首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The relationship of branch cross sectional area (CS) to leaf biomass (LM) and leaf area (LA) was studied in three agroforestry tree species,Calliandra calothyrsus Maissn.,Erythrina berteroana Urban andErythrina poeppigiana (Walpers) O.F. Cook, to develop a non-destructive method for the estimation of LM and LA for trees managed with periodic pruning. Variation in these relationships was observed according to the bifurcation level and, in theErythrina spp., by clone. All the relationships were linear except the CS-LM relation in small branches ofE. poeppigiana, where it was initially exponential. At main branch level the relationship of CS to LM and LA was linear in all cases but the regression parameter values varied between species and clones, with determination coefficient (R2) 0.88–0.99. It was concluded that the ratio of main branch CS to LM and LA can be used for non-destructive estimation of the latter variables. The method has the additional benefit that the regression parameter value reflects the allocation of dry matter within a tree and, consequently, may give indications about its possible uses in different agroforestry systems.Work carried out at the Centro Agronómico Tropical de Investigación y Enseñanza (CATIE), Turrialba, Costa Rica.  相似文献   

2.
[Objective]To compare the differences of seed morphological characters among provinces of Quercus variabilis Bl.,and explore the adaptive growth status of seedlings growing in the central distribution area. [Method]The seeds of 6 Q. variabilis provenances from six provinceswerecollected, and the seedlings were cultivated and transplanted to experimental field in the centre of natural distribution range (Wuhan Jiufeng National Forest Park), then the seed morphology and one-year seedling growth traitswere surveyed. [Result](1)There were significantor extremely significantdifferences among provenances in seed length, seed width, seed length/width ratio and 100-seed mass, the order of seed length among provenances was Beijing Provenance (22.28 mm),Hubei Provenance (22.10 mm), He'nan Provenance (20.80 mm), Shaanxi Provenance (19.57 mm), Yunnan Provenance (18.93 mm)and Liaoning Provenance (18.81 mm), the seed width of Beijing Provenance (19.71 mm) and Hubei Provenance (19.16 mm) was higher than that of the others, the seed length/width ratio of He'nan Provenance (1.38) was extremely significantly higher than that of the others; (2)There were significant or extremely significant differences among provenances in seedling height, ground diameter, leaf number, branching number and seedling height/ground diameter, the Beijing Provenance and Hubei Provenance were better in seedling height and leaf number, which were respectively 19.54 cm and 20.26 cm, 8.32 leaves and 9.50 leaves; (3)A decreasing trend with time for seedling growth traits among provenances was found; (4)There was a positive relationship between seed morphological characters and seedling growth traits except seed length/width ratio; the leaf number was significantly related to ground diameter and branching number and the seedling height and leaf number were closely related to the seed morphological characters; (5)It showed a decreasing trend with the growth time in the relationship between seedling growth traits and 100-seed mass. [Conclusion]The seedlings of Beijing Provenance and Hubei Provenance grew better in the experimental field which might be related to their larger seed mass, and the Yunnan Provenance in the south margin and the Liaoning Provenance in the north margin of distribution area of Q. variabilis grew weaker than the provenances in the centre of distribution area.With the effect of climate change, provenances in the margin of distribution area may lose in the community competition in the seedling stage if it cannot take advantage of its dispersal and settlement and affected by the disadvantage of growth and competition, so that the distribution and population renewal would surely be affected.  相似文献   

3.
西南桦和光皮桦幼苗外形特征十分相似,在种源不明确的情况下,苗木调运时很难在现场快速鉴别与区分。由于两个树种各自适宜栽培的海拔和气候条件不尽相同,为避免混淆造成不良影响,对两个树种的幼苗叶片表型特征进行调查对比研究。结果表明,光皮桦与西南桦幼苗的叶柄区别显著,前者明显长于后者;光皮桦与西南桦幼苗叶片长宽比区别显著,前者长宽比小,叶形团圆,后者长宽比大,叶形细长;西南桦与光皮桦幼苗叶片基尖比无明显差别。幼苗叶片表型特征的差异性可作为现场快速鉴别区分西南桦与光皮桦幼苗的依据。  相似文献   

4.
Light optimization assessment in alleycropping systems through model application is becoming an integral part of agroforestry research. The objective of this study was to use CROPGRO-cotton, a process-based model, to simulate cotton (Gossypium hirsutum L.) production under different levels of light in a pecan (Carya illinoensis K. Koch) alleycropping system in Jay, Florida, USA. Soil classification in the area was Red Bay sandy loam soil (Rhodic Paleudult). To separate roots of cotton and pecan, polyethylene-lined trenches were installed parallel to tree rows, thus competition for water and nutrients was assumed to be non-existent. Four treatments were set up in the CROPGRO-cotton model, as follows: (1) control (full amount of light transmittance), (2) Row 1 (50% light transmittance), (3) Row 4 (55% light transmittance), and (4) Row 8 (70% light transmittance). Cotton model parameters affecting specific leaf area (SLA), leaf area index (LAI), maximum leaf photosynthetic rate (FLMAX) and carbon partitioning were calibrated using the full sun treatment. Measurements of SLA, LAI, and aboveground biomass were made on the different shaded treatments and compared with simulated values. Simulation results showed that aboveground mechanisms affecting production in shaded environment (i.e., SLA, LAI, LFMAX, and carbon partitioning) influence model behavior. After calibration, the model predicted SLA of cotton in all treatments with reasonable precision. However, LAI was underestimated in the more shaded treatment rows 4 and 8. Generally, the model provided a close agreement between measured and simulated biomass both in 2001 and 2002 (R 2 = 0.95 and R 2 = 0.92, respectively). In 2001, predicted biomass for the control was 5,401 kg ha−1 compared to the measured value of 5,393 kg ha−1. A similar trend was also observed in 2002. The CROPGRO-Cotton model was able to describe variations in growth among the shaded treatments well across both growing seasons. However, it was found that additional research is needed to improve the model’s ability to simulate LAI under shading conditions. Parameters associated with photosynthesis and dry matter partitioning were reasonably stable across shading treatments and years but those associated with leaf area growth varied.  相似文献   

5.
苦竹叶片性状及其异速生长关系的密度效应   总被引:1,自引:0,他引:1       下载免费PDF全文
[目的]揭示苦竹叶片性状及其异速生长关系对密度的响应特征,为苦竹林培育适宜林分密度构建提供参考。[方法]开展了3种密度(低密度,14 430~16 545株·hm~(-2),L;中密度,31 590~34 560株·hm~(-2),M;高密度,54 120~55 560株·hm~(-2),H)苦竹纯林1~3年生立竹叶长(LL)、叶宽(LW)、叶面积(LA)、叶干质量(LM)等主要叶性因子测定,采用标准主轴回归分析解析叶性因子及其异速生长关系随密度的变异规律。[结果]研究表明:随着立竹年龄的增加,相同密度苦竹林的叶长、叶形指数和比叶面积均呈先升高后降低趋势,叶宽和叶面积总体呈降低趋势。随着密度的增加,相同年龄立竹叶长、叶宽、叶形指数、叶面积和比叶面积总体均呈先升高后降低趋势,其中,叶面积和比叶面积不同密度竹林间差异显著。3种密度苦竹林b_(LL-LA)、b_(LW-LA)、b_(LL-LM)、b_(LW-LM)及中密度、低密度苦竹林b_(LA-LM)均显著小于1.0,呈异速生长关系,而高密度苦竹林b_(LA-LM)接近1.0,呈等速生长关系。随着密度的增加,b_(LL-LA)、b_(LL-LM)呈先升高后降低趋势,而b_(LW-LM)、b_(LA-LM)则相反,且b_(LL-LA)、b_(LL-LM)和b_(LA-LM)不同密度竹林间差异显著。b_(LW-LA)随密度的增加呈升高趋势,中密度、低密度竹林间无显著差异,均显著低于高密度竹林。[结论]密度对苦竹林主要叶性因子及其异速生长关系会产生明显的影响,其中叶长对密度变化敏感,中密度(31 590~34 560株·hm~(-2))苦竹林具有较大叶长、叶宽、叶面积和比叶面积,因而具有较高的生产能力,是苦竹林培育的适宜密度。  相似文献   

6.
The ecological consequences of climate change for large tropical forests such as the Amazon are likely to be profound. Amazonian forests strongly influence regional and global climates and therefore any changes in forest structure, such as deforestation or die-back, may create positive feedback on externally forced climate change. Monitoring, modelling and managing the impacts of anthropogenic climate change on forest dynamics is therefore an important objective of forest researchers, and one that requires long-term data on changes at the level of community, populations and phenotypes. In this paper we provide the most comprehensive study yet on the seasonal dynamics of various leaf traits: leaf area index (LAI), leaf mortality (LM), leaf biomass (LB), leaf growth rate (LG), and leaf residence time (TR) from 50 experimental plots in a forest site at Belterra, Pará State, Brazil. From this study we estimate annual mean leaf area index (LAI) to be 5.07 m2 m−2 and annual mean leaf dry biomass to be 0.621 kg m−2. The typical leaf grew at 0.049 kg m−2 month−1 and remained on the tree for 12.7 months. We compare these results to other similar studies and critically discuss the factors driving leaf demographics in Amazonia.  相似文献   

7.
Non-destructive methods for determining the biomass and leaf area of individual trees throughout their growing cycle are an essential tool in agroforestry research, but must be capable of providing reliable estimates despite the influence that management strategies such as pruning may have on tree form. In the present study, allometric methods involving measurements of the diameter of all branches provided reliable estimates of canopy leaf area and biomass for grevillea trees (Grevillea robusta A. Cunn.; Proteaceae) grown as poles, but proved unsuitable for routine measurements because of their time-consuming nature. An alternative, less laborious method based on measurements of trunk cross-sectional area immediately below the first branch of the canopy provided satisfactory allometric estimates of leaf area and canopy biomass. Trunk biomass was determined from measurements of tree height and diameter at breast height using established methodology based on the assumption that trunk volume may be calculated using a quadratic paraboloid model; biomass was determined as the product of trunk volume and the specific gravity of the wood. The theoretical basis, development and validation of allometric methods for estimating tree growth are discussed and their wider applicability to other agroforestry systems is assessed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
The slope effect and correction methods for estimation of canopy gap fraction, leaf area index (LAI), mean leaf angle and clumping index using hemispherical photography, were investigated. The evaluation was carried out in tropical cloud forest and plantations in South-East Kenya in order to consider a range of canopy architecture and slopes up to 65%. The aim was to compare two acquisition techniques and various correction procedures. All estimates assume uniform slope, canopy parallel to ground and homogeneous canopy structure at the photo site level.
(1) Photographs oriented to local zenith (levelled acquisition). Calculation and removal of sky parts of the hemisphere obstructed by topography. Azimuthal inversion of gap fraction without prior averaging, deriving local LAI estimates (quasi-random model). (i) Fixed path lengths over azimuths. Zenith reference axis. LAI referred to horizontal and corrected for topographic shading. (ii) Variable path lengths over azimuths. Normal to slope reference axis. LAI adjusted to horizontal by dividing by the slope cosine.
(2) Photographs oriented parallel to slope (tilted acquisition). Fixed path lengths over azimuths. Normal to slope reference axis. LAI adjusted to horizontal by dividing by the slope cosine. Azimuthal inversion of gap fraction without prior averaging, deriving local LAI estimates (quasi-random model).
Gap fractions present a stronger upslope/downslope asymmetry if retrieved from levelled acquisition. As a result, gap dispersion index and clumping index proved to be significantly higher for levelled acquisition (P < 0.001). LAI estimates adjusted to horizontal are not significantly different, whether retrieved from levelled or tilted acquisitions, up to 30% slopes. From levelled acquisition, fixed and variable path length do not yield significantly different LAI estimates along the whole slope gradient. From tilted acquisition, LAI values were systematically higher than from levelled acquisitions, the stronger the slope, the higher the difference. Mean leaf angles do not differ significantly (P > 0.05) for fixed vs. variable path lengths along the slope gradient up to 30%. For more severe slopes, variable path lengths yield lower mean leaf angle values. The interpretation of results from tilted acquisition remains uncertain. As a preliminary study, no preference is suggested for the levelled or tilted acquisition technique. Further investigation is needed and indirect optical derived estimates should be checked against direct reference measures, which are almost entirely lacking for mountainous areas.  相似文献   

9.
贾朋  罗树凯  王方 《广东园林》2022,44(2):85-89
为探讨3种木兰科植物灰木莲Manglietia glauca、醉香含笑Michelia macclurei和乐昌含笑Michelia chapensis叶片SPAD值的分布特征及其与叶绿素含量之间的关系,采用SPAD叶绿素计和分光光度法分别测定了三者叶片SPAD值和叶绿素含量.结果表明:3种植物叶片SPAD值的差异主要...  相似文献   

10.
Understanding the belowground interactions between trees and crops is critical to successful management of agroforestry systems. In a study of competition for water in an alley cropping system consisting of pecan (Carya illinoensis) and cotton (Gossypium hirsutum) in a sandy loam soil (Rhodic Paleudult) in Jay, Florida, root systems of the two species were separated by trenching to 120 cm depth. A polyethylene barrier was installed in half of the plots. Spatial and temporal variations in soil water content, root distribution and water uptake by both species, and leaf area development and height of cotton were measured. Interspecific competition for water was greater in the non-barrier treatment near tree rows than at the alley center. Competition became evident 3 to 4 weeks after emergence of cotton and increased during the following 7 to 8 weeks. Compared with the non-barrier treatment, the barrier treatment had higher soil water content and better growth of cotton (height, leaf area, and fine root biomass). Cotton lint yield in the barrier treatment (677 kg ha–1) was similar to that in a sole-crop stand, but higher than in the non-barrier (502 kg ha–1) treatment. Lint production efficiency of plants was higher in the interior rows in the non-barrier treatment (0.197 kg lint per square meter of leaf area, compared to 0.117 kg in the barrier treatment). The results suggest that trenching or even deep disking parallel to the tree row may reduce competition for water, but the impact on tree growth cannot be established from this study. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Leaf hairs may assist in maintaining high leaf water use efficiency in tropical secondary forest tree species. We compared leaf temperature, transpiration, photosynthesis and water use efficiency between hairy and depilated leaves in Mallotus macrostachyus (Euphorbiaceae), to determine the role of leaf hair in leaf water use efficiency (WUE) in tropical degraded secondary forest in Malaysia. Measurements were made on five mature individuals growing in sun-exposed conditions and five in shaded conditions. The hair dry weight per unit leaf area was significantly greater in sun leaves than in shade leaves. The transpiration rate (Trmax) of depilated leaves in sun-exposed conditions was slightly higher than in hairy leaves in both morning and afternoon measurements. In contrast, Trmax in the shade leaves was almost identical in hairy and depilated leaves. Leaf stomatal conductance (g s) in the morning showed almost the same value among leaf types and light conditions. In the afternoon, g s slightly decreased from the morning values in both sun and shade conditions. In the morning, the leaf water use efficiency (A max/Trmax) in both conditions did not differ significantly between hairy and depilated leaves. However, in the afternoon, WUE in the depilated leaves was significantly lower than in hairy leaves in sun-exposed conditions. These observations suggest that leaf hairs in M. macrostachyus contribute to the high leaf water use efficiency in drought conditions, such as high vapor pressure deficit experienced at midday in degraded tropical secondary forests.  相似文献   

12.
Published documentation of insect pests and pathogens associated with Alnus species in Africa is very scarce. We surveyed damaging insects and pathogens, and arthropod natural enemies on Alnus acuminata and A. nepalensis in Kabale and Mbale districts, Uganda between March 1999 and August 2000 in order to identify the range and relative abundance of arthropods and pathogens associated with the Alnus species. Frequently encountered damaging insects on the Alnus species included Apis mellifera, Apion globulipenne, a Systates sp. (Coleoptera: Curculionidae), Phymateus viridipes, a Lobotrachelus sp. (Coleoptera: Curculionidae), Coloborrtics corticina and some Chrysomelidae. Some species such as Aphis fabae, Parastictococcus multispinosus and a Cacopsylla sp. (Homoptera: Psyllidae) were observed feeding on other agroforestry tree species and/or crops although they generally occurred at low population intensities. Spiders and parasitic Hymenoptera were the most common natural enemies. Diseases were more severe in nurseries than in the field. Damping-off caused by Fusarium oxysporum, Septoria brown leaf spot and stem canker were the most serious diseases of Alnus. The array of damaging insects and pathogens indicates a potential danger to the cultivation of Alnus species in Uganda as adoption of the species for agroforestry continues to expand in the country. In view of the increasing demand for Alnus species for agroforestry in Uganda, regular pest monitoring and appropriate control strategies are necessary.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

13.
油松针叶面积估计模型及比叶面积的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
叶面积和比叶面积是植物生长过程中的重要参数.本研究基于河北木兰围场实测油松数据,通过winSEEDLE种子和针叶图像分析系统获得油松522个单个针叶的表面积LA、针叶长度L、针叶宽W、针叶周长P,分别建立了以针叶长、针叶宽、针叶周长等形状属性为自变量的叶面积估计模型和以针叶干质量为自变量的叶面积估计模型.用总相对误差、平均相对误差、平均相对误差绝对值、均方根误差、预估精度5个统计量来检验模型的误差和拟合优度,经检验模型LA=-2.761 +0.464 L +6.608W和LA =1.345 +0.501X分别为这两种模型中最好,X为针叶干质量.通过对算术平均法、比估计法、最小二乘法3种方法的比较,得到油松的比叶面积为7.08 m2 ·kg-1.本研究为油松叶面积的估计提供了一个简单可靠的方法.  相似文献   

14.
Since individual tree leaf area is an important measure for productivity as well as for site occupancy, it is of high interest in many studies about forest growth. The exact determination of leaf area is nearly impossible. Thus, a common way to get information about leaf area is to use substitutes. These substitutes are often variables which are collected in a destructive way which is not feasible for long term studies. Therefore, this study aimed at testing the applicability of using substitutes for leaf area which could be collected in a non-destructive way, namely crown surface area and crown projection area. In 8 stands of Norway spruce (Picea abies L. Karst.), divided into three age classes and two thinning treatments, a total of 156 trees were felled in order to test the relationship between leaf area and crown surface area and crown projection area, respectively. Individual tree leaf area of the felled sample trees was estimated by 3P-branch sampling with an accuracy of ±10%. Crown projection area and crown surface area were compared with other, more commonly used, but destructive predictors of leaf area, namely sapwood area at different heights on the bole. Our investigations confirmed findings of several studies that sapwood area is the most precise measure for leaf area because of the high correlation between sapwood area and the leaf area. But behind sapwood area at crown base and sapwood area at three tenth of the tree height the predictive ability of crown surface area was ranked third and even better than that of sapwood area at breast height (R2 = 0.656 compared with 0.600). Within the stands leaf area is proportional to crown surface area. Using the pooled data of all stands a mixed model approach showed that additionally to crown surface area dominant height and diameter at breast height (dbh) improved the leaf area estimates. Thus, taking dominant height and dbh into account, crown surface area can be recommended for estimating the leaf area of individual trees. The resulting model was in line with many other findings on the leaf area and leaf mass relationships with crown size. From the additional influence of dominant height and dbh in the leaf area model we conclude that the used crown model could be improved by estimating the position of the maximum crown width and the crown width at the base of the crown depending on these two variables.  相似文献   

15.
Daily net canopy photosynthesis (P n) was predicted for cocksfoot (Dactylis glomerata L.) canopies grown under different light regimes by integration of a leaf photosynthesis model developed for the light-saturated photosynthetic rate (P max), photosynthetic efficiency (α) and the degree of curvature (θ) of the leaf light–response curve. When shade was the only limiting factor, the maximum P n (P nmax) was predicted to decrease approximately linearly from 33.4 g CO2 m−2 d−1 to zero as photosynthetic photon flux density (PPFD) fell from full sunlight (1800 μmol m−2 s−1 PPFD) to 10% of this in a fluctuating light regime. It was also predicted that at 50% transmissivity P nmax was higher for a continuous light regime (10.4 g CO2 m−2 d−1) than for a fluctuating light regime with the same intensity (8.4 g CO2 m−2 d−1). The canopy photosynthesis model was then used to predict dry matter (DM) production for cocksfoot field grown pastures under a diverse range of temperature, herbage nitrogen content and water status conditions in fluctuating light regimes. This prediction required inclusion of leaf area index and leaf canopy angle from field measurements. The model explained about 85% of the variation in observed cocksfoot DM production for a range from 6 to 118 kg DM ha−1 d−1. The proposed model improves understanding of pasture growth prediction through integration of relationships between shade limitations in fluctuating light regimes and other environmental factors that affect the canopy photosynthetic rate of cocksfoot pastures in silvopastoral systems.  相似文献   

16.
Light and soil moisture availability are two important abiotic factors influencing plant growth in an agroforestry system. Different soil moisture and light treatments were applied to examine the combined impact of drought and shade on the morphological plasticity of Vitex negundo var. heterophylla (Chinese chastetree) and Ziziphus jujuba var. spinosa (Spine jujube). We found that the interaction of light and soil moisture was orthogonal in the two species. V. negundo captured irradiance efficiently with relatively long petiole and petiolule, while Z. jujuba maintained higher branches to absorb light than V. negundo. Compared to the seedlings under full sunlight, the palmately compound leaves of V. negundo under low light showed larger specific leaf area (SLA), lower ratio of leaflet length to width and higher leaf mass ratio (leaf biomass to total biomass); in contrast, the simple leaves of Z. jujuba under low light showed larger SLA and ratio of leaf length to petiole length. In both species, drought reduced the branch number, mean internode length of stem, and increased root mass ratio (root biomass to total biomass), but leaf morphology showed little variation to the decreased soil moisture. Between the two species, V. negundo is more shade-tolerant, while Z. jujuba is more drought-tolerant. In an alley cropping system, the spacing can be smaller in the V. negundo-crop system than the Z. jujuba-crop system when soil moisture is adequate. However, the V. negundo-crop system should be managed with more caution under the soil moisture limited conditions.  相似文献   

17.
Agroforestry combines perennial woody elements (e.g. trees) with an agricultural understory (e.g. wheat, pasture) which can also potentially be used by a livestock component. In recent decades, modern agroforestry systems have been proposed at European level as land use alternatives for conventional agricultural systems. The potential range of benefits that modern agroforestry systems can provide includes farm product diversification (food and timber), soil and biodiversity conservation and carbon sequestration, both in woody biomass and the soil. Whilst typically these include benefits such as food and timber provision, potentially, there are benefits in the form of carbon sequestration, both in woody biomass and in the soil. Quantifying the effect of agroforestry systems on soil carbon is important because it is one means by which atmospheric carbon can be sequestered in order to reduce global warming. However, experimental systems that can combine the different alternative features of agroforestry systems are difficult to implement and long-term. For this reason, models are needed to explore these alternatives, in order to determine what benefits different combinations of trees and understory might provide in agroforestry systems. This paper describes the integration of the widely used soil carbon model RothC, a model simulating soil organic carbon turnover, into Yield-SAFE, a parameter sparse model to estimate aboveground biomass in agroforestry systems. The improvement of the Yield-SAFE model focused on the estimation of input plant material into soil (i.e. leaf fall and root mortality) while maintaining the original aspiration for a simple conceptualization of agroforestry modeling, but allowing to feed inputs to a soil carbon module based on RothC. Validation simulations show that the combined model gives predictions consistent with observed data for both SOC dynamics and tree leaf fall. Two case study systems are examined: a cork oak system in South Portugal and a poplar system in the UK, in current and future climate.  相似文献   

18.
The relationships between trees and understory crops are very important in agroforestry systems. Also, above ground interactions can be related to canopy structure. However, measurements of canopy structural parameters, either destructive or indirect, are time-consuming or prohibitively expensive. The present work explored the use of digital photography as a simple method to characterise the extent of canopy closure (CC), defined as the area of tree canopies projected onto the horizontal ground surface beneath, and expressed as a percentage of the ground covered. Measurements were made in two Eucalyptus (Eucalyptus nitens, Deane and Maiden) plantations and a subtropical mixed legume woodland dominated by Albizia (Albizia sp), Kidneywood (Eysenhardtia sp.) and Desert Fern (Lysiloma sp.). Images were captured at dawn to minimise light scattering and the number of sunlit foliage elements. Mean CC estimates provided by analysis of images obtained using digital cameras with contrasting performance, a Kodak DC-120 and a Canon EOS D1, were similar in precision and accuracy both between the two cameras and to those provided by a Li-Cor LAI-2000 canopy analyser. Bias between the estimates provided by the Kodak and Canon cameras was –0.02, between the Kodak and LAI-2000 was –0.07 and between the Canon and LAI-2000 was –0.05. Data from a pruning experiment using alder also demonstrated the repeatability of estimates obtained with a photographic method using the Kodak camera. The number of ring sensors within the LAI-2000 used to estimate CC affected agreement between the photographic method and the LAI-2000.  相似文献   

19.
An experiment was conducted in southern Chile to study the effect of tree cover (0 or 200 stems of 13-year-old Pinus radiate/ha), grazing severity (8 or 12 cm height at commencement of grazing by sheep) and fertilizer application rate (low or high) on the establishment and growth of Lotus uliginosus and Trifolium subterraneum, when sown in conjunction with Festuca arundinacea. The establishment of both legumes was greater in the agroforestry than the open field, and the percentage of viable seeds that were established was greater for Trifolium than Lotus. Festuca established better when sown in conjunction with Lotus in the open field. During the two years after stand establishment there was a greater reduction in the ground cover and dry matter (DM) yield of both legumes, but in particular Trifolium, in the agroforestry than in the open field. In the second year of grazing Trifolium contributed less than 9% of total DM yield in the agroforestry, compared with 22% for Lotus. The ground cover of Lotus was increased by a tall grazing height in the agroforestry, whereas Trifolium increased its cover when the grazing height was short. Additional fertilizer at establishment had a greater effect in increasing herbage yield in the open field than in agroforestry. It is concluded that both Lotus and Trifolium establishments are greater in agroforestry than in an open field, but that in agroforestry there is a reduction in legume yield over time, particularly of Trifolium. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Successful agroforestry systems depend on minimizing tree-cropcompetition. In this study, field experiments and a simulation model were usedto distinguish between tree-crop competition for light and belowgroundcompetition in an alley cropping system. Maize (Zea maysL.) was harvested periodically in three treatments: between vertical barriers ofshade cloth, hedgerows of Flemingia macrophylla (Willd.)Merr., and sole maize. Radiation intercepted by the maize was calculated using asimulation model based on measured values for direct and diffuse light, hedgerowdimensions and leaf area, and solar trajectory. Radiation use efficiency wascalculated as biomass production per unit of intercepted radiation. Maizebiomass and yield in both the alley crop and the shade cloth treatment weregreatest in the center of the alleys. Grain yield between hedgerows was 3.5Mg ha−1 (averaged across the alley), significantlyless than in the shade cloth (7.4 Mg ha−1) or thesole maize (7.7 Mg ha−1) treatments. Lightintercepted by the maize in the alley crop was about half that intercepted bythe maize in the sole crop. The shade cloth intercepted less light than thehedgerows because it did not have an appreciable width. Radiation use efficiencyin the three treatments was 0.75 g mol−1 PAR anddid not differ significantly among treatments. Tree-crop competition wasoverwhelmingly for light. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号