首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
West Nile virus (WNV) and Usutu virus (USUV) are arboviruses that are maintained in enzootic transmission cycles between mosquitoes and birds and are occasionally transmitted to mammals. As arboviruses are currently expanding their geographic range and emerging in often unpredictable locations, surveillance is considered an important element of preparedness. To determine whether sera collected from resident and migratory birds in the Netherlands as part of avian influenza surveillance would also represent an effective source for proactive arbovirus surveillance, a random selection of such sera was screened for WNV antibodies using a commercial ELISA. In addition, sera of jackdaws and carrion crows captured for previous experimental infection studies were added to the selection. Of the 265 screened serum samples, 27 were found to be WNV–antibody‐positive, and subsequent cross‐neutralization experiments using WNV and USUV confirmed that five serum samples were positive for only WNV‐neutralizing antibodies and seven for only USUV. The positive birds consisted of four Eurasian coots (Fulica atra) and one carrion crow (Corvus corone) for WNV, of which the latter may suggest local presence of the virus, and only Eurasian coots for USUV. As a result, the screening of a small selection of serum samples originally collected for avian influenza surveillance demonstrated a seroprevalence of 1.6% for WNV and 2.8% for USUV, suggesting that this sustained infrastructure could serve as a useful source for future surveillance of arboviruses such as WNV and USUV in the Netherlands.  相似文献   

2.
To enhance early detection of West Nile virus (WNV) transmission, an integrated ecological surveillance system was implemented in Catalonia (north‐eastern Spain) from 2007 to 2011. This system incorporated passive and active equine surveillance, periodical testing of chicken sentinels in wetland areas, serosurveillance wild birds and testing of adult mosquitoes. Samples from 298 equines, 100 sentinel chickens, 1086 wild birds and 39 599 mosquitoes were analysed. During these 5 years, no acute WNV infection was detected in humans or domestic animal populations in Catalonia. WNV was not detected in mosquitoes either. Nevertheless, several seroconversions in resident and migrant wild birds indicate that local WNV or other closely related flaviviruses transmission was occurring among bird populations. These data indicate that bird and mosquito surveillance can detect otherwise silent transmission of flaviviruses and give some insights regarding possible avian hosts and vectors in a European setting.  相似文献   

3.
In the recent years, USUTU virus (USUV), a flavivirus of the Japanese encephalitis virus complex, has been reported in Central Europe. As part of a systematic surveillance programme to monitor possible entrance and/or circulation of vector-borne viruses, since 2001, sentinel-chicken flocks were placed throughout the Italian territory nearby areas considered at risk of virus introduction. They have been periodically checked for the presence of antibodies against flaviviruses by indirect ELISA, plaque reduction neutralization test for USUTU, West Nile and tick-borne encephalitis viruses. In July 2007, a sentinel chicken in a flock of 20 animals located within the Ravenna province seroconverted to USUV reaching neutralizing titres up to 1:5120. A second chicken seroconverted to the same virus 2 months later. Although no virus was rescued from these animals and from wild or farm birds sampled in the area, these results still provided evidence of the circulation of USUV in north-eastern Italy.  相似文献   

4.
In Europe, virological and epidemiological data collected in wild birds and horses suggest that a recurrent circulation of West Nile virus (WNV) could exist in some areas. Whether this circulation is permanent (due to overwintering mechanisms) or not remains unknown. The current conception of WNV epidemiology suggests that it is not: this conception combines an enzootic WNV circulation in tropical Africa with seasonal introductions of the virus in Europe by migratory birds. The objectives of this work were to (i) model this conception of WNV global circulation; and (ii) evaluate whether the model could reproduce data and patterns observed in Europe and Africa in vectors, horses, and birds. The model was calibrated using published seroprevalence data obtained from African (Senegal) and European (Spain) wild birds, and validated using independent, published data: seroprevalence rates in migratory and resident wild birds, minimal infection rates in vectors, as well as seroprevalence and incidence rates in horses. According to this model, overwintering mechanisms are not needed to reproduce the observed data. However, the existence of such mechanisms cannot be ruled out.  相似文献   

5.
West Nile virus (WNV) was recently detected in Culex pipiens mosquitoes in Morocco. The aim of this study was to evaluate the seroprevalence of WNV in humans and in domestic birds in two regions of Morocco by the detection of IgG antibodies. Blood samples were obtained from 91 human patients and 92 domestic birds from September to December 2019. All study samples were tested using competitive enzyme-linked immunosorbent assay (cELISA) and WNV neutralization tests (VNT) were performed on positive sera. Of all samples, 4 (4.39 %) humans and 4 (4.34 %) birds were found to be seropositive for flaviviruses by the cELISA test. The VNT revealed that three of the four human samples detected positive by cELISA contained neutralizing antibodies against WNV. Two bird samples were confirmed positive by VNT. These results show a significant seroprevalence of anti-WNV antibodies and therefore suggest the active circulation and exposure of human and bird populations in the northwest of Morocco.  相似文献   

6.
While the epidemiology of Flaviviruses has been extensively studied in most of the Mediterranean basin, little is known about the current situation in Algeria. In order to detect the circulation of West Nile (WNV) and Usutu viruses (USUV) in Kabylia, 165 sera were collected from two wild birds species, namely the long distance migrant Turdus philomelos (song thrush) (n = 92) and the resident Passer domesticus (house sparrow) (n = 73). A total of 154 sera were first analyzed by commercial competition ELISA. WNV and USUV micro-neutralization tests were performed on all c-ELISA positive sera and all samples with poor volume. Overall, 7.8 % (CI95 %: 3.5–11.9) were positive by c-ELISA. Positive results were detected in 12.5 % (CI95 %:5.6–19.4) of song thrushes and 1.5 % (CI95 %: 0.0–4.5) for sparrow.Micro-neutralization tests revealed an overall seroprevalence of 6.7 % for WNV (CI95 %: 2.9–10.3), Neutralizing antibodies were found in 8.7 % (CI95 %: 3.0–14.4) for song thrushes and in 4.1 % (CI95 %: 0.0–8.7) of sparrows. The current study demonstrates significant seroprevalence of WNV antibodies in wild birds in Algeria.  相似文献   

7.
Usutu virus (USUV), a flavivirus of the Japanese encephalitis virus complex, was for the first time detected outside Africa in the region around Vienna (Austria) in 2001 by Weissenb?ck et al. [Weissenb?ck, H., Kolodziejek, J., Url, A., Lussy, H., Rebel-Bauder, B., Nowotny, N., 2002. Emergence of Usutu virus, an African mosquito-borne flavivirus of the Japanese encephalitis virus group, central Europe. Emerg. Infect. Dis. 8, 652-656]. USUV is an arthropod-borne virus (arbovirus) circulating between arthropod vectors (mainly mosquitoes of the Culex pipiens complex) and avian amplification hosts. Infections of mammalian hosts or humans, as observed for the related West Nile virus (WNV), are rare. However, USUV infection leads to a high mortality in birds, especially blackbirds (Turdus merula), and has similar dynamics with the WNV in North America, which, amongst others, caused mortality in American robins (Turdus migratorius). We hypothesized that the transmission of USUV is determined by an interaction of developing proportion of the avian hosts immune and climatic factors affecting the mosquito population. This mechanism is implemented into the present model that simulates the seasonal cycles of mosquito and bird populations as well as USUV cross-infections. Observed monthly climate data are specified for the temperature-dependent development rates of the mosquitoes as well as the temperature-dependent extrinsic-incubation period. Our model reproduced the observed number of dead birds in Austria between 2001 and 2005, including the peaks in the relevant years. The high number of USUV cases in 2003 seems to be a response to the early beginning of the extraordinary hot summer in that year. The predictions indicate that >70% of the bird population acquired immunity, but also that the percentage would drop rapidly within only a couple of years. We estimated annually averaged basic reproduction numbers between R (0)=0.54 (2004) and 1.35 (2003). Finally, extrapolation from our model suggests that only 0.2% of the blackbirds killed by USUV were detected by the Austrian USUV monitoring program [Chvala, S., Bakonyi, T., Bukovsky, C., Meister, T., Brugger, K., Rubel, F., Nowotny, N., Weissenb?ck, H., 2007. Monitoring of Usutu virus activity and spread by using dead bird surveillance in Austria, 2003-2005. Vet. Microbiol. 122, 237-245]. These results suggest that the model presented is able to quantitatively describe the process of USUV dynamics.  相似文献   

8.
Since 2008, West Nile Virus (WNV) has expanded its range in several Italian regions, and its yearly recurrence suggests the virus may have become endemic in some areas. In 2011, a new plan based also on the detection of IgM antibodies was implemented in the north‐eastern Italian regions of Veneto and Friuli Venezia Giulia, aiming to early detect WNV infections in areas where the virus had already circulated during the previous summers, and in adjacent zones. From July to November 2011, 1880 sera from 521 equine premises were screened by a commercial IgM capture ELISA. Mosquitoes were captured by CDC‐CO2 traps at 61 locations in the two regions. Collected mosquitoes were identified, pooled by species/date/location and examined by real‐time RT‐PCR and sequencing. Passive surveillance was carried out on clinically affected horses and non‐migratory wild birds found dead. IgM sero‐positive equines were detected in 19 holdings, five in the area with WNV circulation (AWC) and 14 in the surveillance area (SA); 10 more horse premises tested positive to further serological controls within 4 km of the positive holdings. A total of 85 398 mosquitoes of 15 species were collected and 2732 pools examined. Five Culex pipiens pools tested positive for the presence of WNV. Passive surveillance on non‐migratory wild birds allowed detection of the virus only in one found dead collared dove (Streptopelia decaocto), of 82 birds sampled. The WNV belonged to the lineage 2, which had been isolated for the first time in Italy earlier in 2011. By the first week of October, nine human cases had been confirmed in the same area. The implementation of a protocol combining IgM screening of horses with surveillance on mosquito vectors proved to be valuable for early detecting WNV circulation.  相似文献   

9.
10.
Eastern Screech Owls (EASOs) were experimentally infected with the pathogenic New York 1999 strain of West Nile virus (WNV) by subcutaneous injection or per os. Two of nine subcutaneously inoculated birds died or were euthanatized on 8 or 9 days postinfection (DPI) after <24 hr of lethargy and recumbency. All subcutaneously inoculated birds developed levels of viremia that are likely infectious to mosquitoes, with peak viremia levels ranging from 10(5.0) to 10(9.6) plaque-forming units/ml. Despite the viremia, the remaining seven birds did not display signs of illness. All birds alive beyond 5 DPI seroconverted, although the morbid birds demonstrated significantly lower antibody titers than the clinically normal birds. Cagemates of infected birds did not become infected. One of five orally exposed EASOs became viremic and seroconverted, whereas WNV infection in the remaining four birds was not evident. All infected birds shed virus via the oral and cloacal route. Early during infection, WNV targeted skin, spleen, esophagus, and skeletal muscle. The two morbid owls had myocardial and skeletal muscle necrosis and mild encephalitis and nephritis, whereas some of the clinically healthy birds that were sacrificed on 14 DPI had myocardial arteritis and renal phlebitis. WNV is a significant pathogen of EASOs, causing pathologic lesions with varying clinical outcomes.  相似文献   

11.
Objective To study the potential role of an Australian corvid, the little raven (Corvus mellori), in the surveillance for exotic West Nile virus (WNV) in Australia. Method In a series of trials, little ravens were infected with WNV (strain 4132 New York 1999) and Kunjin virus (strain K42886) by the intramuscular route. They were observed for 20 days during which blood and swab samples were taken for virus isolation. Tissue samples were taken from ravens humanely killed during the acute infection period, and at the termination of the trials, for virus isolation, histopathology and immunohistochemistry. Results Ravens infected with WNV became mildly ill, but all recovered and seroconverted. Blood virus titres peaked around 3 to 4 days after inoculation at levels between 103.0 to 107.5 plaque forming units/mL. Virus or viral antigen was detected in spleen, liver, lung, kidney, intestine, testis and ovary by virus isolation and/or immunohistochemistry. WNV was detected in oral and cloacal swabs from 2 to 7 days post inoculation. The molecular and pathogenic characteristics of the inocula were consistent with them being of high virulence, as expected for this isolate. Ravens infected with Kunjin virus developed viraemia and seroconverted, although they did not develop disease. Conclusions Little ravens do not develop severe disease in response to virulent WNV infection and for this reason may not be important sentinel hosts in the event of an outbreak of WNV, as in North America. However, as they have relatively high viraemias, they may be able to support virus cycles.  相似文献   

12.
13.
14.
15.
A total of 543 migrating passerines were captured during their stopover on the island of Helgoland (North Sea) in spring and autumn 2001. They were sampled for the detection of avian influenza A viruses (AIV) subtypes H5 and H7, and for avian paramyxoviruses serotype 1 (APMV-1). The goal of the study was to examine the role of migrating birds as potential vectors for these zoonotic viral diseases. For virus detection samples were taken from a) short-distance migrants such as chaffinches (Fringilla coelebs, n = 131) and song trushes (Turdus philomelos, n = 169), and b) long-distance migrants such as garden warbler (Sylvia borin, n = 142) and common redstarts (Phoenicurus phoenicurus, n = 101). Virus detection was done on conjunctival, choanal cleft and cloacal swabs. Embryonated SPF chicken eggs were used to isolate and propagate virus followed by virus identification in a hemagglutination test, hemagglutination inhibition test and in an agar gel diffusion test. In none of the tested samples AIV was detected. Therefore, we conclude that the tested four species of passerines were infected by these pathogens. Six out of 543 birds (1.1 %) were found to carry non-pathogenic and lentogenic strains of APMV-1. This indicates that the passerine species examined in this study may play only a minor role as potential vectors of APMV-1.  相似文献   

16.
17.
West Nile virus (WNV) is a flavivirus that is maintained in an enzootic cycle between ornithophilic mosquitoes, mainly of the Culex genus, and certain wild bird species. Other bird species like ravens, jays and raptors are highly susceptible to the infection and may develop deadly encephalitis, while further species of birds are only going through subclinical infection. The objective of this study was to continue in years 2009-2011 the serological and molecular surveillance in wild birds in Germany (see Vector Borne Zoonotic Dis. 10, 639) and to expand these investigations for the first time also to sera from domestic poultry and horses collected between 2005 and 2009. All three cohorts function as indicators for the endemic circulation of WNV. The presence of WNV-specific antibodies was detected in all samples by virus neutralization test (VNT), indirect immunofluorescence test (IFT) and/or enzyme-linked immunosorbent assay (ELISA). The presence of WNV genomes was monitored in relevant sera using two qRT-PCRs that amplify lineage 1 and 2 strains. A total of 364 migratory and resident wild bird serum samples (with emphasis on Passeriformes and Falconiformes) as well as 1119 serum samples from domestic poultry and 1282 sera from horses were analysed. With the exception of one hooded crow, antibody carriers were exclusively found in migratory birds, but not in resident birds/domestic poultry or in local horses. Crows are facultative, short-distance winter migrants in Germany. WNV-specific nucleic acids could not be demonstrated in any of the samples. According to these data, there is no convincing evidence for indigenous WNV infections in equines and in wild/domestic birds in Germany. However, since a few years, WNV infections are endemic in other European countries such as Austria, Hungary, Greece and Italy, a state-of-the-art surveillance system for the detection of incursions of WNV into Germany deems mandatory.  相似文献   

18.
19.
The emergence and spread of infectious diseases in mid-latitudes, so far mainly observed in the tropics, considerably increase under the current situation of climate change. A recent example is the Usutu virus (USUV) outbreak in Austria. USUV is closely related to the West Nile virus in the U.S. and caused mass mortalities mainly of blackbirds (Turdus merula). The USUV flavivirus persists in a natural transmission cycle between vectors (mosquitoes) and host reservoirs (birds) and leads - once endemic in a population - to periodic outbreaks. In an epidemic model to explain the USUV dynamics in Austria 2001-2005, USUV dynamics were mainly determined by an interaction of bird immunity and environmental temperature. To investigate future scenarios, we entered temperature predictions from five global climate models into the USUV model and also considered four different climate-warming scenarios defined by the I ntergovernmental Panel on Climate Change, IPCC (20 different model-scenario combinations). We downscaled the 20 time series of predicted temperatures (through the year 2100) to represent the region around Vienna. Our simulations predict that USUV will persist in the host population after the epidemic peak observed in 2003. USUV-specific annual blackbird-mortality time series predict that the outbreak frequency increases successively from the beginning to the end of the century. Simulations of worst-case scenarios result in an endemic equilibrium with a decline of the blackbird population of about 24%. Additionally we calculated the annually averaged basic reproduction number for the period 1901-2100. The latter depict that undetected major outbreaks before 2000 were unlikely, whereas it is likely that the USUV becomes endemic after 2040.  相似文献   

20.
West Nile virus lineage 2 (WNV‐2) was detected in the brain of 17 goshawks (Accipiter gentilis) that succumbed to neuroinvasive disease in the Czech Republic during 2018: twelve birds were captive and five wild. Furthermore, two wild sparrowhawks (Accipiter nisus) and three other captive birds of prey (golden eagle Aquila chrysaetos, hybrid saker falcon Falco cherrug × F. rusticolus and Harris's hawk Parabuteo unicinctus) also died due to WNV encephalitis. The 2018 outbreak in Czech raptors clearly reflects a new epidemiological situation and indicates an increasing risk of both raptor and human infection with WNV‐2 in the country.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号