共查询到19条相似文献,搜索用时 78 毫秒
1.
采用化学共沉淀法制备了γ-Fe2O3/Ni2O3复合磁性纳米微粒,并用Massart法合成了γ-Fe2O3/Ni2O3复合磁性微粒的磁性液体.用振动样品磁强计(VSM)测量了磁性微粒及不同体积分数的磁性液体的磁化曲线.结果表明,磁性液体的饱和磁化强度与磁性液体中微粒的体积分数v、微粒表面的非磁性层以及基液的磁性有关;不同体积分数的磁性液体的饱和磁化强度实际测量值与相应的理论值吻合较好.由此可判断:γ-Fe2O3/Ni2O3复合磁性微粒较其它单相纳米微粒更适于合成磁性液体. 相似文献
2.
使用化学诱导相变法(CIT法)并选用FeCl_2溶液作为处理液,在合成γ-Fe_2O_3基纳米颗粒的过程中,加入油酸作为表面活性剂,对γ-Fe_2O_3纳米颗粒进行了表面调制.使用透射电子显微镜(TEM)、振动样品磁强计(VSM)、高分辨电子显微镜(HRTEM)、X射线衍射仪(XRD)和X射线能谱仪(EDS)对所制备的纳米颗粒的形貌、磁化性质、晶体结构和化学成分进行了表征与分析.结果表明,该研究制备的纳米颗粒基本为球形单晶微粒;油酸有助于纳米颗粒外延生长,且当油酸加入量足够时,油酸可完全取代由CIT法所制备纳米颗粒表层的FeCl_3·6H_2O. 相似文献
3.
采用化学诱导相变法制备了γ-Fe2O3/Ni2O3 复合磁性纳米微粒,并用类似自形成离子型磁性液体的制备方
法合成了水甘油基γ-Fe2O3/Ni2O3 磁性液体.用振动样品磁强计(VSM)测量了γ-Fe2O3/Ni2O3 复合磁性微粒、不
同比例水甘油基磁性液体的磁化性质.结果表明,相同体积分数的水甘油基γ-Fe2O3/Ni2O3 磁性液体,由于基液
的不同其饱和磁化强度也不同,纯水基磁性液体的约化饱和磁化强度与磁性纳米微粒的磁化强度吻合得比甘油基
磁性液体好. 相似文献
4.
5.
介绍了自形成法γ-Fe2O3磁性液体的制备方法, 用X射线衍射仪(XRD)和透射电子显微镜(TEM)对微粒进行了表征, 并用振动样品磁强计(VSM)对γ-Fe2O3粉末及水基γ-Fe2O3离子型磁性液体进行了测量. 结果表明: γ-Fe2O3粉末及其磁性液体呈超顺磁性, 在室温下无矫顽力和剩磁;磁性液体的比饱和磁化强度与磁性液体中微粒的体积分数以及基液的磁性有关;在磁性液体的合成中, 强磁性的γ-Fe2O3微粒可能形成磁矩闭合连接成环状结构, 以致磁性液体的比饱和磁化强度的实验值小于计算值. 相似文献
6.
介绍了自形成法γ-Fe2O3磁性液体的制备方法,用X射线衍射仪(XRD〉和透射电子显微镜(TEM)对微粒进行了表征,并用振动样品磁强计(VSM)对γ-Fe2O3粉末及水基γ-Fe2O3离子型磁性液体进行了测量.结果表明:γ-Fe2O3粉末及其磁性液体呈超顺磁性,在室温下无矫顽力和剩磁;磁性液体的比饱和磁化强度与磁性液体中微粒的体积分数以及基液的磁性有关;在磁性液体的合成中,强磁性的γ-Fe2O3微粒可能形成磁矩闭合连接成环状结构,以致磁性液体的比饱和磁化强度的实验值小于计算值. 相似文献
7.
采用非均匀沉淀法+酸腐蚀法制备形貌规则、窄尺寸分布、超细、单分散的γ-Al2O3纳米颗粒.首先,以硝酸铝、氨水为原料,使用非均匀沉淀法制备前驱体,750°C煅烧前驱体2 h,制备出超细但含有团聚体的γ-Al2O3粉体.经过4 mol/L盐酸60℃腐蚀30 h后,制备出类球形、粒径分布为4~15 nm、平均颗粒尺寸9 n... 相似文献
8.
纳米Al2O3粒子的制备方法很多,但所制备的产物多为球形或不规则的粒状,呈纤维状的纳米Al2O3粒子的报道不多.本文以Al2(SO4)3·18H2O和NaOH为原料,十二烷基苯磺酸钠(DBS)为表面活性剂,通过控制反应温度为65 ℃,Al2(SO4)3初始浓度为0.5 mol/L,以直接沉淀法先合成纤维状氧化铝的前驱体,然后在1 000 ℃下煅烧2 h得到直径为5~10 nm,长为60~120 nm,分散良好的γ-Al2O3短纤维.通过TEM,XRD等检测手段对各阶段产物的表征和分析,详细讨论了洗滤方式,反应温度,Al2(SO4)3初始浓度对前驱体产物粒径形貌的影响,以及煅烧温度对最后产物形态和晶型的调整. 相似文献
9.
以纳米γ-Al2O3粉体为载体,应用等体积浸渍CH3COOCs制备Cs2O/γ-Al2O3催化剂,并通过TPD-CO2、XRD、TEM等手段对催化剂的碱性、结构和表面形貌进行表征,并将其用于催化红麻籽油制生物柴油反应.通过催化剂活性评价结果,分析了纳米固体超强碱制备过程及酯交换反应过程中各种因素的影响.结果表明,催化剂的粒径为10-25 nm,负载量为2mmol.g-1时,催化剂具有强碱性,其活性最好.甲醇与红麻籽油的摩尔比为9∶1,催化剂用量为油料的2.5%,反应时间3 h,转化率可达到90.7%. 相似文献
10.
为了研究γ-Fe2O3纳米颗粒对鲤鱼各个组织(脑,鳃,肝,肾,脾)的SOD和GSH-Px酶活性的影响,将大小一致的鲤鱼随机分为5组,分别暴露在0.1、1、10、100mg·L-1的γ-Fe2O3纳米颗粒悬浊液中,同时设有空白对照组,暴露30d后,测定各个组织匀浆中超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GSH-Px)的含量,从而评价γ-Fe2O3纳米颗粒对鲤鱼各组织的氧化损伤作用。结果表明,在实验浓度下(0~100mg·L-1),各组织对纳米颗粒的相对敏感性不同,与对照组相比,鳃、肝和脾组织中的SOD活力降低;而脑、肝和肾组织的GSH-Px含量降低,该结果表明γ-Fe2O3纳米颗粒对鲤鱼内脏组织的抗氧化系统有一定程度的损害。同时,肝组织中SOD和GSH-Px含量变化与γ-Fe2O3纳米颗粒染毒浓度存在一定的剂量——效应关系。上述结果说明肝脏为γ-Fe2O3纳米颗粒对鲤鱼氧化损伤中的靶器官。 相似文献
11.
采用一种能同时提取RNA、DNA和Protein的试剂(RDP试剂)进行日本囊对虾性腺总蛋白质的制备,并通过双向电泳(2-DE)技术与传统的裂解液法比较提取效果.RDP法所得2-DE图谱清晰,条纹少,蛋白质点数多,而裂解液法存在横向和纵向拖尾,其碱性端蛋白质点大量缺失,说明RDP法能有效去除蛋白质样品中盐离子、脂类等干扰成分.结果不仅为后续的日本囊对虾性腺蛋白质组学研究提供了技术保障,也为其他甲壳类动物性腺总蛋白质的提取提供了借鉴. 相似文献
12.
13.
离子交联法制备壳聚糖纳米颗粒 总被引:2,自引:0,他引:2
[目的]探讨离子交联法制备壳聚糖纳米颗粒的最佳条件。[方法]先采用专一性壳聚糖内切酶酶法制备低分散度壳聚糖,再采用多聚磷酸钠间静电作用的离子交联法制备壳聚糖纳米颗粒,探讨了反应体系pH、超声时间、壳聚糖浓度、多聚磷酸钠(TPP)浓度及二者体积比对壳聚糖纳米颗粒平均粒径的影响。[结果]在采用离子交联法制备壳聚糖纳米颗粒的过程中,当反应体系的pH为6.0,壳聚糖浓度为0.7 mg/ml,TPP浓度为0.5 mg/ml,壳聚糖溶液与TPP溶液的体积比在3∶1~7∶1,超声时间为2 min时,所制备的壳聚糖纳米颗粒分散性好,平均粒径为141.3 nm。[结论]离子交联法制备壳聚糖纳米颗粒过程简单,作用时间短,不使用有机溶剂,得到的壳聚糖纳米颗粒粒径小,分布均匀,且结果重现性较好。 相似文献
14.
通过溶胶-凝胶法成功合成了铁酸铋磁性纳米粒子(BiFeO3 MNPs),X-射线衍射结果表明,得到的BiFeO3具有高度结晶和单相钙钛矿结构.将其用于催化过氧化氢降解偶氮染料甲基橙(MO)的研究,探讨了各因素对去除率的影响;结果表明,在不调pH值的情况下,当BiFeO3 MNPs质量浓度为1.0 g/L、过氧化氢浓度为0.2 mol/L、温度为30℃、反应时间为24 h时,对MO的去除率可达到90%. 相似文献
15.
[目的]以钛铁矿为原料,制备包覆性Fe_3O_4/TiO_2磁性光催化剂。[方法]研究不同温度、反应时间、钛铁矿颗粒大小、是否冷凝回流等条件下钛铁矿的溶解情况以及TiO_2、Fe_3O_4/TiO_2的产率和催化效果,并采用X射线粉末衍射仪(XRD)、红外光谱(FT-IR)、扫描电镜(SEM)、透射电镜(TEM)等对催化剂产物进行表征,且验证催化剂的磁性能。[结果]该方法可以制备出磁性良好、包覆效果好、较纯净的Fe_3O_4/TiO_2包覆性光催化材料。[结论]制备出的Fe_3O_4/TiO_2复合物保持了Fe_3O_4的磁性,是一种性能优良的包覆性光催化材料。 相似文献
16.
17.
该文以四氯化钛和硝酸铋为原料,通过共沉淀法制备Bi_2O_3-TiO_2复合氧化物,以罗丹明B模拟有机污染物,在太阳光照射研究Bi_2O_3-TiO_2复合氧化物催化剂的光降解性能。考察了不同的沉淀剂、Ti∶Bi的配比及焙烧温度等制备条件对光催化性能的影响。结果表明,Bi_2O_3-TiO_2复合氧化物催化剂的光降解率明显高于单一氧化物Bi_2O_3、TiO_2的光降解率;以Na OH为沉淀剂、Ti∶Bi的配比为1∶10、焙烧温度500℃时制得的Bi_2O_3-TiO_2复合氧化物催化剂具有很好的光催化降解效果。 相似文献
18.
用纳米Fe2O3悬浮体系成功地进行了光催化还原Cr(Ⅵ),提出了光催化还原Cr(Ⅵ)的最佳条件,确立了在溶液中H2SO4浓度为0.5mol/dm^3,在质量浓度为80mg/dm^3的50cm^3Cr(Ⅵ)溶液中,催化剂用量为0.2g,光照时间5h,Cr(Ⅵ)的光还原率达87%以上。同时,还探讨了无机离子对光催化还原Cr(Ⅵ)的影响。试验结果表明:纳米Fe2O3光催化还原Cr(Ⅵ)是可行的,符合一级反应速率方程:InC=-0.3623t 3.908。 相似文献