首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Salmonella enterica subsp. enterica serovar Kentucky is frequently isolated from poultry, dairy and beef cattle, the environment and people with clinical salmonellosis globally. However, the sources of this serovar and its diversity and antimicrobial resistance capacities remain poorly described in many regions. To further understand the genetic diversity and antimicrobial sensitivity patterns among S. Kentucky strains isolated from non-human sources in Ireland, we sequenced and analysed the genomes of 61 isolates collected from avian, bovine, canine, ovine, piscine, porcine, environmental and vegetation sources between 2000 and 2016. The majority of isolates (n = 57, 93%) were sequence type (ST) 314, while only three isolates were ST198 and one was ST152. Several isolates were multidrug-resistant (MDR) and 14 carried at least one acquired antimicrobial resistance gene. When compared to a database of publicly available ST314, four distinct clades were identified (clades I–IV), with the majority of isolates from Ireland clustering together in Clade I. Two of the three ST198 isolates were characteristic of those originating outside of the Americas (Clade ST198.2), while one was distantly clustered with isolates from South and North America (Clade ST198.1). The genomes of the two clade ST198.2 isolates encoded Salmonella Genomic Island 1 (SGI1), were multidrug-resistant and encoded polymorphisms in the DNA gyrase (gyrA) and DNA topoisomerase (parC) known to confer resistance to fluoroquinolones. The single ST152 isolate was from raw beef, clustered with isolates from food and bovine sources in North America and was pan-susceptible. Results of this study indicate that most S. Kentucky isolates from non-human sources in Ireland are closely related ST314 and only a few isolates are antimicrobial-resistant. This study also demonstrates the presence of multidrug-resistant ST198 in food sources in Ireland.  相似文献   

2.
Food animals are considered reservoirs of methicillin‐resistant Staphylococcus aureus (MRSA) and are implicated in their zoonotic transmission in the farm‐to‐plate continuum. LA‐MRSA has been reported as a zoonotic agent that has the potential to spread to humans and may cause infections in at‐risk groups. In this study, whole genome sequencing was used to describe the genetic environment (resistance mechanisms, virulence factors and mobile genetic elements) and investigate the genetic lineages of MRSA isolates from pigs in Cameroonian and South African abattoirs. During March–October 2016, 288 nasal and rectal pooled samples from 432 pigs as well as nasal and hand swabs from 82 humans were collected. Genomic DNA was sequenced using an Illumina MiSeq platform. Generated reads were de novo‐assembled using the Qiagen CLC Genomics Workbench and SPAdes. The assembled contigs were annotated, and antibiotic resistance genes, virulence factors, plasmids, SCCmec and phage elements were identified with ResFinder, Virulence Finder, PlasmidFinder, SCCmec Finder and PHAST, respectively. Core genome single nucleotide analysis was undertaken to assess clonal relatedness among isolates. A lower MRSA prevalence was observed in pigs in Cameroon (n = 1/13; 0.07%) compared with South Africa (n = 4/22; 18.18%), and none of the workers were colonized by MRSA. Genome analysis identified various antibiotic resistance genes along with six virulence factors in all isolates. All MRSA isolates belonged to the clonal lineage ST398 (spa‐type t011) and harboured the type Vc SCCmec and several plasmids. Our study shows that the livestock‐associated MRSA clonal lineage ST398 is already present in both Cameroon and South Africa and is probably underestimated in the absence of molecular epidemiological studies. It reveals the serious food safety and public health threat associated with this animal strain and underscores the need for interventions to contain this resistant clone.  相似文献   

3.
Salmonella Kentucky is among the most frequently isolated S. enterica serovars from food animals in the United States. Recent research on isolates recovered from these animals suggests there may be geographic and host specificity signatures associated with S. Kentucky strains. However, the sources and genomic features of human clinical S. Kentucky isolated in the United States remain poorly described. To investigate the characteristics of clinical S. Kentucky and the possible sources of these infections, the genomes of all S. Kentucky isolates recovered from human clinical cases in the State of Maryland between 2011 and 2015 (n = 12) were sequenced and compared to a database of 525 previously sequenced S. Kentucky genomes representing 12 sequence types (ST) collected from multiple sources on several continents. Of the 12 human clinical S. Kentucky isolates from Maryland, nine were ST198, two were ST152, and one was ST314. Forty‐one per cent of isolates were recovered from patients reporting recent international travel and 58% of isolates encoded genomic characteristics similar to those originating outside of the United States. Of the five isolates not associated with international travel, three encoded antibiotic resistance genes conferring resistance to tetracycline or aminoglycosides, while two others only encoded the cryptic aac(6′)‐Iaa gene. Five isolates recovered from individuals with international travel histories (ST198) and two for which travel was not recorded (ST198) encoded genes conferring resistance to between 4 and 7 classes of antibiotics. Seven ST198 genomes encoded the Salmonella Genomic Island 1 and substitutions in the gyrA and parC genes known to confer resistance to ciprofloxacin. Case report data on food consumption and travel were, for the most part, consistent with the inferred S. Kentucky phylogeny. Results of this study indicate that the majority of S. Kentucky infections in Maryland are caused by ST198 which may originate outside of North America.  相似文献   

4.
The occurrence of multidrug‐resistant zoonotic bacteria in animals has been increasing worldwide. Working in close contact with livestock increases the risk of carriage of these bacteria. We investigated the occurrence of extended‐spectrum beta‐lactamase (ESBL) and plasmidic AmpC beta‐lactamase producing Enterobacteriaceae (ESBL/pAmpC‐PE) and livestock‐associated methicillin‐resistant Staphylococcus aureus (LA‐MRSA) in Finnish veterinarians (n = 320). In addition to microbiological samples, background information was collected. Bacterial whole genome sequencing was performed to deduce sequence types (STs), spa types and resistance genes of the isolates. In total, 3.0% (9/297) of the veterinarians carried ESBL producing Escherichia coli, with one ESBL producing E. coli isolate producing also AmpC. Seven different STs, sequences of several different plasmid groups as well as several different blaESBL/pAmpC genes existed in different combinations. No carbapenemase or colistin resistance genes were detected. MRSA was detected in 0.3% (1/320) of the samples. The strain belonged to LA‐MRSA clonal complex (CC) 398 (ST398, spa type 011, lacking Panton‐Valentine leukocidin genes). In conclusion, this study shows low carriage of multidrug‐resistant zoonotic bacteria in Finnish veterinarians. However, finding LA‐MRSA for the first time in a sample from a veterinarian in a country with prudent use of animal antimicrobials and regarding the recent rise of LA‐MRSA on Finnish pig farms, a strong recommendation to protect people working in close contact with animals carrying LA‐MRSA CC398 is given. Further studies are needed to explain why the prevalence of LA‐MRSA in veterinarians is lower in Finland than in other European countries.  相似文献   

5.
The emergence of NDM‐producing Escherichia coli has considerably threatened human and animal health worldwide. This study describes for the first time in Egypt, the draft genome sequences of emerging NDM‐5‐producing E. coli from humans and dogs, and investigates genetic relatedness between isolates from both sources. Two E. coli from human urine and seven from environmental clinical samples of dogs exhibited resistance to carbapenems and harbouring blaNDM were subjected to Illumina Miseq whole‐genome sequencing (WGS). Assembly and analysis of the reads were performed to identify resistance genes, multilocus sequence types (MLST), plasmid replicon types (Inc) and insertion sequences (IS) of the blaNDM region; core genome MLST (cgMLST) analysis was also performed. Two different NDM alleles were identified; blaNDM‐5 in E. coli HR119 from the urine of a healthy person and environmental samples of dogs, and blaNDM‐1 in E. coli HR135 from a human patient's urine. Multiple mobilizable resistance genes to different antimicrobial classes were identified except the colistin resistance gene, mcr. E. coli isolates from humans and dogs were assigned to different sequence types (STs). Using cgMLST, dog isolates clustered together with only 1–2 allellic differences; however, human E. coli showed 1,978 different allelles compared with dog isolates. Plasmidfinder results indicated the presence of an IncX3 replicon in blaNDM‐5‐producing E. coli; however, blaNDM‐1 was linked to IncCoIKP3. Notably, the NDM region (3 Kb) in all isolates from humans and dogs was highly similar with variable flanking sequences that represented different IS elements. This study reports the first emergence of NDM‐5‐producing E. coli from dogs in Egypt that shared some genetic features with human isolates and could be considered potential public health threats.  相似文献   

6.
In May 2012, an outbreak of campylobacteriosis occurred in southern Sweden at a wedding reception affecting 44 persons. A total of 17 cases were notified (13 were culture positive for Campylobacter spp.). Epidemiological investigation suspected chicken liver pâté as the source of infection. The liver pâté had been deliberately undercooked, lightly fried to keep the right texture and mixed with spices. Campylobacter isolates from six cases as well as three Campylobacter isolates from chicken flocks previously raised by the producer delivering the liver were subtyped using pulsed‐field gel electrophoresis and whole‐genome sequencing. Indistinguishable PFGE profiles were identified among five human and one chicken C. jejuni isolates as well among the two C. coli isolates, one from a human case and one from a chicken. WGS supported the PFGE findings; the six C. jejuni isolates belonged to one cluster. All these six isolates were of MLST type ST 50 (ST‐CC 21). This study highlights the importance of a combination of strict biosecurity at the flock‐level as well as adequate cooking of chicken liver to prevent transmission of Campylobacter to humans.  相似文献   

7.
Two non‐pedigreed male castrated cats had persistent cyanosis over a 3‐year observation period. Clinical cardiopulmonary evaluations did not reveal abnormalities, but the blood remained dark after exposure to air. Erythrocytic methemoglobin concentrations were high (~40% of hemoglobin) and cytochrome b5 reductase (CYB5R) activities in erythrocytes were low (≤15% of control). One cat remained intolerant of exertion, and the other cat developed anemia and died due to an unidentified comorbidity. Whole‐genome sequencing revealed a homozygous c.625G>A missense variant (B4:137967506) and a c.232‐1G>C splice acceptor variant (B4:137970815) in CYB5R3, respectively, which were absent in 193 unaffected additional cats. The p.Gly209Ser missense variant likely disrupts a nicotinamide adenine dinucleotide (NADH)‐binding domain, while the splicing error occurs at the acceptor site for exon 4, which likely affects downstream translation of the protein. The 2 novel CYB5R3 variants were associated with methemoglobinemia using clinical, biochemical, genomics, and in silico protein studies. The variant prevalence is unknown in the cat population.  相似文献   

8.
The genetic population structure of red snapper Lutjanus malabaricus and orange‐spotted grouper Epinephelus coiodes in Brunei and Sabah was investigated using allozyme electrophoresis. Samples were collected from three sites in Brunei for E. coiodes and from three sites in Brunei and Sabah for L. malabaricus. A total of 22 loci and 16 loci were scored, respectively. The index of fixation (FST) for the E. coiodes population was 0.176 but, in general, it lacked within‐population structuring. The FST was particularly high between Brunei Bay/Jerudong and Brunei Bay/ Kuala Belait, suggesting genetic subdivision on a small spatial scale. Isolation of Brunei Bay from the South China Sea may constrain the movement of adult fishes and larval dispersal, thereby reducing homogeneity among subpopulations. All variable loci for E. coiodes were in Hardy‐Weinberg equilibrium except for MDH* and GTDHP* (P < 0.01), in which two subpopulations showed an excess of heterozygotes (P < 0.01). The study on the L. malabaricus population showed a heterozygote deficit of approximately 60% in variable loci (FST genetic variation within population = 0.45; P < 0.05); however, the mean observed heterozygosity for the population far exceeded L. malabaricus populations in Australia and Indonesia. A FST value of 0.076 revealed moderate genetic differentiation among subpopulations of L. malabaricus. The genotypes were likely to be drawn from the same distribution in Jerudong and Kuala Belait. This study infers that sustainable management of snapper and grouper resources in Brunei waters must take into account the presence of a single stock and two stocks, respectively.  相似文献   

9.
Leishmania infantum causes human and canine leishmaniosis. The parasite, transmitted by phlebotomine sand flies, infects species other than dogs and people, including wildlife, although their role as reservoirs of infection remains unknown for most species. Molecular typing of parasites to investigate genetic variability and evolutionary proximity can help understand transmission cycles and designing control strategies. We investigated Leishmania DNA variability in kinetoplast (kDNA) and internal transcribed spacer 2 (ITS2) sequences in asymptomatically infected wildlife (n = 58) and symptomatically and asymptomatically infected humans (n = 38) and dogs (n = 15) from south‐east Spain, using single nucleotide polymorphisms (SNPs) and in silico restriction fragment length polymorphism (RFLP) analyses. All ITS2 sequences (n = 76) displayed a 99%–100% nucleotide identity with a L. infantum reference sequence, except one with a 98% identity to a reference Leishmania panamensis sequence, from an Ecuadorian patient. No heterogeneity was recorded in the 73 L. infantum ITS2 sequences except for one SNP in a human parasite sequence. In contrast, kDNA analysis of 44 L. infantum sequences revealed 11 SNP genotypes (nucleotide variability up to 4.3%) and four RFLP genotypes including B, F and newly described S and T genotypes. Genotype frequency was significantly greater in symptomatic compared to asymptomatic individuals. Both methods similarly grouped parasites as predominantly or exclusively found in humans, in dogs, in wildlife or in all three of them. Accordingly, the phylogenetic analysis of kDNA sequences revealed three main clusters, two as a paraphyletic human parasites clade and a third including dogs, people and wildlife parasites. Results suggest that Leishmania infantum genetics is complex even in small geographical areas and that, probably, several independent transmission cycles take place simultaneously including some connecting animals and humans. Investigating these transmission networks may be useful in understanding the transmission dynamics, infection risk and therefore in planning L. infantum control strategies.  相似文献   

10.
Murine typhus, a neglected rickettsiosis caused by Rickettsia typhi, is a common disease in several Latin‐American countries. The sylvatic life cycle of R. typhi encompasses the presence of several wild mammals, particularly opossums of the genus Didelphis and their associated fleas. Due to the colonization of wild environments by human populations, the increase in contact with opossum fleas has generated the presence of urban outbreaks of typhus. For this reason, the aim of our study was to identify the presence and diversity of Rickettsia sp. in fleas collected from opossums of an urban reserve in Mexico City. Opossums were captured from February to September 2017. For the detection of Rickettsia DNA, fragments of 800 bp of the citrate synthase (gltA) and the outer membrane protein B (ompB) were amplified. A total of 141 fleas (111 ♀, 30 ♂) of a single species (Ctenocephalides felis felis) were recovered from 31 Didelphis virginiana. Rickettsia DNA was detected in 17.7% (25/141) of the analysed fleas, recovered from seven infested opossums. The Maximum likelihood of sequences exhibited an identity of 99%–100% with sequences of R. typhi from southern United States. This work represents the first record of R. typhi in fleas from opossums in Mexico.  相似文献   

11.
12.
Bats are essential to the global ecosystem, but their ability to harbour a range of pathogens has been widely discussed, as well as their role in the emergence and re‐emergence of infectious diseases. This paper describes the first report of coinfection by two zoonotic agents, rabies virus (RABV) and the fungus Histoplasma suramericanum in a bat. The bat was from the Molossus molossus species, and it was found during the daytime in the hallway of a public psychiatric hospital in a municipality in São Paulo State, southeastern Brazil. RABV infection was diagnosed by the direct fluorescent antibody test and mouse inoculation test. The fungus was isolated by in vitro culture. Both diagnoses were confirmed by molecular techniques. Phylogenetic analysis showed that the fungus isolate had proximity to H. suramericanum in the Lam B clade, while the RABV isolate was characterized in the Lasiurus cinereus lineage. Since the M. molossus bat was found in a peri‐urban transition area (urban/peri‐urban), the possibility of cross‐species transmission of this RABV lineage becomes more plausible, considering that this scenario may provide shelter for both M. molossus and L. cinereus. These are relevant findings since there has been an increase in bat populations in urban and peri‐urban areas, particularly due to environmental modifications and anthropogenic impacts on their habitat. Thus, the detection of two zoonotic agents in a bat found in a public hospital should raise awareness regarding the importance of systematic surveillance actions directed towards bats in urban areas.  相似文献   

13.
14.
Cloacal swabs and caecal contents sampled from 58 cane toads (Bufo marinus) in St George’s parish, Grenada, during a 7‐month period in 2011 were examined by an enrichment and selective culture method for presence of Salmonella spp. Twenty‐four (41%) toads were positive for Salmonella spp. of which eight were Salmonella enterica serovar Javiana, and eight were S. enterica serovar Rubislaw. The other serovars were as follows: Montevideo, 6; Arechavaleta, 1; and serovar: IV:43:‐:‐, 1. The high frequency of isolation of serovar Javiana, an emerging human pathogen associated with several outbreaks in the recent years in the eastern United States, suggests a possible role for cane toads in transmission of this serovar. Although S. Rubislaw has been isolated from lizards, bats and cases of some human infections, there is no report of its carriage by cane toads, and in such high frequency. The rate of carriage of S. Montevideo, a cause for human foodborne outbreaks around the world was also over 10% in the 58 toads sampled in this study. The antimicrobial drug susceptibility tests against amoxicillin‐clavulanic acid, ampicillin, cefotaxime, ceftazidime, ciprofloxacin, enrofloxacin, gentamicin, imipenem, nalidixic acid, streptomycin, tetracycline and trimethoprim‐sulfamethoxazole showed that drug resistance is minimal and is of little concern. Antimicrobial resistance was limited to ampicillin and amoxicillin‐clavulanic acid in one isolate of S. Javiana and one isolate of S. Rubislaw. This is the first report of isolation and antimicrobial susceptibilities of various Salmonella serovars not identified previously in cane toads in Grenada, West Indies.  相似文献   

15.
Apelin is a recently discovered peptide produced by several tissues in the various vertebrates and fish. Apelin has been suggested to have role in regulation of many diverse physiological functions including food intake, energy homoeostasis, immunity, osmoregulation and reproduction. In this study, apelin‐13 levels in the blood serum of Cyprinus carpio and Capoetta trutta were determined. Then the results were compared between two species and sexes of each species. Apelin‐13 level was analysed using the enzyme‐linked immunoassay (ELISA) kit (Rat apelin‐13 ELISA kit, catalog no: CSB‐E14367r). Apelin‐13 level in the blood serum of C. trutta was significantly higher than those of the C. carpio (p < 0.05). However, its levels were observed to be no significant difference (p > 0.05) that compared to between sexes of each species. There was a significant negative correlation (r = ?0.829, p = 0.0001) between the apelin‐13 level and body weight of C. carpio. However, no significant correlation (r = ?0.022, p = 0.924) between the apelin‐13 level and weight of C. trutta observed.  相似文献   

16.
The genome‐wide association study (GWAS) results are presented for average daily gain (ADG) in Nellore cattle. Phenotype of 720 male Bos indicus animals with information of ADG in feedlots and 354 147 single‐nucleotide polymorphisms (SNPs) obtained from a database added by information from Illumina Bovine HD (777 962 SNPs) and Illumina BovineSNP50 (54 609) by imputation were used. After quality control and imputation, 290 620 SNPs remained in the association analysis, using R package Genome‐wide Rapid Association using Mixed Model and Regression method GRAMMAR‐Gamma. A genomic region with six significant SNPs, at Bonferroni‐corrected significance, was found on chromosome 3. The most significant SNP (rs42518459, BTA3: 85849977, p = 9.49 × 10?8) explained 5.62% of the phenotypic variance and had the allele substitution effect of ?0.269 kg/day. Important genes such as PDE4B, LEPR, CYP2J2 and FGGY are located near this region, which is overlapped by 12 quantitative trait locus (QTLs) described for several production traits. Other regions with markers with suggestive effects were identified in BTA6 and BTA10. This study showed regions with major effects on ADG in Bos indicus in feedlots. This information may be useful to increase the efficiency of selecting this trait and to understand the physiological processes involved in its regulation.  相似文献   

17.
Antimicrobial resistance (AMR) in the aquatic environment represents an important means of introduction and dissemination of resistance genes, and presence of resistant pathogens in surface waters may pose a public health concern to recreational and drinking water users. The purpose of this study was to explore antimicrobial resistance patterns in water samples collected from the Grand River watershed (southwestern Ontario, Canada) to describe the composition, trends and potential risks of AMR in the aquatic environment. As part of FoodNet Canada and the Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS), stream water samples were collected bi‐weekly from sampling sites within the Grand River watershed in the Waterloo, Ontario sentinel site and tested for the presence and antimicrobial susceptibility of Salmonella spp. (2005–2013) and generic Escherichia coli (2012–2013). Of all samples tested, 16% of Salmonella and 22% of E. coli isolates were resistant to at least one antimicrobial, including three Salmonella isolates and two E. coli isolates that were resistant to Category I antimicrobials, which are classified as very high importance for the treatment of serious bacterial infections in humans. The greatest proportion of resistant E. coli isolates were observed from the river site upstream of the drinking water intake, while the greatest proportion of resistant Salmonella isolates were from sites upstream in the watershed, and at one recreational water site. Salmonella resistance trends remained fairly stable between 2007 and 2013, with the exception of streptomycin and tetracycline which increased in 2010 and 2013. Continued surveillance of antimicrobial resistance patterns and exploration of risk factor data will allow for a better understanding of resistance transmission in the aquatic environment.  相似文献   

18.
Cloacal swabs from 62 green iguanas (Iguana iguana), including 47 wild and 15 domestic ones from five parishes of Grenada, were sampled during a 4‐month period of January to April 2013 and examined by enrichment and selective culture for the presence of Salmonella spp. Fifty‐five per cent of the animals were positive, and eight serovars of Salmonella were isolated. The most common serovar was Rubislaw (58.8%), a serovar found recently in many cane toads in Grenada, followed by Oranienburg (14.7%), a serovar that has been causing serious human disease outbreaks in Japan. Serovar IV:48:g,z51:‐ (formerly, S. Marina) highly invasive and known for serious infections in children in the United States, constituted 11.8% of the isolates, all of them being from domestic green iguanas. Salmonella Newport, a serovar recently found in a blue land crab in Grenada, comprised 11.8% of the isolates from the green iguanas. The remaining four less frequent serovars included S. Javiana and S. Glostrup. Antimicrobial susceptibility tests conducted by a disc diffusion method against amoxicillin–clavulanic acid, ampicillin, cefotaxime, ceftazidime, ciprofloxacin, enrofloxacin, gentamicin, nalidixic acid, streptomycin, tetracycline and trimethoprim–sulfamethoxazole showed that drug resistance is minimal, with intermediate susceptibility, mainly to streptomycin, tetracycline and cefotaxime. This is the first report of isolation and antimicrobial susceptibilities of various Salmonella serovars from wild and domestic green iguanas in Grenada, West Indies.  相似文献   

19.
Salmonella enterica is a common food‐borne pathogen with occasional multidrug resistance (MDR). Salmonella genomic island (SGI1) is a horizontally transmissible genomic island, containing an MDR gene cluster. All Salmonella serotypes are public health concern, although there is an additional concern associated with those that harbour SGI1. In Iran, there are no data on the presence of SGI1 variants in Salmonella isolates. The present study was conducted to identify MDR‐ and SGI1‐carrying Salmonella strains isolated from various sources and to compare their genetic relatedness between human and animal sources. In total, 242 Salmonella isolates collected from chicken, cattle, and humans from 2008 through 2014 were studied. The isolates were tested for resistance to 14 antimicrobials via the disc diffusion method. They were also tested for the presence of SGI1 variants via PCR, and genetic relatedness was evaluated based on pulsed‐field gel electrophoresis (PFGE). Resistance to at least one antimicrobial agent was observed in 132 (54%) Salmonella isolates (n = 242), while more than 40% of the isolates showed MDR. Based on PCR analysis, eight variants of SGI1, including SGI1, SGI1‐B, SGI1‐C, SGI1‐D, SGI1‐F, SGI1‐I, SGI1‐J and SGI1‐O, were found in both human and animal isolates. Statistical analysis revealed no significant difference in the prevalence of SGI1 variants between human and animal isolates (p > 0.05). Macrorestriction PFGE analysis of the isolates with the same SGI1 variant and resistance patterns revealed genetic relatedness ranging from 70% to 100% among human and animal isolates. According to our review, this is the first documentation of SGI1 in Salmonella isolates in Iran. The presence of similar SGI1 variants in both humans and animals, along with their related PFGE patterns, suggests that food‐producing animals may be a source of MDR Salmonella isolates in Iran.  相似文献   

20.
A strain of Leptospira kirschneri (serogroup Grippotyphosa) was cultured from urine of a mare post‐abortion in Brazil and characterized by serogrouping, multiple‐locus variable‐number tandem repeat analysis, PGFE, and sequencing of genes rrs and secY. Strains of L. kirschneri have apparently never been recovered from horses in tropical area, only in Europe and USA. Knowledge of local epidemiology is important to interpret genetic profiles of leptospires circulating in an area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号