首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To evaluate the feasibility of long-term desert reforestation technology of mixed vegetation, cardon cactus (Pachycereus pringlei) seedlings from indoor and outdoor nurseries were planted in the field adjacent to one seedling of potential legume nurse trees: mesquite amargo (Prosopis articulata), yellow palo verde (Parkinsonia microphylla), and blue palo verde (Parkinsonia florida). Some of the planting holes were also supplemented with common dairy compost. Additionally, the combinations of legume tree–cactus were inoculated with either a consortium of desert arbuscular mycorrhizal (AM) fungi, plant growth promoting bacteria (PGPB; the diazotroph Azospirillum brasilense Cd, and the phosphate solubilizer Paenibacillus sp.), or a mixture of all. The field experiments were evaluated periodically during 30 months for survival and growth. Cardons reared in an outdoor screen house survived better in the field than those reared in a controlled growth chamber and hardened later outdoors. Association with any legume nurse tree increased survival and enhanced growth of untreated cardons. For cardons growing alone, application of either compost, AM fungi, and all the treatments combined increased survival. For these plants, no treatment affected plant growth during the first 3 months after transplanting. Later, all treatments, except for AM fungi, enhanced plant growth. However, only 2 years after transplanting the enhanced growth effect of AM fungi was also significant. In the presence of the legume nurse trees, transient positive effects on cardon growth were recorded. General evaluation after 30 months of cultivation showed that the treatments positively affected cardon growth when growing alone or in combination only with mesquite amargo but not with the other two legume trees. This study proposes that young legume trees have the capacity to enhance survival and growth of cardon cactus, depending on the legume cactus combination. Additional treatments such as compost or PGPB can either amplify the effect or else attenuate it.  相似文献   

2.
Two commonly-used composts from dairy cow manure that are used to improve poor structure and fertility of desert soils have inhibitory effects on wheat seed germination, probably as a result of their high levels of humic acids. Inoculation of wheat seeds with two species of the plant growth-promoting bacteria Azospirillum brasilense Cd and A. lipoferum JA4 (separately) prior to sowing in these amended soils improved germination, similar to the natural level of germination of seeds in desert soil without compost amendment. Both compost amendments increased height of wheat seedlings in the range of 20–25%, increased shoot dry weight by 15–19%, but severely decreased (51–54% less) root dry weight. Inoculation of wheat seeds with A. brasilense Cd, but not with A. lipoferum JA4, significantly increased plant growth parameters (height, shoot and root dry weight) over control plants grown in soil-compost mixtures. This bacterial species could survive for a period of 20 days in compost humic acid solution, could increase its population when the humic acids served as the sole carbon source, and may change the composition of humic acids in which it grows. We suggest that inoculation with A. brasilense may alleviate noxious effects on germinating seeds caused by compost application by possibly transforming the composition of humic acids in the compost.  相似文献   

3.
Inoculation of wheat seedlings with the plant growth-promoting bacterium Azospirillum brasilense Cd was immobilized in alginate microbeads and, without applying any stress, significantly increased the quantity of several photosynthetic pigments, such as chlorophyll a, chlorophyll b, and the auxiliary photoprotective pigments violaxanthin, zeaxanthin, antheroxanthin, lutein, neoxanthin, and β-carotene. This resulted in greener plants with no apparent visible stress. After monitoring the quantity of photosynthetic pigments for 4 weeks, we observed that inoculated plants had higher quantities of pigments in shoot and stem. The greatest difference in the quantity of all pigments between inoculated and noninoculated plants occurred in the first week of growth. Regardless of treatment, the quantity of pigments in stems was three to four times less than the quantity of these pigments in shoots. Application of Azospirillum, either as liquid inoculant or as alginate microbeads, did not alter the positive effect of the bacteria on pigment production or the positive response of the plants towards A. brasilense Cd inoculation.  相似文献   

4.
Three slow-growing legume trees used for desert reforestation and urban gardening in the Sonoran Desert of Northwestern Mexico and the Southwestern USA were evaluated whether their growth can be promoted by inoculation with plant growth-promoting bacteria (Azospirillum brasilense and Bacillus pumilus), unidentified arbuscular mycorrhizal (AM) fungi (mainly Glomus sp.), and supplementation with common compost under regular screenhouse cultivation common to these trees in nurseries. Mesquite amargo (Prosopis articulata) and yellow palo verde (Parkinsonia microphylla) had different positive responses to several of the parameters tested while blue palo verde (Parkinsonia florida) did not respond. Survival of all tree species was over 80% and survival of mesquite was almost 100% after 10 months of cultivation. Inoculation with growth-promoting microorganisms induced significant effects on the leaf gas exchange of these trees, measured as transpiration and diffusive resistance, when these trees were cultivated without water restrictions.  相似文献   

5.
Root colonization and mitigation of NaCl stress on wheat seedlings were studied by inoculating seeds with Azospirillum lipoferum JA4ngfp15 tagged with the green fluorescent protein gene (gfp). Colonization of wheat roots under 80 and 160 mM NaCl stress was similar to root colonization with this bacterial species under non-saline conditions, that is, single cells and small aggregates were mainly located in the root hair zone. These salt concentrations had significant inhibitory effects on development of seedlings, but not on growth in culture of gfp-A. lipoferum JA4ngfp15. Reduced plant growth (height and dry weight of leaves and roots) under continuous irrigation with 160 mM NaCl was ameliorated by bacterial inoculation with gfp-A. lipoferum JA4ngfp15. Inoculation of plants subjected to continuous irrigation with 80 mM NaCl or to a single application of either NaCl concentration (80 or 160 mM NaCl) did not mitigate salt stress. This study indicates that, under high NaCl concentration, inoculation with modified A. lipoferum reduced the deleterious effects of NaCl; colonization patterns on roots were unaffected and the genetic marker did not induce undesirable effects on the interaction between the bacterium and the plants.  相似文献   

6.
Summary Potential denitrifying activity and population dynamics of Azospirillum lipoferum (137C) and Bradyrhizobium japonicum (G2sp) inoculated into a -sterilized soil were studied for a period of 3 weeks. The denitrifying enzyme potential of soil inoculated independently with each bacterial species was strongly stimulated by the presence of a plant (Zea mays L.). Simultaneous inoculation of both bacteria also produced a higher denitrifying enzyme potential than simple inoculation. Even with double inoculation, the presence of a plant did not modify the evolution of the activity. The response of the population dynamics to these treatments followed a different pattern. The population dynamics of A. lipoferum was not affected by the presence of the plant or by the presence of B. japonicum. In contrast, the presence of both a plant and of A. lipoferum seemed to promote the growth of B. japonicum.  相似文献   

7.
The aims of our study were to compare the effectiveness of poultry manure (PM) and banana waste (BW), with regard to their use as inoculant carriers of a bacterial consortium constituted by strains of Azospirillum, Azotobacter and P-solubiliser bacteria and to establish the most efficient dose of biofertilizer for a soil cultivated with banana (Musa paradisiaca AAA Simmonds), with respect to improving plant performance and soil physical and microbiological properties. Six months after planting, plant growth had increased with increase in dose of the biofertilizers applied. The biofertilizer prepared on BW enhanced the density of P-solubiliser bacteria, the concentrations of available P and foliar P to a greater extent than with the biofertilizer prepared on PM. The increases produced by the biofertilizer prepared on PM for the soil aggregate stability, enzymatic activities and the labile carbon fractions were highly correlated to the dose applied. Both biofertilizers can be considered potentially useful as inoculant carriers of PGPR but the usefulness of BW appears to be restricted to moderate doses of application (≤3%).  相似文献   

8.
Summary Pot experiments with oats were carried out to study the effect of Azospirillum brasilense Sp 7 and Azotobacter chroococcum 94K on the yield of plants, the N content of soil and the 14N balance. The plants were grown on gray forest soil under irrigation with deionized water and application of 15N-labelled fertilizer at a rate of 4 mg N 100 g-1 soil. Inoculation of plants with Azospirillum spp. and Azotobacter spp. failed to increase the plant yield. However, the increase in total N in the soil at the end of the experiment and the positive 14N balance in the soil-plant system due to increased nitrogenase activity in the rhizosphere were statistically significant. The amount of N accumulated in the soil was comparable with the rate of N applied as fertilizer.  相似文献   

9.
To test the hypothesis that N isotope composition can be used as evidence of excessive compost application, we measured variation in patterns of N concentrations and corresponding δ15N values of plants and soil after compost application. To do so, a pot experiment with Chinese cabbage (Brassica campestris L. cv. Maeryok) was conducted for 42 days. Compost was applied at rates of 0 (SC0), 500 (SC1), 1000 (SC2), and 1500 mg N kg−1 soil (SC3). Plant-N uptake linearly increased with compost application (r2 = 0.956, P < 0.05) with an uptake efficiency of 76 g N kg−1 of compost-N at 42 days after application, while dry-mass accumulation did not show such linear increases. Net N mineralized from compost-N increased linearly (r2 = 0.998, P < 0.01) with a slope of 122 g N kg−1 of compost-N. Plant-δ15N increased curvilinearly with increasing compost application, but this increase was insignificant between SC2 and SC3 treatments. The δ15N of soil inorganic-N (particularly NO3-N) increased with compost application. We found that plant-δ15N reflected the N isotope signal of soil NO3-N at each measurement during plant growth, and that δ15N of inner leaves and soil NO3-N was similar when initial NO3 in the compost was abundant. Therefore, we concluded that δ15N of whole plant (more obviously in newer plant parts) and soil NO3-N could reveal whether compost application was excessive, suggesting a possible use of δ15N in plants and soil as evidence of excess compost application.  相似文献   

10.
Summary Acetylene reduction activity by Azospirillum brasilense, either free-living in soils or associated with wheat roots, was determined in a sterilised root environment at controlled levels of O2 tension and with different concentrations of mineral N. In an unplanted, inoculated soil nitrogenase activity remained low, at approximately 40 nmol C2H4 h-1 per 2kg fresh soil, increasing to 300 nmol C2H4 h-1 when malic acid was added as a C source via a dialyse tubing system. The N2 fixation by A. brasilense in the rhizosphere of an actively growing plant was much less sensitive to the repressing influence of free O2 than the free-living bacteria were. An optimum nitrogenase activity was observed at 10 kPa O2, with a relatively high level of activity remaining even at an O2 concentration of 20 kPa. Both NO inf3 sup- and NH inf4 sup+ repressed nitrogenase activity, which was less pronounced in the presence than in the absence of plants. The highest survival rates of inoculated A. brasilense and the highest rates of acetylene reduction were found in plants treated with azospirilli immediately after seedling emergence. Plants inoculated at a later stage of growth showed a lower bacterial density in the rhizosphere and, as a consequence, a lower N2-fixing potential. Subsequent inoculations with A. brasilense during plant development did not increase root colonisation and did not stimulate the associated acetylene reduction. By using the 15N dilution method, the affect of inoculation with A. brasilense in terms of plant N was calculated as 0.067 mg N2 fixed per plant, i.e., 3.3% of the N in the root and 1.6% in the plant shoot were of atmospheric origin. This 15N dilution was comparable to that seen in plants inoculated with non-N2-fixing Psudomonas fluorescens.  相似文献   

11.
Polycyclic aromatic hydrocarbons (PAHs) are highly recalcitrant widespread environmental pollutants. Bioremediation, accomplished by the introduction of PAH-degrading microorganisms (bioaugmentation) and/or by applying additional nutrients (biostimulation) into a contaminated system is a valuable alternative to traditional chemical and physical treatments for the decontamination of PAH-contaminated soils. We investigated on a laboratory scale the fate of phenanthrene (Phe), selected to represent PAHs, when added to a fresh, agricultural soil with no history of PAH contamination. The relative effect of compost (C), applied at two different doses (C1=0.27%, and C2=0.83%, corresponding to 10 and 30 t ha−1, respectively), and the efficiency of a Phe-degrading bacterial culture inoculated into the soil (S) and soil-compost (S-C1 and S-C2) systems were investigated. Changes in various functionally related properties such as microbial biomass, basal respiration, and soil hydrolases and oxido-reductases activities were measured over time. The variations of the main physical and chemical properties were also monitored. The soil showed an intrinsic capability for degrading Phe, and this was enhanced and stimulated by the lower compost dose (a decrease of the extractable Phe from 70% to about 50% of that initially added, and higher kinetic Phe disappearance constants). A simultaneous, rapid increase of soil respiration and microbial biomass, and higher phosphatase and arylsulphatase activities were measured, suggesting that microbial growth and activity had increased. The inoculation with Phe-degrading bacterial cells strongly accelerated the Phe degradation. After 15 d of incubation, the residual Phe decreased to 10% in S and S-C1 and to zero in S-C2, respectively. No apparent effects were observed for the higher compost dose. Several of the soil properties showed differentiated responses to the presence of the Phe, the compost and/or the exogenous culture. As a general response, soil systems with and without the inoculated cells showed similar trends for several of the measured enzymatic properties (e.g. phosphatase, arylsulphatase, β-glucosidase and urease activities), indicating that the intrinsic soil enzymatic activity was not affected by the exogenous microorganisms. Temporary and permanent changes were observed for several of the properties investigated, thereby providing useful information on the impact of Phe on soil metabolic activity.  相似文献   

12.
Summary We tested the effects of two organic fertilizers (composts) and lime on the soil fauna of a spruce stand. One compost was obtained from chopped wood and the other from household garbage. At the time of distribution the pH of the control plots averaged 3.2, the garbage compost had a pH of 7.5, and the wood compost of 6.2. During the experimental period the pH of the compost layers decreased. The pH of the former litter layer beneath the composts showed a steep increase after 5 months, but beneath the treatment with wood compost this effect did no persist. Liming increased the pH only slightly in the litter layer. The two types of compost, the litter layer, and lumbricids (Lumbricus rubellus) were analyzed for concentrations of essential and potentially toxic elements. The element burden was highest in the garbage compost with 7- to 11-fold concentrations of Zn, Cd, Pb, Mg, and Cu compared to the needle litter. K, Ba, and Ca were 4 times more concentrated. L. rubellus showed an increased Cu concentration after extraction from the highly contaminated sites of garbage compost. Despite the differences in Pb contamination in the needle litter and in the two compost types, all investigated individuals of L. rubellus contained similar concentrations of Pb. In contrast to Pb, Cd accumulated in this lumbricid. Seasonal fluctuations of microarthropods, their total abundance, and differences in the colonization of the compost layers were observed. Collembola abundance was significantly increased in the garbage compost plots in July 91. There were generally more Prostigmata in the control and limed plots than in the compost plots. Oribatid numbers fell under all treatments compared to the controls. Mesostigmata were identified to species level and 33 species were found in the experimental areas. Certain species, such as Arctoseius cetratus and Uropoda minima, were only found in the treated sites.  相似文献   

13.
Summary The level of Azospirillum brasilense strain Cd colonization in the rhizosphere of some vegetables was 104–105 colony-forming units (CFU) per root of one plant in 2-week-old plants inoculated with 5 × 108 Azospirillum cells. Significant increases in root length (35%) and in top (90%) and root (50%) dry weight and total leaf area (90%) were observed in 18-day-old inoculated tomato plants compared with non-inoculated controls. An inoculum concentration of 1 × 108 to 5 × 108 CFU/ml stimulated the appearance of root hairs. Large numbers of bacteria (1 × 109 CFU/ml) caused asymmetrical growth of the root tip. In a petri dish system, Azospirillum (1 × 108 CFU/ml) increased root dry weight (150%), protein content (20%), respiration rate per root (70%) and the specific activity of malate dehydrogenase (45%–65%) over non-inoculated controls. The specific respiration rate, expressed as micromol of O2 per minute per milligram of dry weight of roots, was significantly lower in inoculated roots, suggesting that less energy was spent for accumulation of more dry material.  相似文献   

14.
The effect of soil fauna-mediated leaf litter (faecal pellets) versus mechanically fragmented (finely ground) leaf litter on biomass production of rice (Oryza sativa, var. Primavera) was assessed in pot tests. Rice seedlings were either grown in soil samples amended with faecal pellets of diplopods and isopods fed on leaf litter of a legume cover crop (Pueraria phaseoloides (Roxb.) Benth) and a peach palm (Bactris gasipaes) or in soil amended with finely ground leaf litter. The addition of faecal pellets caused a significant and dose-related increase in plant biomass compared to pure soil. Ground leaf litter induced a significantly smaller positive effect on plant biomass development with Pueraria litter > Bactris litter > mixed primary forest litter. In contrast, soil microbial biomass development during the 4 weeks plant test was higher in the soil amended with ground litter as compared to soil amended with feacal pellets. The results show a clear positive effect of the soil fauna on soil fertility and indicate differences in the availability of nutrients from the organic substrates to higher plants and soil microorganisms.  相似文献   

15.
Plant growth-promoting rhizobacteria and arbuscular mycorrhizal (AM) fungi represent two main groups of beneficial microorganisms of the rhizosphere. The role of different strains of Azospirillum on AM fungi development was evaluated by measuring the percentage of AM colonisation of the root system in durum wheat and maize plants, grown under both greenhouse and field conditions. The effect of wild-type Azospirillum brasilense strain Sp245 and genetically modified (GM) derivatives overproducing indole-3-acetic acid was assessed at greenhouse level in (1) three different cultivars of durum wheat, in the presence of indigenous AM fungi and (2) maize plants artificially inoculated with Glomus mosseae and Glomus macrocarpum. In addition, the establishment of natural AM fungal symbiosis was evaluated using Azospirillum lipoferum CRT1 in maize plants at field level. Despite the stimulatory effect of the different Azospirillum inocula on root growth, no significant differences in AM colonisation were found, independently of the AM fungus involved, either in wheat or in maize plants. Similarly, GM A. brasilense, which strongly stimulates root development, did not affect AM formation. Although these results were obtained in conditions in which the mycorrhization rate was moderate (15–30%), overall considered they indicate that the use of wild-type or GM Azospirillum phytostimulators does not alter mycorrhization.  相似文献   

16.
This study was conducted to examine whether the applications of N-inputs (compost and fertilizer) having different N isotopic compositions (δ15N) produce isotopically different inorganic-N and to investigate the effect of soil moisture regimes on the temporal variations in the δ15N of inorganic-N in soils. To do so, the temporal variations in the concentrations and the δ15N of NH4+ and NO3 in soils treated with two levels (0 and 150 mg N kg−1) of ammonium sulfate (δ15N=−2.3‰) and compost (+13.9‰) during a 10-week incubation were compared by changing soil moisture regime after 6 weeks either from saturated to unsaturated conditions or vice versa. Another incubation study using 15N-labeled ammonium sulfate (3.05 15N atom%) was conducted to estimate the rates of nitrification and denitrification with a numerical model FLUAZ. The δ15N values of NH4+ and NO3 were greatly affected by the availability of substrate for each of the nitrification and denitrification processes and the soil moisture status that affects the relative predominance between the two processes. Under saturated conditions for 6 weeks, the δ15N of NH4+ in soils treated with fertilizer progressively increased from +2.9‰ at 0.5 week to +18.9‰ at 6 weeks due to nitrification. During the same period, NO3 concentrations were consistently low and the corresponding δ15N increased from +16.3 to +39.2‰ through denitrification. Under subsequent water-unsaturated conditions, the NO3 concentrations increased through nitrification, which resulted in the decrease in the δ15N of NO3. In soils, which were unsaturated for the first 6-weeks incubation, the δ15N of NH4+ increased sharply at 0.5 week due to fast nitrification. On the other hand, the δ15N of NO3 showed the lowest value at 0.5 week due to incomplete nitrification, but after a subsequence increase, they remained stable while nitrification and denitrification were negligible between 1 and 6 weeks. Changing to saturated conditions after the initial 6-weeks incubation, however, increased the δ15N of NO3 progressively with a concurrent decrease in NO3 concentration through denitrification. The differences in δ15N of NO3 between compost and fertilizer treatments were consistent throughout the incubation period. The δ15N of NO3 increased with the addition of compost (range: +13.0 to +35.4‰), but decreased with the addition of fertilizer (−10.8 to +11.4‰), thus resulting in intermediate values in soils receiving both fertilizer and compost (−3.5 to +20.3‰). Therefore, such differences in δ15N of NO3 observed in this study suggest a possibility that the δ15N of upland-grown plants receiving compost would be higher than those treated with fertilizer because NO3 is the most abundant N for plant uptake in upland soils.  相似文献   

17.
Summary Pot-culture studies were carried out to examine the response of barley (Hordeum vulgare L.) to inoculation with Azospirillum brasilense and Glomus versiforme, singly and/or in combination, under varying levels of nitrogenous [(15NH4)2SO4] and soluble phosphatic (single superphosphate) fertilizers. The interaction between both the endophytes led to increased growth and nutrition of the barley plants. Roots from plants inoculated with Azospirillum brasilense and Glomus versiforme exhibited very low acetylene reduction activity. N2 fixation in the plants increased with the increase in plant growth but the mycorrhiza alone gave a low level of N2 fixation in the plants compared to combined inoculation with both the endophytes.  相似文献   

18.
Summary The effects of zinc added to a diluvial sandy clay loam soil on its microflora and the metabolic products of amended glucose in the soil were investigated, and its influences on both biological and chemical turnover are discussed.Changes in the soil microflora were followed by counting the microbes and measuring their contributions to soil respiration. The transformations of 14C-glucose products were traced in five divided fractions.Amended glucose was readily assimilated into microbial tissues and transformed to metabolites in the control soil. Within the initial 24 h of the incubation, most of the glucose was decomposed and about 40% of the substrate evolved as carbon dioxide. This primary metabolism was attributed to the bacterial population, and the subsequent secondary metabolism was associated with fungal growth rather thanbacteria. On the other hand, zinc (1000 g/g) added as chloride prolonged the primary metabolism of glucose and a large part of the incubation period for 96 h was occupied by this metabolism, which was mostly dependent on the fungal population. Viable bacterial number noticeably within the first 24 h of the incubation. During the course of the subsequent incubation, however, this number increased and the selection for zinc tolerance was suggested.  相似文献   

19.
Summary A nitrate-respiring strain, a denitrifying strain, and a non-nitrogen-fixing strain of Azospirillum brasilense were compared for their effect on the growth of pearl millet (Pennisetum americanum), wheat (Triticum aestivum) and maize (Zea mays) under temperate conditions in nitrogen-limited pot cultures. Increases in yield of Z. mays shoots occurred with all three strains when inoculation coincided with the addition of low levels of combined nitrogen. The inoculation of A. brasilense did not show any effect on the yield of P. americanum and T. aestivum. Increased numbers of A. brasilense became associated with Z. mays roots following the addition of low levels of combined nitrogen. Low and very variable rates of acetylene reduction activity were observed from excised roots of inoculated Z. mays plants without preincubation. Results indicate that inoculation of cereals with A. brasilense under temperate conditions has only a limited effect on plant growth.  相似文献   

20.
The effects of bacterial inoculants on the growth of winter wheat were studied in a growth chamber. Azospirillum brasilense, Azotobacter chroococcum, Bacillus polymyxa, Enterobacter cloacae, or a mixture of the four rhizobacteria were the inoculants tested. Inoculation effects on yield, yield components, and N-derived from fertilizer (Ndff) were assessed. The response of plants inoculated with individual bacteria was inconsistent and varied with treatment. At the first harvest (58 days after planting-DAP) plants inoculated with the mixture exhibited increases in plant dry weight, total-N and Ndff. At the second harvest (105 DAP), plants inoculated with A. brasilense and the mixture exhibited increases in shoot biomass, whereas at maturity (170 DAP), the inoculated plants showed no differences in total-N or shoot dry matter yield, as compared to the uninoculated controls. Inoculation with A. brasilense, however, increased the Ndff in the shoots, and B. polymyxa tended to enhance grain yield. Practical use of these rhizobacteria as inoculants for winter wheat may have limited value until such time as we better understand factors which influence rhizosphere competence of bacterial inoculants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号