首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.

Background

Avian influenza is a severe threat both to humans and poultry, but so far, no systematic review on the identification and evaluation of the risk factors of avian influenza infection has been published. The objective of this meta-analysis is to provide evidence for decision-making and further research on AI prevention through identifying the risk factors associated with AI infection on poultry farms.

Methods

The results from 15 selected studies on risk factors for AI infections on poultry farms were analyzed quantitatively by meta-analysis.

Results

Open water source (OR = 2.89), infections on nearby farms (OR = 4.54), other livestock (OR = 1.90) and disinfection of farm (OR = 0.54) have significant association with AI infection on poultry farms. The subgroup analysis results indicate that there exist different risk factors for AI infections in different types of farms.

Conclusions

The main risk factors for AI infection in poultry farms are environmental conditions (open water source, infections on nearby farms), keeping other livestock on the same farm and no disinfection of the farm.  相似文献   

2.
Analysis of environmental samples obtained from the Live Poultry Markets (LPMs) of Dhaka City, Bangladesh, has revealed that the highest degree of prevalence of highly pathogenic avian influenza A (HPAI, H5N1), besides other subtypes of the LPAI virus, poses the plausible risk of transmission of these viruses between human and poultry species. The present study was conducted using the OIE risk analysis framework to assess the risk level of each pathway successively. The estimated risk parameters were integrated towards to obtain the overall risk level for each specific HPAI transmission pathway using the matrix adapted by Cristobel Zepeda accompanying other expert consultations. The relevant data obtained from published and unpublished sources, together with survey data of field observations, were used to formulate and confirm the risk pathways and their associated risks. The results revealed that the risk of the release of the HPAI virus was medium when exposure was high. Additionally, the consequence would be considered very high with a medium degree of uncertainty for all parameters. Ultimately, the overall risk for transmission was estimated as medium with a medium degree of uncertainty. The findings of this study reveal that there is a significant threat that HPAI virus transmission could occur among poultry and humans and effectively sustain within the environment of the LPMs. Our findings are primarily focused on public health considerations, the hygienic slaughter of poultry and the relevant cleaning and sanitation practices conducted in the LPMs to support evidence‐based decision‐making processes. The findings of the study have the potential to be used to formulate effective risk reduction measures and can be further adapted in low‐resource settings without major infrastructural changes required of the LPMs. All of which would reduce the risk of HPAI virus release and further lessen the degree of exposure and transmission in established LPMs.  相似文献   

3.
Many owners of companion animals with cancer are overwhelmed by having to choose the “right course of action.” With the aim of reducing the burden on owners who are forced to act as surrogates for their animals, this work discusses principles that apply to ethical treatment decision‐making for animal patients with cancer. Four principles frequently used for ethical decision‐making in human medicine will be considered for their potential applicability in veterinary medicine. As a result of these considerations, preliminary guidelines are presented, along which a decision‐making discussion can be held. The deliberate integration of the non‐maleficence and beneficence principles into the purely empirical facts of what is medically possible helps to maintain a moral perspective in specialized veterinary medicine. At the same time, such guidelines may contribute to individual decision‐making in a way that animal patients neither have to endure unnecessarily severe side effects, nor that they are euthanized prematurely.  相似文献   

4.
Survival and successful reproduction require animals to make critical decisions amidst a naturally dynamic environmental and social background (i.e. “context”). However, human activities have pervasively, and rapidly, extended contextual variation into evolutionarily novel territory, potentially rendering evolved animal decision‐making mechanisms and strategies maladaptive. We suggest that explicitly focusing on animal decision‐making (ADM), by integrating and applying findings from studies of sensory ecology, cognitive psychology, behavioral economics and eco‐evolutionary strategies, may enhance our understanding of, and our ability to predict how, human‐driven changes in the environment and population demography will influence animal populations. Fundamentally, the decisions animals make involve evolved mechanisms, and behaviors emerge from the combined action of sensory integration, cognitive mechanisms and strategic rules of thumb, and any of these processes may have a disproportionate influence on behavior. Although there is extensive literature exploring ADM, it generally reflects a canalized, discipline‐specific approach that lacks a unified conceptual framework. As a result, there has been limited application of ADM theory and research findings into predictive models that can enhance management outcomes, even though it is likely that the relative resilience of species to rapid environmental change is fundamentally a result of how ADM is linked to contextual variation. Here, we focus on how context influences ADM, and highlight ideas and results that may be most applicable to conservation biology.  相似文献   

5.
Wild migratory birds are associated with global avian influenza virus (AIV) spread. Although direct contact with wild birds and contaminated fomites is unlikely in modern non-free range poultry farms applying biosecurity measures, AIV outbreaks still occur. This suggests involvement of other intermediate factors for virus transmission between wild birds and poultry. This review describes current evidence of the potential role of rodents in AIV transmission from wild birds to poultry and between poultry houses. Rodents can be abundant around poultry houses, share their habitat with waterfowl and can readily enter poultry houses. Survival of AIV from waterfowl in poultry house surroundings and on the coat of rodents suggests that rodents are likely to act as mechanical vector. AIVs can replicate in rodents without adaptation, resulting in high viral titres in lungs and nasal turbinates, virus presence in nasal washes and saliva, and transmission to naïve contact animals. Therefore, active AIV shedding by infected rodents may play a role in transmission to poultry. Further field and experimental studies are needed to provide evidence for a role of rodents in AIV epidemiology. Making poultry houses rodent-proof and the immediate surroundings unattractive for rodents are recommended as preventive measures against possible AIV introduction.  相似文献   

6.
Beginning in 2003, highly pathogenic avian influenza (HPAI) H5N1 virus spread across Southeast Asia, causing unprecedented epidemics. Thailand was massively infected in 2004 and 2005 and continues today to experience sporadic outbreaks. While research findings suggest that the spread of HPAI H5N1 is influenced primarily by trade patterns, identifying the anthropogenic risk factors involved remains a challenge. In this study, we investigated which anthropogenic factors played a role in the risk of HPAI in Thailand using outbreak data from the “second wave” of the epidemic (3 July 2004 to 5 May 2005) in the country. We first performed a spatial analysis of the relative risk of HPAI H5N1 at the subdistrict level based on a hierarchical Bayesian model. We observed a strong spatial heterogeneity of the relative risk. We then tested a set of potential risk factors in a multivariable linear model. The results confirmed the role of free-grazing ducks and rice-cropping intensity but showed a weak association with fighting cock density. The results also revealed a set of anthropogenic factors significantly linked with the risk of HPAI. High risk was associated strongly with densely populated areas, short distances to a highway junction, and short distances to large cities. These findings highlight a new explanatory pattern for the risk of HPAI and indicate that, in addition to agro-environmental factors, anthropogenic factors play an important role in the spread of H5N1. To limit the spread of future outbreaks, efforts to control the movement of poultry products must be sustained.  相似文献   

7.
H9N2亚型禽流感病毒(Avian influenza virus, AIV)通过为其他流感病毒提供内部基因或直接跨越种间屏障感染人,而活禽市场是H9N2亚型AIV传播的主要传播途径之一。为了解吉林省长春地区城乡活禽市场H9N2亚型AIV流行特点和趋势,对2021年9月至2023年4月在4个城乡活禽市场分离到3株代表性H9N2亚型AIV进行了分子遗传进化分析。结果显示3株毒株HA蛋白裂解位点均为PSKSSR↓GLF,其受体结合位点的第226位氨基酸由Q突变为L,可与α,2-6唾液酸受体结合,具有感染人的特性。分子遗传进化分析显示3株毒株的HA基因归属于BJ-94谱系中h9.4.2.5亚分支;NA基因归属Y280谱系;PB2、M基因均属于G1谱系;剩余内部基因均属于F-98谱系。研究结论丰富当前国内H9N2亚型AIV的流行病学研究,提示需加强病毒变异监控和新疫苗研发。  相似文献   

8.
Highly pathogenic avian influenza viruses (HPAIV) of H5N1 subtype are a major global threat to poultry and public health. Export of poultry products, such as chicken and duck meat, is a known source for the cross‐boundary spread of HPAI H5N1 viruses. Humans get infected with HPAI H5N1 viruses either by close contact with infected poultry or through consumption of fresh/undercooked poultry meat. Skeletal muscle is the largest soft tissue in chicken that has been shown to contain virus during systemic HPAIV infection and supports productive virus infection. However, the time between infection of a chicken with H5N1 virus and presence of virus in muscle tissue is not yet known. Further, it is also not clear whether chicken infected with low doses of H5N1 virus that cause non‐fatal subclinical infections continue to accumulate virus in skeletal muscle. We investigated the amount and duration of virus detection in skeletal muscle of chicken experimentally infected with different doses (102, 103 and 104 EID50) of a HPAI H5N1 virus. Influenza viral antigen could be detected as early as 6 hr after infection and live virus was recovered from 48 hr after infection. Notably, chicken infected with lower levels of HPAI H5N1 virus (i.e., 102 EID50) did not die acutely, but continued to accumulate high levels of H5N1 virus in skeletal muscle until 6 days post‐infection. Our data suggest that there is a potential risk of human exposure to H5N1 virus through meat from clinically healthy chicken infected with a low dose of virus. Our results highlight the need to implement rigorous monitoring systems to screen poultry meat from H5N1 endemic countries to limit the global spread of H5N1 viruses.  相似文献   

9.
Avian influenza A(H5) viruses (avian IAVs) pose a major threat to the economy and public health. We developed an antigen-ELISA (ag-ELISA) and a colloidal gold–based immunochromatographic strip for the rapid detection of avian A(H5) viruses. Both detection methods displayed no cross-reactivity with other viruses (e.g., other avian IAVs, infectious bursal disease virus, Newcastle disease virus, infectious bronchitis virus, avian paramyxovirus). The ag-ELISA was sensitive down to 0.5 hemagglutinin (HA) units/100 µL of avian A(H5) viruses and 7.5 ng/mL of purified H5 HA proteins. The immunochromatographic strip was sensitive down to 1 HA unit/100 µL of avian A(H5) viruses. Both detection methods exhibited good reproducibility with CVs < 10%. For 200 random poultry samples, the sensitivity and specificity of the ag-ELISA were 92.6% and 98.8%, respectively, and for test strips were 88.9% and 98.3%, respectively. Both detection methods displayed high specificity, sensitivity, and stability, making them suitable for rapid detection and field investigation of avian A(H5) viruses.  相似文献   

10.
Diseases that are exotic to the pig industry in Australia were prioritised using a multi-criteria decision analysis framework that incorporated weights of importance for a range of criteria important to industry stakeholders. Measurements were collected for each disease for nine criteria that described potential disease impacts. A total score was calculated for each disease using a weighted sum value function that aggregated the nine disease criterion measurements and weights of importance for the criteria that were previously elicited from two groups of industry stakeholders. One stakeholder group placed most value on the impacts of disease on livestock, and one group placed more value on the zoonotic impacts of diseases. Prioritisation lists ordered by disease score were produced for both of these groups. Vesicular diseases were found to have the highest priority for the group valuing disease impacts on livestock, followed by acute forms of African and classical swine fever, then highly pathogenic porcine reproductive and respiratory syndrome. The group who valued zoonotic disease impacts prioritised rabies, followed by Japanese encephalitis, Eastern equine encephalitis and Nipah virus, interspersed with vesicular diseases. The multi-criteria framework used in this study systematically prioritised diseases using a multi-attribute theory based technique that provided transparency and repeatability in the process. Flexibility of the framework was demonstrated by aggregating the criterion weights from more than one stakeholder group with the disease measurements for the criteria. This technique allowed industry stakeholders to be active in resource allocation for their industry without the need to be disease experts. We believe it is the first prioritisation of livestock diseases using values provided by industry stakeholders. The prioritisation lists will be used by industry stakeholders to identify diseases for further risk analysis and disease spread modelling to understand biosecurity risks to this industry.  相似文献   

11.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号