首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Tumor necrosis factor‐alpha (TNF‐α) is recognized as a cytokine because of its involvement in inflammation‐mediated biological defense functions. Although TNF‐α is primarily produced by macrophages, it is also produced by other cells, including lymphocytes, Kupffer cells, natural killer cells and adipocytes. While TNF‐α has diverse immune system functions, including antitumor activity, antimicrobial activity and mediation of inflammation, it also regulates a number of physiological functions, including appetite, fever, energy metabolism and endocrine activity. Factors such as viruses, parasites, other cytokines, and endotoxins induce TNF‐α production. In combination with other cytokines, TNF‐α plays a clinically important role in cattle by mediating immune inflammatory responses such as mastitis and endotoxic shock. It has been reported that cytokines such as TNF‐α are involved in metabolic disease such as acidosis. On the other hand, several data suggest that lactoferrin (LF) acts to prevent the release of a number of inflammatory mediators from various activated cells, and further suggest that the prophylactic effect of LF involves inhibition of cytokine production, including TNF‐α, that are principal mediators of the inflammatory response leading to death from toxic shock. This review discusses the role of TNF‐α in pathological conditions in cattle, including infections and metabolic diseases caused by perturbation of metabolism and endocrine functions.  相似文献   

3.
4.
Experiments in different animal species have shown that febrile conditions, induced by Escherichia coli lipopolysaccharide (LPS), may alter the pharmacokinetic properties of drugs. The objective was to study the effects of a LPS‐induced acute‐phase response (APR) model on plasma pharmacokinetics of florfenicol (FFC) after its intravenous administration in sheep. Six adult clinically healthy Suffolk Down sheep, 8 months old and 35.5 ± 2.2 kg in body weight (bw), were distributed through a crossover factorial 2 × 2 design, with 4 weeks of washout. Pairs of sheep similar in body weight were assigned to experimental groups: Group 1 (LPS) was treated with three intravenous doses of 1 μg/kg bw of E. coli LPS before FFC treatment. Group 2 (control) was treated with an equivalent volume of saline solution (SS) at similar intervals as LPS. At 24 h after the first injection of LPS or SS, an intravenous bolus of 20 mg/kg bw of FFC was administered. Blood samples (5 mL) were collected before drug administration and at different times between 0.05 and 48.0 h after treatment. FFC plasma concentrations were determined by liquid chromatography. A noncompartmental pharmacokinetic model was used for data analysis, and data were compared using a Mann–Whitney U‐test. The mean values of AUC0–∞ in the endotoxaemic sheep (105.9 ± 14.3 μg·h/mL) were significantly higher (< 0.05) than values observed in healthy sheep (78.4 ± 5.2 μg·h/mL). The total mean plasma clearance (CLT) decreased from 257.7 ± 16.9 mL·h/kg in the control group to 198.2 ± 24.1 mL·h/kg in LPS‐treated sheep. A significant increase (< 0.05) in the terminal half‐life was observed in the endotoxaemic sheep (16.9 ± 3.8 h) compared to the values observed in healthy sheep (10.4 ± 3.2 h). In conclusion, the APR induced by the intravenous administration of E. coli LPS in sheep produces higher plasma concentrations of FFC due to a decrease in the total body clearance of the drug.  相似文献   

5.
6.
A hereditary skin defect in sheep   总被引:3,自引:0,他引:3  
Some years ago a lamb with abnormal skin was received at the State veterinary research station for small ruminants (SVRS), Stavanger, from a farm in Ryfylke. The lamb had apparently been normal at birth, but by normal activity and contact with its mother, extensive wounds developed, with large, loose skin areas. The lamb’s condition had deteriorated so much that it was killed when it was two days old. Two ewes sired by the same ram had given birth to similar lambs the same year, while some years earlier, lambs with the same defect had been born by other ewes in the flock.  相似文献   

7.
8.
9.
10.
This study assessed the plasma kinetics and skin/plasma concentration ratio of the azalide antibiotic gamithromycin (ZACTRAN®, Merial) in sheep after a single subcutaneous administration at 6 mg/kg bodyweight. Gamithromycin concentrations in plasma samples collected at various intervals up to 21 days following treatment and metacarpal skin obtained from animals at two, five and ten days after treatment were determined by liquid chromatography–tandem mass spectrometry methods.  相似文献   

11.
12.
13.
14.
15.
16.
17.
Fentanyl is used in small animals for perioperative analgesia during anaesthesia. Severe bradycardia and asystole were observed on bolus administration of a 3 µg/kg loading dose of fentanyl in two dogs under isoflurane anaesthesia. Premedication with 10 µg/kg glycopyrrolate did not prevent asystole in the first case; and although bradycardia was treated with 5 µg/kg glycopyrrolate administered intravenously in the second case, the heart rate continuously decreased and asystole subsequently developed. Asystole in both cases was quickly corrected by intravenous administration of 0 · 04 mg/kg atropine and closed chest compressions. This case report describes asystole induced by fentanyl administration in isoflurane anaesthetised dogs. Atropine was more effective than glycopyrrolate in the treatment of fentanyl‐induced asystole.  相似文献   

18.
为了研究音猬因子(sonic hedgehog, SHH)在不同品种绵羊背部皮肤中的表达差异,以探索SHH与羊毛弯曲形成的关系,选取美利奴羊和小尾寒羊作为研究对象,利用HE染色法观察2种绵羊背部皮肤的组织结构,采用免疫组织化学技术、实时荧光定量PCR和Western blot方法探究2种绵羊背部皮肤中SHH蛋白和基因水平的相对表达量差异。结果显示:HE染色显示美利奴羊与小尾寒羊背部皮肤毛囊的组织结构存在毛囊数量及弯曲程度等差异;免疫组织化学试验显示,SHH蛋白在美利奴羊和小尾寒羊背部皮肤中均有表达,在美利奴羊背部皮肤中的毛乳头、毛基质、内外根鞘、皮脂腺和表皮细胞中显著表达,在小尾寒羊背部皮肤中的毛基质、内外根鞘和皮脂腺中显著表达;光密度分析显示,美利奴羊背部皮肤组织中SHH蛋白的表达量显著高于小尾寒羊(P<0.001);实时荧光定量PCR显示,美利奴羊SHH mRNA相对表达水平显著高于小尾寒羊(P<0.01);Western blot显示,美利奴羊SHH蛋白相对表达水平显著高于小尾寒羊(P<0.01)。提示:羊毛弯曲的形成与其组织结构有关,并受SHH的调控。  相似文献   

19.
20.
为了研究音猬因子(sonic hedgehog, SHH)在不同品种绵羊背部皮肤中的表达差异,以探索SHH与羊毛弯曲形成的关系,选取美利奴羊和小尾寒羊作为研究对象,利用HE染色法观察2种绵羊背部皮肤的组织结构,采用免疫组织化学技术、实时荧光定量PCR和Western blot方法探究2种绵羊背部皮肤中SHH蛋白和基因水平的相对表达量差异。结果显示:HE染色显示美利奴羊与小尾寒羊背部皮肤毛囊的组织结构存在毛囊数量及弯曲程度等差异;免疫组织化学试验显示,SHH蛋白在美利奴羊和小尾寒羊背部皮肤中均有表达,在美利奴羊背部皮肤中的毛乳头、毛基质、内外根鞘、皮脂腺和表皮细胞中显著表达,在小尾寒羊背部皮肤中的毛基质、内外根鞘和皮脂腺中显著表达;光密度分析显示,美利奴羊背部皮肤组织中SHH蛋白的表达量显著高于小尾寒羊(P<0.001);实时荧光定量PCR显示,美利奴羊SHH mRNA相对表达水平显著高于小尾寒羊(P<0.01);Western blot显示,美利奴羊SHH蛋白相对表达水平显著高于小尾寒羊(P<0.01)。提示:羊毛弯曲的形成与其组织结构有关,并受SHH的调控。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号