased to 1.01% by phosphorylation, and the electrophoretic mobility of PP-OVA also increased. Although the solubility of dry-heated OVA decreased, the decrease was slightly depressed by phosphorylation. The circular dichroism spectra showed that the change of the secondary structure in the OVA molecule, as measured by alpha-helix content, was mild by phosphorylation. The exchange reaction between the sulfhydryl and disulfide groups was enhanced and the surface hydrophobicity of OVA increased by phosphorylation. The tryptophan fluorescence intensity of OVA decreased by phosphorylation, suggesting that the conformational change occurred in the OVA molecule by phosphorylation. Although the differential scanning calorimetry thermograms of OVA showed a lowering of the denaturation temperature from 78.3 to 70.1 degrees C by phosphorylation, the stability of OVA against heat-induced insolubility at pH 7.0 was improved. The results indicated molten (partially unfolded) conformations of OVA formed by dry-heating in the presence of pyrophosphate. 相似文献
3.
Van der Plancken I Van Loey A Hendrickx M 《Journal of agricultural and food chemistry》2007,55(1):127-135
This article addresses the effect of moisture content (0.8-9.9%) during dry-heating (80 degrees C) on selected physicochemical (solubility, turbidity, residual denaturation enthalpy, aggregation, surface hydrophobicity, and sulfhydryl content) and functional (foaming ability, foam density, and stability) properties of freeze-dried egg white (FDEW). Moisture content during dry-heating proved to be a parameter determining the functionality of the resulting egg white powder. The degree of conformational changes induced in the egg white proteins by dry-heating was strongly dependent on the amount of water present. Preferentially, dry-heating at 80 degrees C should be performed on egg white powder with a moisture content below 6.8%, as the loss of protein solubility above this value is extensive. In addition to insoluble aggregates, soluble, strongly stabilized aggregates were also formed, especially at higher moisture contents. The decrease in denaturation enthalpy, increase in surface hydrophobicity, and exposure of SH groups previously hidden in the protein core and their subsequent oxidation were more pronounced at prolonged dry-heating times and at higher moisture contents. These conformational changes resulted in improved foaming ability and foams with lower density. No effect of dry-heating on the foam stability was observed. 相似文献
4.
Improvement of gel properties of dried egg white by modification with galactomannan through the Maillard reaction 总被引:6,自引:0,他引:6
Matsudomi N Nakano K Soma A Ochi A 《Journal of agricultural and food chemistry》2002,50(14):4113-4118
The effects of Maillard reaction on gel properties of dried egg white (DEW) with galactomannan (GM) were investigated. Maillard-reacted DEW (MDEW) was prepared by dry-heating a mixture with a weight ratio of 1:4 of GM to DEW at 60 degrees C and 65% relative humidity. The modification of amino groups and polymerization of DEW proteins dry-heated with GM proceeded with increasing the dry-heating time. The covalent attachment of GM to DEW was confirmed from SDS-PAGE analysis. Gel strength and water-holding capacity of MDEW gels were higher than those of DEW dry-heated without GM (control DEW) and reached maximum after 3 days of dry-heating. The appearance of MDEW gels became transparent with increasing the dry-heating time, but control DEW gels were still turbid. MDEW dry-heated for 3 days was almost soluble even after heating of its solution at 90 degrees C, whereas control DEW proteins precipitated. The modification of DEW with GM through the Maillard reaction was an effective method to make a firm and transparent gel from DEW at broader range of pH and NaCl concentration of the medium. 相似文献
5.
Yamagishi Y Hattori M Yoshida T Takahashi K 《Journal of agricultural and food chemistry》2004,52(26):8039-8045
Phosphorylated sucrose stearate (SE-P) was prepared by dry-heating sucrose stearate (SE) with metaphosphoric acid. The main product was deduced to be a monophosphosucrose monostearate by chemical analysis and mass spectrometry. SE-P exhibited remarkably higher solubility and emulsifying properties than SE, especially in the acidic region and in the presence of NaCl, and SE-P bound Ca2+ at a 1:1 molar ratio (SE-P/Ca2+). SE-P markedly reduced the viscosity of potato starch paste and inhibited retrogradation, whereas SE did not reduce it so much. It is thus expected that phosphorylation would be an appropriate method for improving the functional properties of SE and that SE-P could be used as a novel emulsifier and modifier with Ca2+-binding ability for starchy foods. 相似文献
6.
Enomoto H Li CP Morizane K Ibrahim HR Sugimoto Y Ohki S Ohtomo H Aoki T 《Journal of agricultural and food chemistry》2007,55(6):2392-2398
Beta-lactoglobulin (beta-Lg) was glycated with maltopentaose and subsequently phosphorylated by dry-heating in the presence of pyrophosphate to investigate the structural and functional properties of phosphorylated beta-Lg. The circular dichroism spectra showed that the change of the secondary structure in the beta-Lg molecule by glycation and subsequent phosphorylation was small. The differential scanning calorimetry thermograms of beta-Lg showed that the denaturation temperature of the most stable domain was only slightly affected, whereas the retinol-binding activity of beta-Lg was somewhat reduced by glycation and subsequent phosphorylation. These results indicated that the conformational changes of the beta-Lg molecule by glycation and subsequent phosphorylation were mild. The anti-beta-Lg antibody response was somewhat reduced by glycation, but significant changes were not observed by phosphorylation. Although the stability of beta-Lg against heat-induced insolubility was improved by glycation alone, it was further enhanced by phosphorylation. The calcium phosphate solubilizing ability of beta-Lg was enhanced by phosphorylation following glycation. 相似文献
7.
Correlation of the protein structure and gelling properties in dried egg white products 总被引:1,自引:0,他引:1
Handa A Hayashi K Shidara H Kuroda N 《Journal of agricultural and food chemistry》2001,49(8):3957-3964
The relationship between protein structure and aggregation, as well as heat-induced gelling properties, of seven dried egg white (DEW) products was investigated. Strong correlations were found between average molecular weight and hydrophobicity plus surface SH groups of DEW-soluble protein aggregate (SPA). This suggests that hydrophobic interactions and disulfide bond formation between protein molecules were involved in the aggregation. The average molecular weight of DEW products with alkaline pHs was relatively higher than those with neutral pHs and the same degree of protein unfolding, probably because of more disulfide bond formation between protein molecules. In addition, strong correlations were found between hydrophobicity, surface SH groups plus average molecular weight of DEW-SPA, and physical properties of the gels from DEW products. These data indicated that controlling the aggregation of DEW proteins in the dry state is crucial to controlling the gelling properties of DEW. 相似文献
8.
The physicochemical and functional properties of ultraviolet (UV)-treated egg white protein (EW) and sodium caseinate (SC) were investigated. UV irradiation of the proteins was carried out for 30, 60, 90, and 120 min. However, the SC samples were subjected to extended UV irradiation for 4 and 6 h as no difference was found on the initial UV exposure time. Formol titration, SDS-PAGE, and FTIR analyses indicated that UV irradiation could induce cross-linking on proteins and led to improved emulsifying and foaming properties (P < 0.05). These results indicated that the UV-irradiated EW and SC could be used as novel emulsifier and foaming agents in broad food systems for stabilizing and foaming purposes. 相似文献
9.
The effects of addition of alpha-casein (alpha-CN) to dried egg white (DEW) were investigated by measuring transparency, hardness, and water-holding capacity (WHC) of the heat-induced gels. A DEW concentration of 8% (w/w) was required for formation of a self-supporting gel following heating at 80 degrees C for 20 min at pH 7. Solutions of alpha-CN, even up to a protein concentration of 12% (w/w), did not gel under the same conditions. The addition of alpha-CN (0.5-4%) to 8% DEW caused the increase in gel hardness gels, as compared with DEW gels alone at a total amount of protein concentrations, and the mixed gels became transparent with the increase of added alpha-CN concentrations. The 10% mixed protein solutions of alpha-CN (3-6%) and DEW (4-7%) formed transparent gels, although each protein did not gel individually at their protein concentrations. Mixture with 2:8 mixing ratio of alpha-CN to DEW at a total protein concentration of 10% showed synergistic effects in improving DEW gel properties above pH 7 and below 25 mM NaCl. The improvements (hardness, transparency, and WHC) of DEW gel by alpha-CN seem to be caused mainly by the inhibition of alpha-CN against heat coagulation of DEW protein. 相似文献
10.
The effects of the Maillard reaction on the functional properties of dried egg white (DEW) were investigated. Maillard-reacted DEW (M-DEW) was prepared by storing sugar-preserved DEW (SP-DEW) at 55 degrees C and 35% relative humidity for 0-12 days. The M-DEW developed an excellent gelling property, and hydrogen sulfide production from heat-induced M-DEW gels decreased. Surface sulfhydryl (SH) group content of M-DEW increased while total SH group and alpha-helix contents decreased with increasing heating time in the dry state. Breaking strength, breaking strain, water-holding capacity, and hydrogen sulfide of heat-induced M-DEW gels significantly correlated with surface and total SH group contents in M-DEW. SDS-PAGE revealed that M-DEW proteins were polymerized in which covalent bonds were involved. The present study demonstrated that the Maillard reaction partially unfolds and polymerizes proteins of SP-DEW and, consequently, improved gelling property of SP-DEW under certain controlled conditions. 相似文献
11.
The influence of xanthan gum concentration on the physicochemical stability of model oil-in-water emulsions prepared with egg white protein at pH 3.8 and containing 150 mM NaCl was investigated by following droplet aggregate formation, rheological changes, and serum separation with storage time. Egg white emulsions were more strongly flocculated and exhibited higher stability against creaming than those of yolk, irrespective of the presence or absence of xanthan. Depletion effects, originating from the presence in the continuous phase of the emulsions of nonadsorbing xanthan molecules, intensified droplet-droplet flocculation effects and resulted in large droplet flocs. At relatively low xanthan contents, the emulsions exhibited higher stability against creaming compared to the respective control emulsions probably due to the formation of a continuous droplet aggregate network structure. At higher xanthan contents, less extensive droplet interactions, due to slowly evolving microstructure of phase-separated xanthan-rich and xanthan-depleted regions, resulted in emulsions exhibiting increased stability against creaming. The role of interactions between protein molecules adsorbed on neighboring droplets in these changes and their effect on emulsion aging are discussed. 相似文献
12.
Improvement in the water stability and other related functional properties of thin (<50 μm) kafirin protein films was investigated. Thin conventional kafirin films and kafirin microparticle films were prepared by casting in acetic acid solution. Thin kafirin films cast from microparticles were more stable in water than conventional cast kafirin films. Treatment of kafirin microparticles with heat and transglutaminase resulted in slightly thicker films with reduced tensile strength. In contrast, glutaraldehyde treatment resulted in up to a 43% increase in film tensile strength. The films prepared from microparticles treated with glutaraldehyde were quite stable in ambient temperature water, despite the loss of plasticizer. This was probably due to the formation of covalent cross-linking between free amino groups of the kafirin polypeptides and carbonyl groups of the aldehyde. Thus, such thin glutaraldehyde-treated kafirin microparticle films appear to have good potential for use as biomaterials in aqueous applications. 相似文献
13.
Samontha A Nipattamanon C Shiowatana J Siripinyanond A 《Journal of agricultural and food chemistry》2008,56(19):8809-8814
Field-flow fractionation techniques including sedimentation field-flow fractionation (SdFFF) and flow field-flow fractionation (FlFFF) were applied to investigate hen egg white protein aggregation. The thermally induced aggregation of hen egg white protein was observed at temperatures of 60 degrees C and higher. Particle size and size distribution of hen egg white protein aggregates were characterized by SdFFF to investigate parameters affecting ZnCl 2-induced aggregation of hen egg white protein. At a fixed concentration of 1.0 M ZnCl 2 and an incubation time of 15 min, the mean particle diameters of the aggregates were determined to be 0.43, 0.67, and 0.80 mum for hen egg white protein contents of 5, 6.25, and 7.5% (w/v), respectively. With the incubation time of 15 min, increasing the concentration of ZnCl 2 from 0.5 to 1.0 and to 1.5 M caused the mean particle diameter of the aggregates to grow from 0.37 to 0.42 and to 0.68 mum, respectively at 5% (w/v) hen egg white protein. Upon prolonged contact time, larger aggregates were formed. Furthermore, FlFFF was employed as a novel approach to determine the efficiency of protein utilization for aggregation. The pH values as well as ZnCl 2 and protein concentrations influenced the efficiency of protein utilization for aggregation. With the optimum condition, that is, a protein concentration higher than 2% (w/v) and a pH greater than 5, the efficiency of protein utilization was approximately 65%. 相似文献
14.
Surface tension, foamability, and foam stability kinetics have been measured for the pure proteins bovine serum albumin (BSA) and beta-lactoglobulin, before and after aqueous solutions of the proteins had been subjected to different drying conditions, and also for whey protein concentrate (WPC). Pure proteins were air-dried, at 78 or 88 degrees C, in the presence and absence of sucrose or trehalose, at a mass ratio of 5:1 sugar/protein. WPC was spray-dried in the presence of various sugars: trehalose, sucrose, lactose, and lactitol. Spray-drying WPC without sugars resulted in a dramatic decrease in the foam stability, whereas drying in the presence of sugars gave better retention of the original foaming properties. Trehalose in particular resulted in almost complete retention of the foam stability observed for the nondried WPC. Pure beta-lactoglobulin showed similar behavior, but trehalose did not seem to afford the same protection to BSA. 相似文献
15.
This work was aimed at the isolation, purification, and characterization of novel antimicrobial peptides from chicken egg white lysozyme hydrolysate, obtained by peptic digestion and subsequent tryptic digestion. The hydrolysate was composed of over 20 small peptides of less than 1000 Da, and had no enzymatic activity. The water-soluble peptide mixture showed bacteriostatic activity against Gram-positive bacteria (Staphylococcus aureus 23-394) and Gram-negative bacteria (Escherichia coli K-12). Two bacteriostatic peptides were purified and sequenced. One peptide, with the sequence Ile-Val-Ser-Asp-Gly-Asp-Gly-Met-Asn-Ala-Trp, inhibited Gram-negative bacteria E. coli K-12 and corresponded to amino acid residues 98-108, which are located in the middle part of the helix-loop-helix. Another novel antimicrobial peptide inhibited S. aureus 23-394 and was determined to have the sequence His-Gly-Leu-Asp-Asn-Tyr-Arg, corresponding to amino acid residues 15-21 of lysozyme. These peptides broadened the antimicrobial activity of lysozyme to include Gram-negative bacteria. The results obtained in this study indicate that lysozyme possesses nonenzymatic bacteriostatic domains in its primary sequence and they are released by proteolytic hydrolysis. 相似文献
16.
Suppavorasatit I De Mejia EG Cadwallader KR 《Journal of agricultural and food chemistry》2011,59(21):11621-11628
The effects of enzymatic deamidation by protein-glutaminase (PG) on the functional properties of soy protein isolate (SPI) were studied. Conditions for the deamidation were evaluated by means of response surface methodology (RSM). Optimal conditions based on achieving a high degree of deamidation (DD) with a concurrently low degree of hydrolysis (DH) were 44 °C, enzyme:substrate ratio (E/S) of 40 U/g protein and pH 7.0. Under optimal conditions, both DD and DH increased over time. SDS-PAGE results indicated that lower molecular mass subunits were produced with increasing DD. Far-UV circular dichroism spectra revealed that the α-helix structure decreased with higher DD, while the β-sheet structure increased until 15 min of deamidation (32.9% DD), but then decreased at higher DD. The solubility of deamidated SPI was enhanced under both acidic and neutral conditions. SPI with higher DD showed better emulsifying properties and greater foaming capacity than SPI, while foaming stability was decreased. It is possible to modify and potentially improve the functional properties of SPI by enzymatic deamidation using PG. 相似文献
17.
Physicochemical and functional properties of buckwheat protein product 总被引:14,自引:0,他引:14
Tomotake H Shimaoka I Kayashita J Nakajoh M Kato N 《Journal of agricultural and food chemistry》2002,50(7):2125-2129
This study was conducted to compare the physicochemical and functional properties of buckwheat protein product (BWP), soy protein isolate (SPI), and casein. BWP was prepared from buckwheat flour by the method including alkaline extraction and isoelectric precipitation. The amino acid composition of BWP was very similar to that of buckwheat flour. The protein solubility (PS) of BWP was much greater than that of SPI at all pH levels (pH 2-10) but lower than that of casein at pH 7-10. The isoelectric point of BWP was around pH 4. The higher aromatic hydrophobicities (ARH) of BWP, SPI, and casein were obtained at lower pH levels (pH 2-3). The emulsifying stability (ES) of BWP was lower than those of SPI and casein at high pH levels (pH 7-10). At all pH levels, BWP formed a thin emulsion. Regression analysis showed that the ARH of BWP was significantly associated with the ES. Although the water holding capacity of BWP was quite lower than that of SPI, its fat absorption capacity was slightly higher than those of SPI and casein. These results indicated that the physicochemical properties of BWP were different from those of SPI or casein. Thus, BWP is a potential source of functional protein for possible food application. 相似文献
18.
19.
Takano K Hattori M Yoshida T Kanuma S Takahashi K 《Journal of agricultural and food chemistry》2007,55(14):5796-5802
Porphyran (Por) prepared from dried nori was applied as a functional modifier of a soybean protein isolate (SPI) to conjugate with SPI from defatted soybean by the Maillard reaction (79% relative humidity and 60 degrees C for 7 days). Two kinds of partially denatured conjugate (Conj 45 and Conj 63) were obtained from the reaction product by sequential extraction at pH 4.5 and pH 6.3, and the respective yield and weight ratios of the SPI and Por moieties were 8.4% and 1:1 for Conj 45 and 11.7% and 1:0.16 for Conj 63. Conj 63 demonstrated improved solubility between pH 5.0 and pH 8.0, while Conj 45 exhibited substantially complete solubility over the pH range of 2.0-8.0. Conj 63 showed more tolerance against digestion with pancreatin than SPI, whereas this was lost after denaturation. Conj 63 and Conj 45 both showed a markedly higher emulsion activity index and emulsion stability than SPI, even at pH 3.0; in particular, Conj 45 exhibited outstanding emulsifying ability. Conj 63 had about a two-fold higher calcium-binding ability than SPI, and Conj 63 and Conj 45 did not aggregate with added Ca2+ and Mg2+. It is believed that Por could be a valuable functional modifier of SPI for providing soybean protein-based liquid foods such as beverages by conjugation through the Maillard reaction. 相似文献
20.
高静压处理改善白果蛋白致敏性和功能特性 总被引:1,自引:2,他引:1
为了研究高静压处理对白果蛋白结构、抗原性及功能特性的影响,分别采用100,200,300,400,500,600和700 MPa的压力对白果蛋白进行处理,采用酶联免疫吸附检测法测定蛋白的致敏性,分别采用聚丙烯酰胺凝胶电泳,圆二色谱,荧光光谱和紫外吸收光谱检测白果蛋白分子量和构象的改变,功能特性的检测包括热稳定性和乳化特性。结果表明,高静压处理在300~700 MPa范围内可显著降低白果蛋白的致敏性(P0.05),同时高压处理后,白果蛋白能被分解为分子量为4~30 k Da范围内的小分子蛋白,此外,其二级结构中的α-螺旋和β-折叠结构被大量破坏形成无规则卷曲结构,其紫外吸收强度,表面疏水性和游离巯基含量明显提高(P0.05),高压对白果蛋白的致敏性影响与其结构变化密切相关,另外高压处理(300~700 MPa)可明显改善白果蛋白的热稳定性和乳化性能(P0.05)。因此,高静压技术可以作为一种降低白果蛋白致敏性和改善其功能特性的有效手段。 相似文献