首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 205 毫秒
1.
Amylose content is one of the most important factors influencing the physical and chemical properties of starch in rice. Analysis of 352 Vietnamese rice cultivars revealed a wide range of variation in apparent amylose content and the expression level of granule-bound starch synthase. On the basis of single-nucleotide polymorphisms (SNP) at the splicing donor site of the first intron and in the coding region of the granule-bound starch synthase I gene, Waxy gene, alleles can be classified into seven groups that reflect differences in apparent amylose content. The very low and low apparent amylose content levels were tightly associated with a G to T in the first intron whereas intermediate and high amylose was associated with a T genotype at SNP in exon 10. The correlation between the combination of T genotype at SNP in the first intron, C in exon 6, or C in exon 10 was predominant among low amylose rice varieties. Our analysis confirmed the existence of Wxop allele in Vietnamese rice germplasm. The results of this study suggest that the low amylose properties of Vietnamese local rice germplasm are attributable to spontaneous mutations at exons, and not at the splicing donor site.  相似文献   

2.
利用1D-SDS-PAGE分离了261份青藏高原农家青稞的淀粉颗粒结合蛋白,旨在为青藏高原青稞淀粉品质改良和淀粉颗粒结合蛋白机制研究提供依据和基础信息。在分子量45~100 kD区域共有20种多态性蛋白条带和78种组合带型,其中2、3、5、10、11为新条带。利用PCR技术克隆了236份农家青稞GBSSI基因5′前导序列,出现1 000 bp和800 bp的多态性片段,且以前者为主,其频率为80.1%。在8份农家青稞及4份引进的低直链淀粉材料的GBSSI基因5′前导序列中共检测到32个多态性位点,包括9个InDel和23个SNP。GBSSI基因5′前导序列中出现了特有的序列差异,如未出现600 bp类型(约400 bp的特异缺失),而该缺失被认为是低直连淀粉大麦形成的原因;材料yf127、yf70、011Z1396和09Z586出现了特异点突变。因此认为,青藏高原农家青稞品种的淀粉颗粒结合蛋白具有丰富的多态性和独特性,可能存在新的形成机制。  相似文献   

3.
The entire USDA‐ARS maintained collection of 650 accessions of proso millet (Panicum miliaceum L.) was evaluated for the presence of accessions with waxy (amylose‐free) endosperm starch. Six accessions, five of which derived from mainland China, were identified. Segregation ratios for waxy endosperm were evaluated in F2 and F3 populations derived from crosses between two waxy accessions, PI 436625 (Lung Shu 16) and PI 436626 (Lung Shu 18), and several wild‐type accessions. The waxy trait was found to be under the control of duplicate recessive alleles at two loci, herein designated wx‐1 and wx‐2. Wild‐type alleles at these loci were designated Wx‐1 and Wx‐2. Iodine‐binding revealed a mean grain‐starch amylose concentration of 3.5% in waxy lines and 25.3% in wild‐type proso. Expression of the granule‐bound starch synthase (waxy protein) in waxy lines was reduced to approximately one‐tenth that of wild‐type accessions. The waxy accessions identified now are available for the introgression of this trait into breeding lines adapted to the Great Plains of North America.  相似文献   

4.
To find out gene dose effect of each of the three homoeologous Wx genes and their interaction on the production of granule-bound starch synthase (GBSS I) and amylose biosynthesis in the endosperm, Chinese Spring and its near-isogenic waxy types were crossed reciprocally and, obtained a plant population with varying doses of each Wx gene. The amount of GBSSI was increased linearly with increasing gene dose of either of Wxloci. In each of the three Wx loci, the change in amylose content was linear up to 3 doses, with a more potent capacity ofWx-B1a at any dose. Higher level of amylose production was observed in the reciprocal F1 grains than the expected effect of dose/s of each gene or additive effect of different allelic combination by artificially blend starches which have amylose produced by equivalent number ofWx alleles to that of relevant F1 cross. When Wx-B1a and Wx-A1a were combined, increase in amylase content was not in proportion to increase in gene dosage. The enhanced amylase synthesis was shown by 2-gene and 3-geneinteraction, indicating that not only type of the three Wx genes and its dose but the interaction among them have significant roles in determining the amylose content. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
A loss of granule‐bound starch synthase I (GBSS I) activity results in starch granules that contain mostly amylopectin and little or no amylose, a phenotype described as waxy. Previously, two phenotypic classes of waxy alleles, wxa, associated with no detectable GBSS I, and wxb, associated with apparently inactive GBSS I in the endosperm, were reported in sorghum (Sorghum bicolor (L.) Moench). In this study, the waxy alleles in a sorghum core collection were investigated using DNA markers. Of the 337 sorghum accessions examined, 17 accessions that were confirmed to be waxy by a negative iodine staining result and 16 were found to be wxa. A novel waxy allele, wxc, was found in a Taiwanese landrace. This allele consists of a +1G to C mutation in the 5′ splice site at the intron 10–exon 11 boundary, a mutation that most likely resulted in the suppression of GBSS I gene expression. A DNA marker specific for wxc was produced to distinguish the wxc allele from other alleles, allowing the identification of heterozygous non‐waxy plants.  相似文献   

6.
Gelatinization temperature and apparent amylose content are key parameters used to describe the eating and cooking qualities of rice. Sequence variants of SSIIa and Waxy genes are important determinants of gelatinization temperature and apparent amylose content, respectively. A collection of Italian non-glutinous japonica rice accessions was characterized for sequence polymorphisms in SSIIa and Waxy genes, in comparison with non-Italian japonica and indica genotypes. For SSIIa two markers, SNP3 and SNP4, were used. A PCR amplification of multiple specific alleles protocol was developed for the identification of G/T polymorphism in 5′ splice site of first intron and A/C polymorphism in exon 6 of the Waxy gene. Based on simple allele-specific PCR, it can be proposed as a user-friendly, cost-effective tool for marker-assisted selection of amylose content. The collection was characterized also for the (CT)n repeats in exon 1 of the Waxy gene. The results showed that while SSIIa haplotypes were rather similar between Italian and non-Italian japonica rice, the Waxy gene haplotype T/A/(CT)18 was largely predominant in Italian accessions, other haplotypes, well represented in non-Italian japonica [T/A/(CT)19] and indica [e.g. G/C/(CT)20] genotypes, were present at lower frequency. Grain starch quality traits as apparent amylose content and RVA profile were also analysed. The In1/Ex6 SNP haplotypes of Wx gene were found to explain 79 % of variation in apparent amylose content, and 36, 22 and 25 %, of variation in the RVA parameters peak viscosity, breakdown and setback, respectively. The additional use of (CT)n repeats marker further improved the association of haplotypes with RVA parameters.  相似文献   

7.
E. Domon    T. Yanagisawa    A. Saito  K. Takeda 《Plant Breeding》2004,123(3):225-228
A high‐throughput single nucleotide polymorphism (SNP) genotyping procedure was developed to select amylose‐free barley mutants whose waxy genes had a C‐ to T‐base substitution in exon 5, which converted Gln‐89 of the wild‐type gene into a termination codon. An F2 population carrying an amylose‐free waxy gene was checked for segregation. Polymerase chain reaction with confronting two‐pair primers (PCR‐CTPP) produced allele‐specific PCR products that have different sizes and are inherited in a co‐dominant manner. Two alleles of the barley waxy gene with SNP were correctly identified in parental strains using the PCR‐CTPP procedure. Segregation of the SNP as detected by PCR‐CTPP in an F2 population fitted the expected 1:2:1 ratio. The PCR‐CTPP procedure can provide a time saving and cost‐effective alternative to derived cleaved amplified polymorphic sequence in marker‐assisted selection.  相似文献   

8.
One problem caused by high temperature during ripening in Japonica rice cultivars is a reduction in the amount of starch in the endosperm. To better understand this deleterious effect, we compared the accumulation of the two components of starch, amylose and amylopectin in grains ripened at high (32/28 °C) and low (22/18 °C) day/night temperatures in a set of lines of Japonica cultivar Taichung 65 (T65Wxb) that are near‐isogenic for the Wx locus, which encodes granule‐bound starch synthase I. In T65Wxb ripened at high temperature, the amount of starch per grain decreased. However, amylose per grain significantly decreased while amylopectin per grain significantly increased. On the other hand, the amount of amylopectin in T65wx, the amylose‐free line, did not differ significantly at the high and low temperatures. These data indicated that high temperatures during ripening did not directly affect amylopectin accumulation in T65Wxb and that the reduction in starch in T65Wxb from the high temperatures was caused by a decrease only of amylose. The results for T65Wxa and T65Wxop were also consistent with this conclusion. As a result of the decrease in amylose, the outer region of starch granules from T65Wxb ripened at the high temperatures also had less I2KI staining. Because this fact might suggest that a portion of amylose was synthesized inside the developing granules after amylopectin synthesis in rice, the effect of amylose deposition in increasing of the density of starch granules is also discussed.  相似文献   

9.
The waxy phenotype, associated with endosperm containing little or no amylose, has been recognized in sorghum (Sorghum bicolor L. Moench) since 1933. Although variants of the waxy gene are well characterized in other cereals, the waxy trait has been assumed to be controlled by a single allele, wx, in sorghum. Recent improvements in technologies encourage re-examination of the waxy sorghums. The objectives of this research were therefore to identify and characterize sorghum lines with differing waxy alleles and to describe the actions of those alleles in crosses. Grain of eight waxy sorghum lines (BTxARG1, BTx630, Tx2907, B.9307, 94C274, 94C278, 94C289, 94C369), three wild-type checks (BWheatland, RTx430, BN122), and F2 families from crosses among a subset of these lines were evaluated for presence or absence of granule-bound starch synthase (GBSS), the gene product of the wx locus, and wild-type vs. waxy endosperm. The F2 segregation ratios were tested for fit to a 3:1 ratio using Chi-square analyses. Two distinctly different naturally occurring waxy alleles were identified: One with no GBSS (GBSS−), and one with apparently inactive GBSS present (GBSS+). We propose that the waxy allele with no GBSS be designated wxa, and that waxy allele with apparently inactive GBSS present be designated wxb. These two alleles are located in close proximity on the waxy locus. The wxb allele is dominant to the wxa allele in terms of GBSS production, and both are recessive to the wild-type Wx in terms of amylose content. The U.S. Government's right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   

10.
From mutant pools of two Taiwanese elite japonica cultivars, Tainung 67 and Taikeng 8, we identified 13 mutant lines possessing opaque endosperm with relatively low amylose contents (AC) ranging from 1.5% to 7.1%. Because of different AC, paste viscosities of these 13 mutant lines differed, as revealed by palatability and physicochemical properties. The mutated gene conferring opaque endosperm was isolated from the F2 population of one mutant line, WY1× indica cv. ‘Taichung Sen 17’, by positional cloning, revealing a G3018→A3018 substitution at exon 9 of Waxy leading to a non‐synonymous mutation from alanine to valine. Two additional alleles were identified from the other 12 mutant lines, for which single‐nucleotide substitutions G2708 → A2708 and G3029 → A3029 occurred in exons 8 and 9, leading to non‐synonymous mutations from arginine to histidine and glutamic acid to lysine, respectively. The three novel wx alleles had different effects on grain quality, specifically on eating and cooking quality, and could be applied in rice breeding programmes to develop new low AC varieties by marker‐assisted selection.  相似文献   

11.
The granule-bound starch synthase (GBSS I) encoded by the Wxgenes, is involved in amylose synthesis. For analyses of mechanisms of amylose synthesis and associated starch properties in hexaploid wheat, eight possible genotypes having different combinations of the three null alleles at the Wx loci with a common genetic background are a prerequisite. A near-isogenic population of doubled haploid (DH) lines was produced from Chinese Spring × waxy Chinese Spring F1 plants using the wheat × maize method. The Wx protein phenotypes of the DH progeny were examined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and found that the null alleles at each of the three Wx loci segregated in a Mendelian fashion. A field trial demonstrated no differences between the eight types for ear emergence time, plant height and grain yield traits. Amylose content in the endosperm starch was highest in the wild type while lowest in the waxy type having no Wx proteins. Comparison between single null types and double null types indicated that the amylose synthesis capacity of Wx-A1a allele is the lowest. Pasting properties of starch are the highest in the waxy type, followed by the double null types. Consequently, both peak viscosity and breakdown were negatively correlated with amylose content. The chain-length distribution analysis of amylopectin structure revealed no clear difference among the eight types,suggesting that the reduced GBSS I activity due to introgression of the null Wx alleles does not affect either the chain length or the degree of branching of amylopectin. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Waxy (Wx) protein is a key enzyme for synthesis of amylose in endosperm. Amylose content in wheat grain influences the quality of end‐use products. Seven alleles have been described at the Wx‐D1 locus, but only two of them (Wx‐D1b, Wx‐D1e) were genotyped with codominant markers. The waxy wheat line K107Wx1 developed by treating ‘Kanto 107’ seeds with ethyl methanesulphonate carries the Wx‐D1d allele. However, no molecular basis supports this nomenclature. In the present study, DNA sequence analysis confirmed that a single nucleotide polymorphism in the sixth exon of Wx‐D1 changed tryptophan at position 301 into a termination codon. Based on this sequence variation, a PCR‐based KASP marker was developed to detect this point mutation using 68 BC8F1 plants and 297 BC8F2 lines derived from the cross ‘Ningmai 14’*9/K107Wx1. Combined with codominant markers for the Wx‐A1 and Wx‐B1 alleles, waxy and non‐waxy near‐isogenic lines were distinguished. The KASP marker was efficient in identifying the mutant allele and can be used to transfer waxiness to elite lines.  相似文献   

13.
We report on a new adult plant resistance (APR) gene Rph23 conferring resistance to leaf rust in barley. The gene was identified and characterized from a doubled haploid population derived from an intercross between the Australian barley varieties Yerong (Y) and Franklin (F). Genetic analysis of adult plant field leaf rust scores of the Y/F population collected over three successive years indicated involvement of two highly additive genes controlling APR, one of which was named Rph23. The gene was mapped to chromosome 7HS positioned at a genetic distance 36.6 cM. Rph23 is closely linked to marker Ebmac0603, which is flanked by markers bPb‐8660 and bPb‐9601 with linkage distances of 0.8 and 5.1 cM, respectively. A PCR‐based marker was optimized for marker‐assisted selection of Rph23, and on the basis of this marker, the gene was postulated as being common in Australian and global barley germplasm. Pedigree and molecular marker analyses indicated that the six‐rowed black Russian landrace ‘LV‐Taganrog’ is the likely origin of Rph23.  相似文献   

14.
Starch structure and functionality have a significant impact on the utilization of cereal grains as food and feed. Starch viscosity characteristics are used to characterize rice cooking, processing and eating quality. In order to examine the genetics of viscosity characteristics, we developed molecular markers for five of the major enzymes involved in starch synthesis in the endosperm: granule bound starch synthase, soluble starch synthase, rice branching enzymes 1 and 3 and starch debranching enzyme. These markers were polymorphic in a cross between specialty rice varieties of diverging amylose content and viscosity characteristics. Our results indicate that the Waxy locus, encoding the gene for granule bound starch synthase, has a significant effect on peak viscosity, hot paste viscosity, cool paste viscosity, breakdown and setback viscosity. We estimate that the tightly linked (5–10 cm)locus for starch synthase may have a lesser, additive effect. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
The amylose synthesis in rice with Wxb is affected by environmental temperature during seed development. We previously isolated a mutant candidate (coi) in which amylose synthesis is insensitive to a cool temperature. Here, the effects of maturation temperature (21 °C vs. 28 °C) on the starch characteristics of coi and its original strain 76‐3/T65 were studied. Amylose contents and gelatinization properties of 76‐3/T65 were affected by maturation temperatures, while coi was less affected. The amylopectin chain length distributions were almost the same between the two strains maturated at both temperatures. Gelatinization onset (To), peak (Tp), conclusion temperatures (Tc) and enthalpies (ΔH) decreased with environmental temperatures, and Tp, Tc and ΔH of coi at 21 °C were significantly higher than those of 76‐3/T65. Thus, the coi mutant, less affected by maturation temperature than that of 76‐3/T65, may be a useful strain in understanding biochemical and genetic starch biosynthesis response to slight changes in temperature.  相似文献   

16.
为研究大麦籽粒支链淀粉、直链淀粉和β-葡聚糖积累特性,及淀粉各组分与β-葡聚糖的关系,以2个皮大麦、1个裸大麦和1个糯裸大麦为试验材料,测定花后7、14、21、28d淀粉各组分及β-葡聚糖含量。结果表明,甘啤6号淀粉各组分含量随灌浆推进均逐渐升高,在成熟期达到最大值;甘垦啤7号和甘垦6号均呈先升高后降低趋势,在花后21d有1个峰值。糯大麦C 2-1直链淀粉含量显著低于非糯大麦;支链淀粉含量显著高于非糯大麦,整个灌浆期呈先升高后降低趋势。β-葡聚糖含量均随灌浆时间延长逐渐升高,成熟期含量最高;整个灌浆期糯大麦C 2-1含量显著高于非糯大麦。相关分析表明,直链淀粉/支链淀粉比值与β-葡聚糖含量呈极显著负相关,可以将直链淀粉/支链淀粉比值作为高β-葡聚糖品种选育的一个指标。Logistic方程拟合发现,直链淀粉、β-葡聚糖最终积累量与积累起势与有效积累时间有关,支链淀粉最终积累量取决于最高积累速率和平均积累速率。  相似文献   

17.
The Wx-D1 protein (granule-bound starch synthase) of Kanto 107, Tanikei A6099 (low amylose line), and Tanikei A6599-4 (waxy line) has been analyzed by SDS-PAGE, peptide mapping and DNA sequencing. Kanto 107 and Tanikei A6099 have the same amino acid sequences in the mature protein, but amino acid substitution (alanine to threonine) occurs at position 258 in the mature protein in Tanikei A6599-4. A comparison of deduced amino acid sequences of the mature Wx-D1 protein in these lines indicates that point mutation in the Wx-D1 gene of Tanikei A6599-4 is responsible for its waxy character.This mutant waxy wheat does not show a reduction in amylose content identicalto other waxy wheats, which probably reduces activity of the GBSS I enzyme but does not to a complete loss of activity. We discuss the function of the mutant Wx-D1 protein in starch synthesis. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
In this study, we characterized and mapped a new and rare resistance gene (RphFT) in the Chinese barley variety ‘Fong Tien’. RphFT, a dominant gene, was mapped to chromosome 5HL at a genetic position of 142.1 cM using DArT‐seq markers. The gene was also confirmed to be present in Australian cultivar ‘Yagan’ based on allelic tests, and likely ‘Lockyer’ based on multipathotype tests. The genetic studies also confirmed the presence of Rph12 in Australian cultivar ‘Baudin’. Rph12 is also located on chromosome 5HL close to RphFT, and the two loci were confirmed to be independent. Gene RphFT is of limited breeding value because it is effective to only one pathotype of P. hordei, 220P+ +Rph13 in Australia; nevertheless, it may play a role in controlling leaf rust if used in combination with other Rph genes. The locus symbol Rph25 is recommended for RphFT in accordance with the rules and numbering system of barley gene nomenclature.  相似文献   

19.
To clarify the genetic mechanism which controls the variation in amylose content among nonwaxy landraces of foxtail millet, the inheritance of different starch types in endosperm was examined by I2-KI staining. The level of starch granule bound protein in foxtail millet endosperm was also analyzed using SDS-PAGE. The segregation for starch types in F2 and F3 seeds determined by I2-KI staining showed that there are three different alleles at the waxy (wx) locus. A major protein bound to starch granules was detected in nonwaxy endosperm but it was absent in most of the waxy endosperm, suggesting that the protein is the Wx gene product which is responsible for the synthesis of amylose in endosperm. The level of Wx protein proportionally corresponded to the amylose content among nonwaxy landraces. This implies that two different Wx alleles regulate quantitative levels of Wx protein. Landraces with the allele for low amylose content are from Taiwan, the Philippines, Indonesia and Thailand. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
I. Mikami    L.-V. Dung    H. -Y. Hirano  Y. Sano 《Plant Breeding》2000,119(6):505-508
Wxa and Wxb are the most common alleles of the Wx gene in Asian cultivated rice. The difference between them is responsible for differences in the levels of the Wx gene product in the endosperm, as well as in amylose content, which is an important determinant of the quality of edible rice. Since Indica rice mostly carries the Wxa allele, we introduced the Wxb allele into Indica‐type rice (IR36) from a Japonica‐type rice (T65) by repeated backcrossing. In the near‐isogenic line (IR36 Wxb), the level of the Wx gene product was reduced and, as expected, the level of amylose. However, IR36Wxb had a lower amylose content than the recurrent parent of T65 with the Wxb allele. The results suggest that the Indica (IR36) background might lower the amylose content more than the Japonica (T65) background when the Wx allele is the same. The possible importance of modifiers that regulate expression of the Wx gene is also discussed in relation to improvements in the grain quality of rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号