首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ObjectiveDetermine if maropitant decreases the minimum alveolar concentration (MAC) of sevoflurane during stimulation of the ovarian ligament in cats.Study designProspective study.AnimalsFifteen, female cats weighing 2.5 ± 0.6kg (mean ± SD).MethodsAnesthesia was induced and maintained with sevoflurane. The right ovary was accessed via laparoscopy. A suture around the ovary and ovarian ligament was exteriorized through the abdominal wall for stimulation. A stimulus–response curve was created to identify the optimal force for MAC comparisons. In 10 cats, MAC was determined with only sevoflurane (baseline) then after 1 and 5 mg kg?1 intravenous maropitant administration. The stimulation tension force used was 4.9 N. Repeated measures anova was used to compare the groups. MAC was defined as the average of the cross‐over concentrations and reported MAC is adjusted to sea‐level and depicted as mean ± SD.ResultsThe stimulus‐response curve was hyperbolic and plateaued at 4.3 ± 3 N. The optimal tension force chosen to compare MAC was 4.9 N. The baseline sevoflurane MAC was 2.96 ± 0.3%. Maropitant, 1 mg kg?1, decreased the MAC to 2.51 ± 0.3% (15%, p < 0.01). The higher maropitant dose of 5 mg kg?1 did not change MAC further when compared to the low dose (2.46 ± 0.4%, p = 0.33).Conclusion and clinical relevanceThe ovarian ligament stimulation model is suitable to determine MAC during visceral stimulation in cats. Maropitant decreased the anesthetic requirements during visceral ovarian and ovarian ligament stimulation in cats. Maropitant (1 mg kg?1) decreases MAC by 15%; a higher dose had no additional effect.  相似文献   

2.
ObjectiveTo evaluate the effect of tramadol on sevoflurane minimum alveolar concentration (MACSEVO) in dogs. It was hypothesized that tramadol would dose-dependently decrease MACSEVO.Study designRandomized crossover experimental study.AnimalsSix healthy, adult female mixed-breed dogs (24.2 ± 2.6 kg).MethodsEach dog was studied on two occasions with a 7-day washout period. Anesthesia was induced using sevoflurane delivered via a mask. Baseline MAC (MACB) was determined starting 45 minutes after tracheal intubation. A noxious stimulus (50 V, 50 Hz, 10 ms) was applied subcutaneously over the mid-humeral area. If purposeful movement occurred, the end-tidal sevoflurane was increased by 0.1%; otherwise, it was decreased by 0.1%, and the stimulus was re-applied after a 20-minute equilibration. After MACB determination, dogs randomly received a tramadol loading dose of either 1.5 mg kg?1 followed by a continuous rate infusion (CRI) of 1.3 mg kg?1 hour?1 (T1) or 3 mg kg?1 followed by a 2.6 mg kg?1 hour?1 CRI (T2). Post-treatment MAC determination (MACT) began 45 minutes after starting the CRI. Data were analyzed using a mixed model anova to determine the effect of treatment on percentage change in baseline MACSEVO (p < 0.05).ResultsThe MACB values were 1.80 ± 0.3 and 1.75 ± 0.2 for T1 and T2, respectively, and did not differ significantly. MACT decreased by 26 ± 8% for T1 and 36 ± 12% for T2. However, there was no statistically significant difference in the decrease between the two treatments.Conclusion and clinical relevanceTramadol significantly reduced MACSEVO but this was not dose dependent at the doses studied.  相似文献   

3.

Objective

To determine sevoflurane’s minimum alveolar concentration (MACSEVO) and its cardiopulmonary effects in sheep.

Study design

Prospective experimental study.

Animals

A group of 10 female nonpregnant Sardinian milk sheep.

Methods

Anesthesia was induced in each sheep twice with sevoflurane in oxygen. After a 30 minute equilibration at end-tidal sevoflurane concentration (Fe?Sevo) of 2.8%, an electrical stimulus (5 Hz/1 ms/50 mA) was applied to the right thoracic limb for 1 minute or until gross purposeful movement occurred. The Fe?Sevo was then changed using a 0.2% up-and-down protocol, dependent on whether or not the response was positive, and then noxious stimulation was repeated. The MACSEVO was defined as the mean Fe?Sevo between that allowing purposeful movement and that not. The group of 10 sheep were re-anesthetized and MACSEVO was re-determined. Thereafter, Fe?Sevo was maintained for 15 minutes each at concentrations corresponding to 1.0, 1.3, 1.6, 1.9 and 0.75 MACSEVO multiples, and cardiopulmonary, blood gas, acid-base variables and plasma electrolytes were determined. Also, time to induction of anesthesia, extubation and recovery were recorded.

Results

The mean ± standard deviation of the MACSEVO was 2.74 ± 0.38%. Median (interquartile range) time to intubation was 3.13 (2.98–3.33) minutes, time to extubation was 6.85 ± 2.65 minutes and time to recovery was 13.4 ± 5.2 minutes. With increasing Fe?Sevo, arterial blood pressures progressively decreased as did minute ventilation, which in turn caused end-tidal carbon dioxide, arterial partial pressure of carbon dioxide and bicarbonate values to steadily increase without significantly affecting arterial partial pressure of oxygen.

Conclusions and clinical relevance

The reported MACSEVO agrees with published data in this and other species. Administration of sevoflurane in sheep caused marked hemodynamic and respiratory depression, but soon after turning off the vaporizer, sheep could be extubated and recovered rapidly and event-free.  相似文献   

4.
Objective  To investigate the effects of a low-dose constant rate infusion (LCRI; 50 μg kg−1 minute−1) and high-dose CRI (HCRI; 200 μg kg−1 minute−1) lidocaine on arterial blood pressure and on the minimum alveolar concentration (MAC) of sevoflurane (Sevo), in dogs.
Study design  Prospective, randomized experimental design.
Animals  Eight healthy adult spayed female dogs, weighing 16.0 ± 2.1 kg.
Methods  Each dog was anesthetized with sevoflurane in oxygen and mechanically ventilated, on three separate occasions 7 days apart. Following a 40-minute equilibration period, a 0.1-mL kg−1 saline loading dose or lidocaine (2 mg kg−1 intravenously) was administered over 3 minutes, followed by saline CRI or lidocaine LCRI or HCRI. The sevoflurane MAC was determined using a tail clamp. Heart rate (HR), blood pressure and plasma concentration of lidocaine were measured. All values are expressed as mean ± SD.
Results  The MAC of Sevo was 2.30 ± 0.19%. The LCRI reduced MAC by 15% to 1.95 ± 0.23% and HCRI by 37% to 1.45 ± 0.21%. Diastolic and mean pressure increased with HCRI. Lidocaine plasma concentration was 0.84 ± 0.18 for LCRI and 1.89 ± 0.37 μg mL−1 for HCRI. Seventy-five percent of HCRI dogs vomited during recovery.
Conclusion and clinical relevance  Lidocaine infusions dose dependently decreased the MAC of Sevo, did not induce clinically significant changes in HR or arterial blood pressure, but vomiting was common during recovery in HCRI.  相似文献   

5.
ObjectiveTo evaluate the effects of intravenous lidocaine (L) and ketamine (K) alone and their combination (LK) on the minimum alveolar concentration (MAC) of sevoflurane (SEVO) in dogs.Study designProspective randomized, Latin-square experimental study.AnimalsSix, healthy, adult Beagles, 2 males, 4 females, weighing 7.8 – 12.8 kg.MethodsAnesthesia was induced with SEVO in oxygen delivered by face mask. The tracheas were intubated and the lungs ventilated to maintain normocapnia. Baseline minimum alveolar concentration of SEVO (MACB) was determined in duplicate for each dog using an electrical stimulus and then the treatment was initiated. Each dog received each of the following treatments, intravenously as a loading dose (LD) followed by a constant rate infusion (CRI): lidocaine (LD 2 mg kg−1, CRI 50 μg kg−1minute−1), lidocaine (LD 2 mg kg−1, CRI 100 μgkg−1 minute−1), lidocaine (LD 2 mg kg−1, CRI 200 μg kg−1 minute−1), ketamine (LD 3 mg kg−1, CRI 50 μg kg−1 minute−1), ketamine (LD 3 mgkg−1, CRI 100 μg kg−1 minute−1), or lidocaine (LD 2 mg kg−1, CRI 100 μg kg−1 minute−1) + ketamine (LD 3 mg kg−1, CRI 100 μg kg−1 minute−1) in combination. Post-treatment MAC (MACT) determination started 30 minutes after initiation of treatment.ResultsLeast squares mean ± SEM MACB of all groups was 1.9 ± 0.2%. Lidocaine infusions of 50, 100, and 200 μg kg−1 minute−1 significantly reduced MACB by 22.6%, 29.0%, and 39.6%, respectively. Ketamine infusions of 50 and 100 μg kg−1 minute−1 significantly reduced MACB by 40.0% and 44.7%, respectively. The combination of K and L significantly reduced MACB by 62.8%.Conclusions and clinical relevanceLidocaine and K, alone and in combination, decrease SEVO MAC in dogs. Their use, at the doses studied, provides a clinically important reduction in the concentration of SEVO during anesthesia in dogs.  相似文献   

6.
ObjectiveTo investigate the effects of methadone on the minimum alveolar concentration of isoflurane (ISOMAC) in dogs.Study designProspective, randomized cross-over experimental study.AnimalsSix adult mongrel dogs, four males and two females, weighing 22.8 ± 6.6 kg.MethodsAnimals were anesthetized with isoflurane and mechanically ventilated on three separate days, at least 1 week apart. Core temperature was maintained between 37.5 and 38.5 °C during ISOMAC determinations. On each study day, ISOMAC was determined using electrical stimulation of the antebrachium (50 V, 50 Hz, 10 mseconds) at 2.5 and 5 hours after intravenous injection of physiological saline (control) or one of two doses of methadone (0.5 or 1.0 mg kg?1).ResultsMean (±SD) ISOMAC in the control treatment was 1.19 ± 0.15% and 1.18 ± 0.15% at 2.5 and 5 hours, respectively. The 1.0 mg kg?1 dose of methadone reduced ISOMAC by 48% (2.5 hours) and by 30% (5 hours), whereas the 0.5 mg kg?1 dose caused smaller reductions in ISOMAC (35% and 15% reductions at 2.5 and 5 hours, respectively). Both doses of methadone decreased heart rate (HR), but the 1.0 mg kg?1 dose was associated with greater negative chronotropic actions (HR 37% lower than control) and mild metabolic acidosis at 2.5 hours. Mean arterial pressure increased in the MET1.0 treatment (13% higher than control) at 2.5 hours.Conclusions and clinical relevanceMethadone reduces ISOMAC in a dose-related fashion and this effect is lessened over time. Although the isoflurane sparing effect of the 0.5 mg kg?1 dose of methadone was smaller in comparison to the 1.0 mg kg?1 dose, the lower dose is recommended for clinical use because it results in less evidence of cardiovascular impairment.  相似文献   

7.

Objective

To determine the effect of oral trazodone on the minimum alveolar concentration (MAC) of isoflurane in dogs.

Study design

Prospective blinded, single-observer, randomized crossover experimental study.

Animals

Six adult (age 6.8 ± 1.6 months) healthy dogs (three males and three females), weighing 24.8 ± 3.4 kg (mean ± standard deviation).

Methods

Each dog was anesthetized twice with a minimum of 7 days between anesthetic episodes. Dogs were randomly assigned to be administered two treatments in a crossover design: premedication with trazodone (8 mg kg?1; TRAZ–ISO) orally 2 hours prior to an anesthetic episode or no (ISO). Dogs were anesthetized with intravenous propofol (6 mg kg?1) and isoflurane in >95% oxygen. Isoflurane MAC was determined using an iterative bracketing technique with electrodes placed in the buccal mucosa. Hemodynamic variables were compared at the lowest end-tidal isoflurane concentration at which each dog did not respond. A paired t test was used to assess the effect of treatment on outcome variables with significance set to a value of p < 0.05.

Results

The MAC concentration (mean ± standard deviation) in dogs administered TRAZ–ISO was 0.85 ± 0.17% compared with 1.02 ± 0.11% in those administered ISO (p = 0.01, 95% confidence interval ?0.25 to ?0.05), resulting in a mean MAC reduction of 17 ± 12%. There were no differences in hemodynamic variables between treatments.

Conclusions and clinical relevance

Premedication of dogs with oral trazodone (8 mg kg?1) 2 hours prior to anesthetic induction has a significant isoflurane MAC sparing effect with no significant observed hemodynamic benefit.  相似文献   

8.

Objective

To determine the effects of low and high dose infusions of dexmedetomidine and a peripheral α2-adrenoceptor antagonist, MK-467, on sevoflurane minimum alveolar concentration (MAC) in dogs.

Study design

Crossover experimental study.

Animals

Six healthy, adult Beagle dogs weighing 12.6 ± 0.9 kg (mean ± standard deviation).

Methods

Dogs were anesthetized with sevoflurane in oxygen. After a 60-minute instrumentation and equilibration period, the MAC of sevoflurane was determined in triplicate using the tail clamp technique. PaCO2 and temperature were maintained at 40 ± 5 mmHg (5.3 ± 0.7 kPa) and 38 ± 0.5 ºC, respectively. After baseline MAC determination, dogs were administered two incremental loading and infusion doses of either dexmedetomidine (1.5 μg kg?1 then 1.5 μg kg?1 hour?1 and 4.5 μg kg?1 then 4.5 μg kg?1 hour?1) or MK-467 (90 μg kg?1 then 90 μg kg?1 hour?1 and 180 μg kg?1 then 180 μg kg?1 hour?1); loading doses were administered over 10 minutes. MAC was redetermined in duplicate starting 30 minutes after the start of drug administration at each dose. End-tidal sevoflurane concentrations were corrected for calibration and adjusted to sea level. A repeated-measures analysis was performed and comparisons between doses were conducted using Tukey's method. Statistical significance was considered at p < 0.05.

Results

Sevoflurane MAC decreased significantly from 1.86 ± 0.3% to 1.04 ± 0.1% and 0.57 ± 0.1% with incremental doses of dexmedetomidine. Sevoflurane MAC significantly increased with high dose MK-467, from 1.93 ± 0.3% to 2.29 ± 0.5%.

Conclusions and clinical relevance

Dexmedetomidine caused a dose-dependent decrease in sevoflurane MAC, whereas MK-467 caused an increase in MAC at the higher infusion dose. Further studies evaluating the combined effects of dexmedetomidine and MK-467 on MAC and cardiovascular function may elucidate potential benefits of the addition of a peripheral α2-adrenergic antagonist to inhalation anesthesia in dogs.  相似文献   

9.
ObjectiveTo determine the effect of butorphanol, administered by intravenous (IV) infusion, on the minimum alveolar concentration of isoflurane (MACISO) in cats and to examine the dosage dependence of this effect.Study designRandomized, placebo-controlled, crossover experimental study.AnimalsA group of six healthy adult male neutered cats.MethodsCats were anesthetized with isoflurane in oxygen. A venous catheter was placed for fluid and drug administration, and an arterial catheter was placed for measurement of arterial pressure and blood sampling. Four treatments were administered at random with at least 2 week interval between treatments: saline (control), butorphanol low dosage (treatment LD; 0.25 mg kg–1 IV bolus followed by 85 μg kg–1 minute–1 for 20 minutes, then 43 μg kg–1 minute–1 for 40 minutes, then 19 μg kg–1 minute–1), medium dosage (treatment MD, double the dosages in LD) and high dosage (treatment HD, quadruple the dosages in LD). MACISO was determined in duplicate using the bracketing technique and tail clamping. Pulse rate, arterial pressure, hemoglobin oxygen saturation, end-tidal partial pressure of carbon dioxide and arterial blood gas and pH were measured.ResultsButorphanol reduced MACISO in a dosage-dependent manner, by 23 ± 8%, 37 ± 12% and 68 ± 10% (mean ± standard deviation) in treatments LD, MD and HD, respectively. The main cardiopulmonary effect observed was a decrease in pulse rate, significant in treatment HD compared with control.Conclusions and clinical relevanceButorphanol caused a dosage-dependent MACISO reduction in cats. IV infusion of butorphanol may be of interest for partial IV anesthesia in cats.  相似文献   

10.
OBJECTIVE: To evaluate the effects of i.v. lidocaine (L) and ketamine (K), alone and in combination (LK), on the minimum alveolar concentration (MAC) of isoflurane (ISO) in goats. STUDY DESIGN: Randomized crossover design. ANIMALS: Eight, adult mixed breed castrated male goats, aged 1-2 years weighing 24-51 kg. METHODS: Anesthesia was induced with ISO that was delivered via a mask. The tracheas were intubated and the animals ventilated to maintain an end-tidal carbon dioxide partial pressure between 25 and 30 mmHg (3.3-4 kPa). Baseline MAC (MAC(B)) that prevented purposeful movement in response to clamping a claw was determined in triplicate. After MAC(B) determination, each goat received one of the following treatments, which were administered as a loading (LD) dose followed by a constant rate infusion, IV: L (2.5 mg kg(-1); 100 microg kg(-1) minute(-1)), K (1.5 mg kg(-1); 50 microg kg(-1) minute(-1)), L and K combination or saline, and the MAC (MAC(T)) was re-determined in triplicate. Plasma concentrations of L and K were measured around each MAC point and the values averaged. RESULTS: The least-squares mean MAC(B) for all treatments was 1.13 +/- 0.03%. L, K, and LK reduced (p < 0.05) MAC(B) by 18.3%, 49.6% and 69.4%, respectively. Plasma concentrations for L, K, and LK were 1617 +/- 385, 1535 +/- 251 and 1865 +/- 317/1467 +/- 185 ng mL(-1), respectively. No change (p > 0.05) occurred with saline. CONCLUSION: Lidocaine and K caused significant decreases in the MAC of ISO. The combination (LK) had an additive effect. However, the plasma L concentrations were less than predicted, as was the MAC reduction with L. CLINICAL RELEVANCE: The use of L, K and the combination, at the doses studied, will allow a clinically important reduction in the concentration of ISO required to maintain general anesthesia in goats.  相似文献   

11.
ObjectiveTo determine the effect of intravenous (IV) buprenorphine on the isoflurane (ISO) minimum alveolar concentration (ISOMAC) in dogs.Study designRandomized, crossover, design.AnimalsSix healthy, adult (2–3 years old), intact dogs (two males and four females) weighing 7.4–11.0 kg.MethodsEach dog was studied on three occasions, 1 week apart, and baseline ISOMAC (MACB) was determined on each occasion. ISOMAC was defined as the mean of the end-tidal ISO concentrations that prevented and allowed purposeful movement in response to a noxious stimulus. After MACB determination, dogs were randomly given buprenorphine (BUP) at either 0.01, 0.05 or 0.1 mg kg?1 IV, and ISOMAC was determined at two time periods after BUP administration. The first post-treatment determination (MACT1) was initiated 45 minutes after BUP administration and the second determination (MACT2) was initiated 4 hours after BUP administration. MAC values were determined in duplicate and the mean values were used for statistical analysis.ResultsIsoflurane minimum alveolar concentration was decreased at 141 minutes (the time of MACT1 determination) by 25%, 35%, and 27% after administration of BUP at 0.01, 0.05, and 0.1 mg kg?1, respectively (p ≤ 0.05). The MAC reductions were not statistically different among doses. The reductions in ISOMAC at 342 minutes (the time of MACT2 determination) ranged from 13 to 16%, and were not statistically different among doses.Conclusions and clinical significanceBuprenorphine at 0.01, 0.05, and 0.1 mg kg?1 significantly decreased ISOMAC in dogs at 141 minutes but not at 342 minutes. When using BUP for MAC reduction re-dosing may be required for procedures of long duration, and there may be no advantage to using the 0.1 mg kg?1 dose.  相似文献   

12.
ObjectiveTo compare the effects of continuous rate infusions (CRIs) of intravenous (IV) morphine and morphine-tramadol on the minimum alveolar concentration (MAC) of sevoflurane, and on electroencephalographic entropy indices in dogs.DesignProspective study.AnimalsEight young, healthy German shepherds, weighing 26.3 ± 3.1 kg (mean ± SD).MethodsAnaesthesia was induced and maintained with sevoflurane. A standard tail-clamp technique was used for MAC determination. Within one anaesthetic period, MAC was first determined during sevoflurane anaesthesia alone (MACB); then during morphine infusion (MACM), (loading dose 0.5 mg kg−1IM; CRI, 0.2 mg kg−1hour−1) then finally during morphine-tramadol infusion (tramadol loading dose 1.5 mg kg−1IV; CRI, 2.6 mg kg−1 hour−1) (MACMT). At each change, periods of 45 minutes were allowed for equilibration. Stated entropy (SE), response entropy (RE), and RE-SE differences were measured five minutes prior to and during tail clamping.ResultsThe MACB was 2.1 ± 0.3vol%. The morphine and morphine-tramadol infusions reduced MAC to 1.6 ± 0.3vol% and 1.3 ± 0.3vol%, respectively. MAC was decreased below baseline more during morphine-tramadol than during morphine alone (39 ± 9% versus 25 ± 6%, respectively; p = 0.003). All SE and RE and most RE-SE differences were increased significantly (p < 0.05) over pre-stimulation in all groups when the dogs responded purposefully to noxious stimulation. When no response to noxious stimulation occurred, the entropy indices did not change.Conclusion and clinical relevanceIn dogs, combined morphine-tramadol CRI decreased sevoflurane MAC more than morphine CRI alone. Entropy indices changed during nociceptive responses in anaesthetized animals, suggesting that entropy measurements may be useful in determining anaesthetic depth in dogs.  相似文献   

13.
ObjectiveTo determine the effect of experimentally induced hypothyroidism on isoflurane (ISO) minimum alveolar concentration (MAC) in dogs.Study designProspective experimental study.AnimalsEighteen adult female mongrel dogs, age 2–4 years and weighing 8.2–13.1 kg.MethodsHypothyroidism was induced in nine dogs by the intravenous administration of 1 mCi kg−1 of 131Iodine. The remaining nine dogs served as controls. Dogs were studied 9–12 months after the induction of hypothyroidism. Anesthesia was induced with ISO in oxygen via a mask. The trachea was intubated, and anesthesia was maintained using ISO in oxygen using a semi-closed rebreathing circle system. The dogs were mechanically ventilated to maintain an end-tidal carbon dioxide concentration between 35 and 45 mmHg. End-tidal ISO concentrations were measured with an infrared gas analyzer. The MAC was determined in duplicate using a tail clamp technique. The mean values for the groups were compared using a two sample t-test.ResultsThe mean ± SD MAC of isoflurane in the hypothyroid and euthyroid dogs was 0.98 ± 0.31% and 1.11 ± 0.26%, respectively. The mean MAC of isoflurane in hypothyroid dogs was not significantly different from the mean MAC of isoflurane in the control dogs (p=0.3553).Conclusion and clinical relevanceThe MAC of ISO in dogs was not significantly affected by experimentally induced hypothyroidism. The dose of ISO in dogs with hypothyroidism does not need to be altered.  相似文献   

14.
ObjectiveThe purpose of this systematic review is to summarize the results of studies which have determined the minimum alveolar concentration (MAC) of isoflurane and sevoflurane in domestic cats.Study DesignSystematic review.AnimalsCats.Methods usedA comprehensive search of research literature was performed without language restriction. The search utilized the Pubmed, Google Scholar, and CAB Abstracts electronic databases using a combination of free text terms ‘Minimum alveolar concentration’, ‘sevoflurane’, ‘isoflurane’, ‘anesthetic’, ‘cat’, ‘cats’ or ‘feline’. The search was conducted from November 2010 to June 2012.ResultsThe MAC for isoflurane ranged from 1.20 ± 0.13% to 2.22 ± 0.35% and the MAC for sevoflurane ranged from 2.5 ± 0.2% to 3.95 ± 0.33%. The average MAC for isoflurane was 1.71 ± 0.07% and for sevoflurane was 3.08 ± 0.4%.Conclusions &; Clinical RelevanceThe average MAC for isoflurane was 1.71 ± 0.07% and for sevoflurane was 3.08 ± 0.4%. Methodology differed among studies, and particular attention should be paid in the future to appropriate reporting of methods to allow sound conclusions to be made from the results.  相似文献   

15.
OBJECTIVE: To determine the effects of adenosine infusion on the minimum alveolar concentration (MAC) of isoflurane in dogs. STUDY DESIGN: Prospective, randomized crossover study. ANIMALS: Seven adult male and female Beagles weighing 10.9 (7.5, 13.6) kg [median (minimum, maximum)]. METHODS: Each dog was anesthetized with isoflurane in oxygen and randomly assigned to receive either an intravenous (IV) adenosine (0.3 mg kg(-1) minute(-1)) or saline (6 mL kg(-1) hour(-1) IV) infusion. After an interval of 7 days or more, each dog was re-anesthetized and treated with the alternative infusion. Using a tail-clamp technique, MAC was determined before (pre-infusion), during (infusion), and 2 hours after the infusions (post-infusion). RESULTS: The pre-infusion MAC of isoflurane was 1.25 (1.15, 1.35) [median (minimum, maximum)] vol.% for the saline treatment group and 1.25 (1.05, 1.45) vol.% for the adenosine treatment group, and did not differ significantly between the two treatments. The infusion MAC values were not significantly different (p = 0.16) and were 1.25 (0.95, 1.35) vol.% and 1.05 (1.00, 1.25) vol.%, respectively. The post-infusion MAC values differed significantly (p = 0.016); MAC was 1.15 (1.15, 1.35) vol.% and 1.05 (1.05, 1.25) vol.% for the saline and adenosine treatment groups, respectively. During infusion, mean arterial blood pressure decreased significantly (p = 0.008) during adenosine treatment compared with the saline 66 mmHg (52, 72) and 91 mmHg (68, 110), respectively. End-tidal CO2 (Pe'CO2), urine production, hematocrit, and plasma total solids did not differ significantly between the two treatments at any time (all p > 0.05). CONCLUSION: Although the MAC of isoflurane in dogs was not decreased significantly during infusion with adenosine (0.3 mg kg(-1) minute(-1)), it was significantly decreased post-infusion, but only by 0.1 vol.%, an amount not considered clinically important. Adenosine infusion decreased mean arterial pressure by 27% and did not adversely affect renal function.  相似文献   

16.
17.
ObjectiveTo evaluate the effects of constant rate infusions (CRIs) of dexmedetomidine and remifentanil alone and their combination on minimum alveolar concentration (MAC) of sevoflurane in dogs.Study designRandomized crossover experimental study.AnimalsA total of six (three males, three females) healthy, adult neutered Beagle dogs weighing 12.6 ± 1.4 kg.MethodsAnesthesia was induced with sevoflurane in oxygen until endotracheal intubation was possible and anesthesia maintained with sevoflurane using positive-pressure ventilation. Each dog was anesthetized five times and was administered each of the following treatments: saline (1 mL kg–1 hour–1) or dexmedetomidine at 0.1, 0.5, 1.0 or 5.0 μg kg–1 loading dose intravenously over 10 minutes followed by CRI at 0.1, 0.5, 1.0 or 5.0 μg kg–1 hour–1, respectively. Following 60 minutes of CRI, sevoflurane MAC was determined in duplicate using an electrical stimulus (50 V, 50 Hz, 10 ms). Then, CRI of successively increasing doses of remifentanil (0.15, 0.60 and 2.40 μg kg–1 minute–1) was added to each treatment. MAC was also determined after 30 minutes equilibration at each remifentanil dose. Isobolographic analysis determined interaction from the predicted doses required for a 50% MAC reduction (ED50) with remifentanil, dexmedetomidine and remifentanil combined with dexmedetomidine, with the exception of dexmedetomidine 5.0 μg kg–1 hour–1, obtained using log-linear regression analysis.ResultsThe sevoflurane MAC decreased dose-dependently with increasing infusion rates of dexmedetomidine and remifentanil. Remifentanil ED50 values were lower when combined with dexmedetomidine than those obtained during saline–remifentanil. Synergistic interactions between dexmedetomidine and remifentanil for MAC reduction occurred with dexmedetomidine at 0.5 and 1.0 μg kg–1 hour–1.Conclusions and clinical relevanceCombined CRIs of dexmedetomidine and remifentanil synergistically resulted in sevoflurane MAC reduction. The combination of dexmedetomidine and remifentanil effectively reduced the requirement of sevoflurane during anesthesia in dogs.  相似文献   

18.
The minimum alveolar concentration (MAC) of halothane was determined in New Zealand White rabbits. Tracheal anaesthetic concentrations were measured using a Siemens Servo Gas Monitor. A stimulator was used to deliver precisely controlled mechanical stimuli for the determination of MAC. Movement of the rabbit's head was recorded using a force transducer attached to the teeth. Evidence is presented that for the determination of MAC a precise nociceptive threshold is preferable to the so-called supramaximal stimulus used in clinical anaesthesia and in determinations of anaesthetic potency. We conclude that techniques for the determination of MAC which disregard either sensitization of sensory mechanisms by producing tissue inflammation or the possibility of nerve compression by severe mechanical stimuli are of questionable value. The use of the mechanical stimulator described, or a similar device, would help in the standardization of the determination of MAC in all species by facilitating the application of a force of controlled amplitude, duration and velocity, thereby removing some of the variables which confound comparative studies of MAC.Abbreviations DC direct current - ID internal diameter - MAC minimum alveolar concentration  相似文献   

19.
ObjectiveAt the minimum alveolar concentration (MAC), isoflurane potentiates GABAA receptor currents and inhibits NMDA receptor currents, and these actions may be important for producing anesthesia. However, isoflurane modulates GABAA receptors more potently than NMDA receptors. The objective of this study was to test whether isoflurane would function as a more potent NMDA receptor antagonist if its efficacy at GABAA receptors was decreased.Study designProspective experimental study.AnimalsFourteen 10-week-old male Sprague–Dawley rats weighing 269 ± 12 g.MethodsIndwelling lumbar subarachnoid catheters were surgically placed in isoflurane-anesthetized rats. Two days later, the rats were anesthetized with isoflurane, and artificial CSF containing either 0 or 1 mg kg?1 picrotoxin, a GABAA receptor antagonist, was infused intrathecally at 1 μL minute?1. The baseline isoflurane MAC was then determined using a standard tail clamp technique. MK801 (dizocilpine), an NMDA receptor antagonist, was then administered intravenously at 0.5 mg kg?1. Isoflurane MAC was re-measured.ResultsPicrotoxin increased isoflurane MAC by 16% compared to controls. MK801 significantly decreased isoflurane MAC by 0.72% of an atmosphere in controls versus 0.47% of an atmosphere in rats receiving intrathecal picrotoxin.Conclusions and clinical relevanceA smaller MK801 MAC-sparing effect in the picrotoxin group is consistent with greater NMDA antagonism by isoflurane in these animals, since it suggests that fewer NMDA receptors are available upon which MK801 could act to decrease isoflurane MAC. Decreasing isoflurane GABAA potentiation increases isoflurane NMDA antagonism at MAC. Hence, the magnitude of an anesthetic effect on a given channel or receptor at MAC may depend upon effects at other receptors.  相似文献   

20.
OBJECTIVES: To quantify the change in the minimum alveolar concentration (MAC) of isoflurane (ISO) associated with oxymorphone (OXY) or hydromorphone (HYDRO) in dogs. DESIGN: Randomized crossover study with at least 1 week between assessments. ANIMALS: Six young, healthy, mixed-breed dogs (1-3 years old), weighing 24.7 +/- 4.70 kg. METHODS: Following mask induction, anesthesia was maintained with ISO in 100% O(2) using mechanical ventilation. The dogs received 0.05 mg kg(-1) OXY, 0.1 mg kg(-1) HYDRO, or 1 mL saline (control) IV. Following equilibration (15 minutes) at each percentage ISO tested, a supramaximal electrical stimulus was applied to the toe web and the response was assessed. Two separate MAC determinations were carried out during 4.5 hours of anesthesia, with completion of the evaluations at 1.5-2 and 4-4.5 hours after drug administration. A two-factor anova was used to determine whether there was a time or treatment effect on MAC and a Tukey test compared the drug effects at each time. Significance is reported at p < 0.05. RESULTS: The mean MAC values (+/-SD) were 1.2 +/- 0.18 and 1.2 +/- 0.16% for control, 0.7 +/-0.15 and 1.0 +/- 0.15% for OXY, and 0.6 +/- 0.14 and 0.8 +/- 0.17% for HYDRO. The initial MAC with OXY and the MAC determined at both times with HYDRO were significantly different from the control MAC values. CONCLUSIONS: Both OXY and HYDRO significantly reduced the MAC of ISO in dogs at 2 hours. At approximately 4.5 hours, HYDRO had a significant MAC-sparing effect, whereas OXY did not. CLINICAL RELEVANCE: Although both OXY and HYDRO resulted in a significant reduction in the MAC of ISO at approximately 2 hours, HYDRO may be preferred for procedures of long duration and rarely needs repeated dosing before 4.5 hours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号