首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hairy vetch is a leguminous winter annual cover crop that provides a significant contribution toward meeting the nitrogen requirement of succeeding crops. Hairy vetch residue is capable of suppressing weeds, but low levels of residue can intermittently stimulate the emergence of weeds, particularly smooth pigweed. This research was conducted to assess the inhibitory and stimulatory effects of hairy vetch extracts on two smooth pigweed lots with differing dormancy conditions under differing germination conditions (25 or 35°C in light or dark). Full-strength extracts inhibited germination of both lots under all conditions, a result explained by the inhibitory osmotic potential of the full-strength extract. At ≤ 0.1× proportions of the hairy vetch extract, there was a slight stimulation of germination above that of the control (average = 11%) of both lots of pigweed under all germination conditions, except for a large stimulation (87%) by the more dormant lot at 25°C in light. A similar response to ammonium hydroxide solutions was observed, in which germination stimulation averaged 7% for all conditions except for germination of the dormant pigweed lot that was stimulated 115% by 15 p.p.m. of ammonium (     ) at 25°C in light. As the     concentration in the hairy vetch extract was similar to that in the ammonium hydroxide solutions that promoted the largest stimulation of germination, and because there was a high correlation between the degree of germination stimulation by hairy vetch extracts and by ammonium hydroxide,     appears to be the principle ingredient in the extract responsible for stimulation of smooth pigweed germination.  相似文献   

2.
龙葵是农田恶性杂草?为明确龙葵种子休眠与季节温度的关系, 研究了室内和室外不同贮藏条件下其种子萌发对温度的响应规律?结果表明, 室外贮藏条件下的龙葵种子萌发呈季节性变化, 从10月到翌年5月, 龙葵种子萌发率均在95%以上, 随着夏季温度的升高, 萌发率从6月开始下降, 9月达到最低值(25.4%), 由此进行年际间休眠和非休眠周期的循环?夏季6月-9月的高温可诱导龙葵种子进入休眠状态, 而秋冬季的相对低温有利于解除种子休眠, 使种子恢复萌发状态?龙葵种子休眠和非休眠状态之间的切换受季节性温度变化的影响?室内贮藏的种子, 由于环境温度较为稳定, 其萌发率年际变化较小, 在20%~50%之间?本文明确了龙葵种子休眠的周期性变化规律, 有助于精准预测其出苗时间, 研究结果可为阐明龙葵种子休眠萌发机制和制订基于萌发调控的绿色防控策略提供依据?  相似文献   

3.
This study was conducted in the Mediterranean environment of Central Italy from 2011 to 2013 with the aim of evaluating the effects of winter cover crops and their residues on weed composition in a cover crop‐tomato sequence. Treatments consisted of five soil managements (three cover crop species ‐ hairy vetch, phacelia, white mustard, winter fallow mulched with barley straw before tomato transplanting and conventionally tilled soil), two nitrogen fertilisation levels (0 and 100 kg N ha?1) and two weed management levels (weed free and weedy) on tomato. Cover crop residues were arranged in strips on the soil surface and then used as beds for transplanting the tomato seedlings in paired rows. Rotary hoeing was performed in the bare strips between paired tomato rows. At tomato harvesting, the weed aboveground biomass and density was higher in nitrogen‐fertilised tomato than unfertilised tomato, except in hairy vetch and barley straw that showed similar values. Hairy vetch used as a cover crop and dead mulch was the most suppressive species with the highest production of residues, while phacelia and mustard were not suitable for controlling weeds. The tomato yield was high in nitrogen fertilised and weed‐free treatments, except in barley straw mulch, which showed similar values among the weed management treatments. The mulch strips caused variations in weed species composition that was mainly composed of perennial ruderal weeds, while in tilled soil, the weed flora was dominated by annual photoblastic weeds.  相似文献   

4.
Over the last two decades, the demand for organic products has grown rapidly in the world due to increased concern about side effects of pesticides on the environment and human health. Studies were conducted in organic lettuce (Lactuca sativa L.) from 2004 to 2005 at the Black Sea Agricultural Research Institute in Samsun, Turkey, to determine the suppressive effects of summer cover crops on weeds. The experiment was arranged in a randomized complete block design with four replications. Treatments consisted of grain sorghum [Sorghum bicolor (L.) Moench.], sudangrass [Sorghum vulgare Pers. var. sudanense (Piper) Hitchc.], hairy vetch (Vicia villosa Roth.), grain amaranth (Amaranthus cruentus L.), pea (Pisum sativum L.) and bare ground with no cover crop. Weed density and total weed dry biomass were assessed before and at 14, 28, and 56 days after incorporation (DAI) of the cover crops. The cover crops produced between 1.2 and 3 t ha−1 biomass and grain sorghum produced more dry matter than any other species in both years. After incorporation of the cover crops, hairy vetch and sorghum treatments showed fewer weed species, and lower weed density than the other cover crops in both years. Hairy vetch, grain sorghum, and sudangrass were the most effective cover crops and reduced total weed dry biomass by 90.3%, 87.4%, and 86.9% in 2004, and by 88%, 86.3%, and 85.2% in 2005, respectively. Cover crop residue suppressed many broadleaved weed species but failed to control grass weeds. Hairy vetch treatments produced the highest yield, followed by sudangrass and grain sorghum. Yields with grain amaranth and pea were similar to that of the control. These results indicate that hairy vetch, grain sorghum, and sudangrass can be used to suppress weeds in early season of organic lettuce production.  相似文献   

5.
Seedbank density is an important aspect that determines the amount of damage that the parasitic weed, purple witchweed (Striga hermonthica; hereafter, called “Striga”), causes on its crop hosts. The seedbank depletion of Striga was measured in Mali and Niger during the 2004 rainy season under the host crops, pearl millet and sorghum, the non‐host crops, cowpea and sesame, the intercrops of pearl millet or sorghum with cowpea or sesame, and fallow with or without weeding. Two methods were used and compared; namely, a seed bag method and a soil‐sampling method. The fate of the seeds was assessed by a seed press test. Seed germination, as determined by the presence of empty seed coats, contributed most to the seedbank depletion of Striga under a variety of crop covers and fallow. The highest seedbank depletion was found under the monocultures of the host crops. The intercrops of the host and non‐host crops caused less seedbank depletion, followed by the monocultures of the non‐host crops, fallow, and bare soil. The seed bag method and the soil‐sampling method yielded similar percentages of seedbank depletion, while the former allowed for distinguishing between the germinated and diseased seeds. The results suggest that, although all the tested crop species can cause the seed germination and seedbank depletion of Striga, management by using host cereal crops causes the highest amount of germination and has the highest potential to deplete the soil seed bank, provided that seed production is prevented.  相似文献   

6.
Seed dormancy and persistence in the soil seedbank play a key role in timing of germination and seedling emergence of weeds; thus, knowledge of these traits is required for effective weed management. We investigated seed dormancy and seed persistence on/in soil of Chenopodium hybridum, an annual invasive weed in north‐western China. Fresh seeds are physiologically dormant. Sulphuric acid scarification, mechanical scarification and cold stratification significantly increased germination percentages, whereas dry storage and treatments with plant growth regulators or nitrate had no effect. Dormancy was alleviated by piercing the seed coat but not the pericarp. Pre‐treatment of seeds collected in 2012 and 2013 with sulphuric acid for 30 min increased germination from 0% to 66% and 62% respectively. Effect of cold stratification on seed germination varied with soil moisture content (MC) and duration of treatment; seeds stratified in soil with 12% MC for 2 months germinated to 39%. Burial duration, burial depth and their interaction had significant effects on seed dormancy and seed viability. Dormancy in fresh seeds was released from October to February, and seeds re‐entered dormancy in April. Seed viability decreased with time for seeds on the soil surface and for those buried at a depth of 5 cm, and 39% and 10%, respectively, were viable after 22 months. Thus, C. hybridum can form at least a short‐lived persistent soil seedbank.  相似文献   

7.
Two of the many benefits of including legume cover crops in a fallow cropping system are weed suppression and increased soil organic N. This study was conducted in order to examine the effect of hairy vetch (Vicia villosa) on weed growth and soil N through a fallow period in subtropical Okinawa, Japan. Together with an untreated control plot, hairy vetch was grown from November 2007 to April 2008 and subsequently incorporated into the soil. The weeds were allowed to develop uncontrolled for 2 months until the time when a cash crop would be planted. In the period after the incorporation of hairy vetch, the weed biomass in the hairy vetch (HV)+ plot was more than threefold greater than that in the HV? plot. Hairy vetch had a high tendency to uptake N in April before the incorporation of hairy vetch; the N uptake by the weeds was lower in the HV+ plot than in the HV? plot. After the incorporation of hairy vetch, the N uptake by the weeds in the HV+ plot was two‐to‐six times higher than that by the weeds in the HV? plot. The C/N ratios of hairy vetch and the weeds in the HV+ plot were lower than those of the weeds in the HV? plot. More than half of the hairy vetch residue and N in the residue had decomposed by 28 days after incorporation. The content of both the NH4‐N and NO3‐N in the HV+ soil was higher than that in the HV? soil. Moreover, the amount of NO3‐N increased during the growing period of hairy vetch and decreased after the incorporation of hairy vetch. The fallow soil into which hairy vetch had been incorporated displayed a greater weed biomass and resulted in a higher inorganic N content than the soil that had not supported hairy vetch.  相似文献   

8.
In pot studies, seeds of Alopecurus myosuroides were less dormant when produced under warm and dry, than under cool and wet conditions. The temperature to which plants were exposed had a greater effect on seed dormancy than soil moisture. The timing of temperature stress had a big impact on initial seed dormancy. The critical period was during seed maturation, irrespective of temperature conditions during the earlier phase of panicle emergence and anthesis. A much higher proportion (57–62%) of seeds collected from fields in 2001, 2003 and 2005 were non‐dormant than in 2002 and 2004 (22–28%). Meteorological records showed that the mid‐June to mid‐July periods in England for 2001, 2003 and 2005 were warmer than average but in 2002 and 2004 were cooler than average. Consequently, results for samples collected from fields support those from experiments conducted under more controlled conditions. Studies in outdoor micro‐plots showed that the differences in seed dormancy recorded with freshly produced seed did affect the rate of germination in the field, 2–3 months after shedding.  相似文献   

9.
Hairy vetch ( Vicia villosa ), as a winter cover crop, can be used to suppress weeds in subtropical regions, as well as temperate regions. Information on the potential biomass growth of hairy vetch for weed control and nutrient accumulation is not available in subtropical regions. Hairy vetch was sown in November 2004, and October, November, and December 2005. The wide-ranging cultivation period of hairy vetch indicated that it could be used in various cropping systems. It showed a higher biomass and nutrient accumulation when grown in subtropical Okinawa, Japan. Moreover, the biomass, and fixed carbon and magnesium (Mg) uptake in the above-ground parts of hairy vetch were found to be the highest in late May, with the highest nitrogen (N), potassium, and calcium uptake in mid-April and phosphorus (P) uptake in late March. Meanwhile, in the underground parts of the plant, they were highest in early May, except for the P and Mg uptake, which were highest in mid-April. According to the sowing date, the biomass and nutrient uptake of hairy vetch that was harvested in February were higher when sown in October. Similarly, when harvested in March, the biomass and nutrient uptake were higher when sown in October or November. In April, they were higher when sown in November or December. Hairy vetch has the potential to effectively suppress weeds in the winter and the spring seasons related to its sufficient biomass during the growing seasons. However, both the sowing and harvesting times of hairy vetch should be considered with reference to the cropping system; the subsequent crop will be sown to meet the N requirement.  相似文献   

10.
The germination ecology of four annual Bromus species, which differ in weediness on arable land in southern Sweden, was investigated. The most problematic species is Bromus sterilis , while Bromus hordeaceus frequently occurs on arable land. In contrast, Bromus arvensis is a rare weed, and Bromus tectorum is found infrequently in fields despite being a widespread ruderal species. Five experiments were conducted to identify germination characteristics that could explain differences in habitat and abundance: (i) intraspecific variation in dormancy level; (ii) germination response to different light conditions; (iii) light and temperature interactions at germination; (iv) timing of seedling emergence; and (v) seed persistence in soil. Bromus sterilis and B. tectorum behaved similarly in all tests. For both these species, there were large differences in dormancy level among populations and strong inhibition of germination by light. In addition, emergence from seeds sown on the soil surface was both delayed and reduced compared with buried seeds. In contrast, B. hordeaceus and B. arvensis showed generally weak dormancy, and germination was only slightly inhibited by light. It was concluded that germination characteristics alone do not explain the differences in weediness between these four species.  相似文献   

11.
Ryegrass (Lolium multiflorum Lam.) is one of the most difficult annual weeds to control in cultivation systems worldwide, especially in temperate regions. The widespread use of herbicides in the past two decades has selected resistant biotypes of ryegrass in crops in Southern Brazil. Ryegrass seeds are dormant when disseminated and germination can be staggered over time (crop‐growing season). Knowledge of the germination behavior of seeds from herbicide‐resistant plants has been little studied, but it would be very useful in integrated weed management. Thus, this study aimed to characterize the dynamics of the soil seed bank of two biotypes of L. multiflorum, one glyphosate‐resistant and the other glyphosate‐susceptible, under a no‐tillage system. The treatments were arranged in a bifactorial scheme, using seeds from biotypes (glyphosate‐resistant and glyphosate‐susceptible) with monthly periods of removal from field (one to 12 months). Seeds of each biotype were placed on the soil surface and covered with soil and straw to simulate no‐till conditions. The percentage of germinated, dormant, and dead seeds was evaluated every 30 days. The ryegrass seed bank of glyphosate‐susceptible and glyphosate‐resistant biotypes was reduced to 11 and 15% of dormant seeds, respectively, at the end of 12 months. However, there was no variation in germination, dormancy, and seed mortality between susceptible and glyphosate‐resistant ryegrass. Seeds of glyphosate‐resistant biotype and susceptible showed germination behavior with similar dynamics in the soil over a period of 12 months.  相似文献   

12.
Mikania micrantha (mile‐a‐minute) reproduces both by seed and vegetatively. A study to determine the possible pollinators, seed production rates, temperature and salinity limitations to germination and its seedbank size and persistence was conducted in Viti Levu, Fiji. Representatives of the Diptera had the greatest percentage of all floral visits (38%), followed by Hymenoptera (34%) and Lepidoptera (27%), while the honeybee was the most recurring visitor (18% of all visits). Flower heads (capitula) within the inflorescence commonly formed four viable seeds, resulting in 60 820 filled seed being produced per m2. However, the seedbanks formed were not massive (600 seed m?2) and they were moderately persistent (T50: 1–3 years). Seed germination from both high and moderate rainfall regions occurred rapidly, under a wide range of temperature regimes, with no primary dormancy being observed. This study indicates that the seed reproductive success of M. micrantha in the two rainfall regions of Fiji is due to a number of factors, including the production of large numbers of flowers, successful pollination by local insects and the subsequent production of a large number of viable seeds. These seeds have high viability, no dormancy and are capable of forming small‐to‐medium seedbanks that are moderately long‐lived. In addition, seeds can germinate under a wide range of temperature and salinity conditions. This knowledge on seed production, biology, longevity and salt tolerance is vital in the development of management plans of M. micrantha in Fiji.  相似文献   

13.
Urochloa panicoides is an annual weed of summer crops. In Argentina, in subhumid areas with monsoon rainfall, it germinates and establishes in a single flush. To (i) identify the environmental factors that modify its seed dormancy level and germination and (ii) quantify the parameters describing the thermal behaviour of the germination and emergence dynamics of this weed under non‐limiting water conditions, we established a set of germination experiments performed (i) under controlled conditions using seeds after ripened for 3 or 6 months in different thermal and hydric conditions and (ii) under field conditions, where the soil temperature was modified by applying different shading levels. Seed dormancy level remained high with 3 months after ripening in all treatments. After 6 months, seeds stored at 4°C in dry conditions did not germinate at any temperature, while seeds stored at 25°C in dry conditions and in situ germinated c. 20% and 60% respectively. Germination percentage was higher in seeds harvested before their natural dispersal. The base, optimum and maximum temperatures for seed germination were 6, 35 and 45°C respectively. Shading reduced the number of emerged seedlings, possibly by reducing the soil thermal amplitude. The results explained the dormancy‐breaking mechanism of U. panicoides that allows a high germination rate in the field when rainfall occurs.  相似文献   

14.
Glyphosate was applied at four rates under greenhouse conditions to Avena fatua L. plants at four stages of seed development. Application at anthesis completely prevented the formation of viable seeds. Application five days after anthesis (DAA) of the terminal floret of the panicle significantly reduced seed production at all herbi-cide rates used, and at 1.76 kg a.i. ha-1 no viable seeds were produced. When applied 10 DAA, only the highest rate of glyphosate resulted in substantial reduction in number of primary seeds, but seed viability suffered at all herbicide levels. Glyphosate applied 15 DAA still produced a significant decrease in primary and secondary seed production and biomass. Both the viability and the germination rate of seeds from treated plants were significantly affected. When the herbicide was applied to plants 5 DAA, no viable seeds were produced by plants surviving the highest rate, and all rates significantly reduced germination. Glyphosate applied 10 DAA significantly suppressed germination, with 1.76 kg a.i. ha-1 being the most effective rate. When applied to plants 15 DAA, only the highest rate of glyphosate significantly affected the overall germination of both primary and secondary seeds, but the normal imposition of dormancy was partially blocked in seeds from plants treated with 0.44 and 0.88 kg a.i. ha-1. These findings are relevant to chemical summerfallow and crop desiccation practices.  相似文献   

15.
Seed dormancy contributes to species persistence in unpredictable environments and is a key process to be taken into account in weed dynamics models. As the level of seed dormancy, photosensitivity and the dates of dormancy induction and release are difficult to measure, our objective was to relate weed seed dormancy with morphological, chemical or physiological seed traits and with expert knowledge. Dormancy of four species was studied experimentally during a 2‐year seed burial experiment. Experiments were supplemented with data from the literature to increase the number of species analysed, resulting in a data set of 29 species. Proportions of non–dormant seeds were higher for elongated than spherical seeds, even when accounting for phylogenetic relatedness between species. Elongated seeds, which tend to remain on the soil surface in undisturbed habitats, may have been selected for lack of dormancy and immediate germination to limit mortality due to predation. Dormancy increased with seed coat thickness, which can act as a chemical and physical barrier to germination, while no relation was found with seed lipid or protein content. No correlation was found between photosensitivity parameters and any of the species traits analysed. Variations in dormancy dates (induction and release) were highly correlated with average field emergence season estimated from expert knowledge. The observed correlations suggest that the level of dormancy results both from direct and from indirect effects of traits being involved in trade‐offs together with seed mortality.  相似文献   

16.
Senecio vulgaris is a common weed of agriculture in the UK, but is also of food value to invertebrates and birds. Thus, it may be beneficial to retain it within agricultural ecosystems to enhance overall biodiversity. A less intensive approach to weed management requires a sound understanding of weed population dynamics so as to avoid unacceptable population growth. Experiments were carried out in 2003 and 2004 to assess seed production, and subsequent germination, by S. vulgaris growing alone, in winter wheat, or in winter field beans. Plant and seed samples were collected during May and June. There was a strong allometric relationship between capsule number and plant weight, irrespective of the year or the presence of crop competition. Numbers of seeds/capsule varied slightly from 51 to 66 seeds per capsule. Plants growing alone were estimated to produce 8471 to 12 887 seeds per plant, whilst those in wheat only 923 to 2156. Germination tests in Petri dishes in incubators showed that virtually all seeds were viable and germinated under daily alternating light:dark conditions within 10 days. Seeds in continuous dark germinated less readily, reaching only 30% after 21 days. On the basis of this and other published work, it would appear that the retention of S. vulgaris in arable fields will not pose a major threat to the long-term viability of crop production.  相似文献   

17.
Portulaca oleracea, an r‐strategist, is one of the world's most troublesome weeds. During hot seasons, P. oleracea frequently becomes monodominant in choy sum (Brassica parachinensis) fields in Guangzhou city, southern China. Here, we studied the seasonal dynamics of P. oleracea's germinable soil seedbank, population density and above‐ground biomass in choy sum fields that had been cultivated continuously for several years. Using P. oleracea seeds collected from these fields, we tested seed dormancy, survival and germination, seedling growth and generation time. Portulaca oleracea occurred at high levels during the hot season, but its occurrence was low, and the germinable soil seedbank was much greater during the cold season. The weed's opportunistic characteristics allowed it to avoid freezing and to proliferate during optimal conditions. Portulaca oleracea's generation time was very flexible, as short as 31 days during the hot season, but longer than 100 days during the colder season. Seed dormancy tended to be shorter when the seeds were stored at a higher temperature. At a temperature of 35°C, both seed germination and seedling growth showed advantages over those of choy sum. Storage for one year at a temperature of ?20°C or burial in a paddy field did not significantly reduce P. oleracea seed germination. Nevertheless, seed storage at a temperature of 15°C and soil coverage of 0.5 cm on top of the seeds significantly constrained seed germination. ‘Stale seedbed’ and/or coverage of the surface with soil are recommended during the hot season. However, rotation of rice and upland crops is not an efficient method for managing Portulaca oleracea infestation.  相似文献   

18.
Lithospermum arvense is an increasing annual weed in winter crops of the semiarid region of southern Argentina under low impact tillage systems, an agricultural practice that has become popular in recent years. Seed distribution in the soil profile under conventional tillage will change when reduced tillage is implemented, thus affecting the germination microenvironment. The effect of seed burial depth and soil water regime on field germination, enforced dormancy, innate dormancy and seed decay was studied in relation to burial time in a field experiment. In addition, the effect of burial depth on seed germination and seedling emergence was examined under laboratory controlled conditions. Field germination of buried seed ranged from 55% to 65% for shallow (2 cm) and from 5% to 30% for greater depths (20 cm). Enforced dormancy levels were significantly higher among deeper seeds. The amount of innate dormant seeds was reduced to <10% after a year of burial. Lithospermum arvense seedbanks can be classified as short-term persistent. Germination in the laboratory was unaffected by burial depth, while seedling emergence reduction was adequately described by a sigmoidal model. Results indicate that agricultural practices that accumulate L. arvense seeds near the soil surface enhance seedling recruitment.  相似文献   

19.
Secondary seed dormancy has been linked to seedbank persistence of volunteer oilseed rape (Brassica napus) in western Canada. It has been suggested that there is a genetic component to secondary seed dormancy expression in oilseed rape, but little is known of its importance in relation to non‐genetic factors. In a series of experiments we investigated the relative importance of genotype, seed size, time of windrowing and pre‐ and post‐harvest environment on the expression of secondary seed dormancy. We found that genotype contributed between 44 and 82% to the total variation in secondary seed dormancy. A broad range in secondary seed dormancy expression was observed among 16 genotypes examined. Nevertheless, three‐quarters of the genotypes investigated exhibited relatively high potential for the expression of secondary seed dormancy (back‐transformed mean 71% dormant seeds). Seed size contributed 21% to the total variation, while the influence of seed maturity (harvest regime) on secondary seed dormancy expression was negligible. Despite diverging environmental conditions during the four growing seasons spanning these experiments, the influence of pre‐harvest environment on seed dormancy expression was relatively small and ranged from 0.1% to 4.5%. Secondary seed dormancy potential decreased over time during seed storage. This decrease was greatest when seeds were stored at ambient temperatures and least when seeds were stored at ?70°C.  相似文献   

20.
Summary A substantial amount of seed is left in the fields before and during harvest of oilseed rape. Although this crop exhibits little or no primary dormancy, the absence of certain environmental cues that promote germination of imbibed seeds induces secondary dormancy. The work reported investigated the extent to which environmental stress conditions, including osmotic stress, low oxygen stress and anaerobiosis, induce secondary dormancy in oilseed rape, and examined the variation in development of secondary dormancy between and within genotypes. Osmotic stress was most effective in inducing dormancy. Anaerobic treatment produced very few dormant seeds, as did an atmosphere low in oxygen and high in nitrogen. The development of secondary dormancy under osmotic stress varied considerably between and within genotypes. Dormancy ranged from almost zero to about 60% for winter genotypes and about 85% for spring types. Within genotypes, variations occurred between seed lots and years of harvest. Temperature variations affected the percentage of dormant seeds. More dormant seeds were likely to be produced with incubation under water stress at 20 °C than at 12 °C. In winter genotypes, fewer dormant seeds were produced when incubation temperature and germination test temperatures differed. Thus, incubating at 20 °C and 12 °C, followed by germination tests at 20 °C and 12 °C, respectively, produced most dormant seeds. Also, in the winter genotypes, the potential development of secondary dormancy was positively correlated with the pattern and speed of germination of untreated seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号