首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To establish the effect of sward height, concentrate feeding time, and restricted time for grazing on forage utilization by grazing cattle, 32 crossbred beef (24 Angus and eight Hereford) cows (632 kg BW) and calves (104 kg BW) were grouped by weight and calving date. They were assigned randomly to two sward height treatments (4 to 8 or 8 to 12 cm), replicated four times. The herbage comprised mainly Kentucky bluegrass, orchardgrass, some forbs, and white clover. The cows were restricted to 12 h/d grazing (0700 to 1900) or unrestricted to 24 h/d grazing and fed a concentrate supplement (4.1 kg DM.cow(-1).d(-1), approximately 0.65% of BW or 33% of total DMI) either at 0700 or 1800. The experiment was repeated over three 15-d periods in May, June/July, and August 2000. The herbage on high sward height pasture was higher (P = 0.06) in NDF and ADF and lower (P < 0.01) in CP than low sward height herbage. For cows restricted to 12 h/d grazing, supplementing at 0700 as opposed 1800 resulted in greater (P = 0.04) forage DMI (8.6 vs. 8.1 kg/d), whereas cows that were unrestricted showed little change (8.2 kg/d at 0700 vs. 8.4 kg/d at 1800). Supplementing at 1800 as opposed to 0700 resulted in greater (P = 0.03) herbage DM digestibility (67.7 vs. 64.5%) for cows on high sward height, whereas cows on low sward height exhibited minimal differences (65.4% at 1800 vs. 66.3% at 0700). Cows restricted to 12 h/d grazing and supplemented at 0700 as opposed to 1800 resulted in greater (P = 0.06) digestible DMI (5.0 vs. 4.7 kg/d), whereas unrestricted cows exhibited the opposite response (4.6 kg/d digestible DMI at 0700 vs. 4.9 kg/d at 1800). Supplementing at 1800 as opposed to 0700 increased the time spent grazing to a greater (P = 0.09) extent for restricted than for unrestricted cows. When forage availability or grazing time was limiting (due to a low forage allowance and restricted access to forage, respectively) supplementing concentrates at 0700 resulted in greater forage utilization and intake rate because of increased forage DMI, DM digestibility, and digestible DMI. However, when forage or grazing time was not limiting, supplementing concentrates at 1800 resulted in greater forage utilization because of increased forage DM digestibility.  相似文献   

2.
Seventy-two (36 in each of two consecutive years) lactating, British-crossbred cows (609 +/- 19 kg) were used to evaluate effects of feeding a feather meal-blood meal combination on performance by beef cows fed grass hay. Bromegrass hay (9.6% CP, DM basis) was offered ad libitum and intake was measured daily in individual Calan electronic headgates. Acclimation to Calan gates began approximately 20 d after parturition, and treatments were initiated 21 d later. Cows were assigned randomly to one of four treatments (DM basis) for 60 d: 1) nonsupplemented control (CON), 2) energy control (ENG; 790 g/d; 100% beet pulp), 3) degradable intake protein (DIP; 870 g/d; 22% beet pulp and 78% sunflower meal), or 4) undegradable intake protein (UIP; 800 g/d; 62.5% sunflower meal, 30% hydrolyzed feather meal, and 7.5% blood meal). Net energy concentrations of supplements were formulated to provide similar NE(m) intakes (1.36 Mcal/d). The DIP and UIP supplements were calculated to supply similar amounts of DIP (168 g/d) and to supply 64 and 224 g/d of UIP, respectively. Forage DMI (kg/d) decreased in supplemented vs. nonsupplemented (P = 0.03) and DIP vs. UIP (P = 0.001); however, when expressed as a percentage of BW, forage DMI was not different (P = 0.23). Supplemented cows tended (P = 0.17) to lose less BW than CON. Body condition change was not affected (P = 0.60) by postpartum supplementation. No differences were noted in milk production (P = 0.29) or in calf gain during the supplementation period (P = 0.74). Circulating insulin concentrations were not affected by treatment (P = 0.42). In addition, supplementation did not affect circulating concentrations of NEFA (P = 0.18) or plasma urea nitrogen (P = 0.38). Results of the current study indicate that supplementation had little effect on BW, BCS, milk production, or calf BW when a moderate-quality forage (9.6% CP) was fed to postpartum, winter-calving cows in optimal body condition (BCS > 5). Supplemental UIP did not enhance cow performance during lactation. Forage UIP and microbial protein supply were adequate to meet the metabolizable protein requirements of lactating beef cows under the conditions of this study.  相似文献   

3.
A winter grazing experiment was conducted to evaluate the effects of stocking rate and corn gluten feed supplementation on forage mass and composition and the BW and BCS of bred 2-yr-old cows grazing stockpiled forage during winter. Two 12.2-ha blocks containing Fawn, endophyte-free, tall fescue and red clover were each divided into 4 pastures of 2.53 or 3.54 ha. Hay was harvested from the pastures in June and August of 2003 and 2004, and N was applied at 50.5 kg/ha at the initiation of stockpiling in August. On October 22, 2003, and October 20, 2004, twenty-four 30-mo-old Angus-Simmental and Angus cows were allotted by BW and BCS to strip-graze for 147 d at 0.84 or 1.19 cow/ha. Eight similar cows were allotted to 2 dry lots and fed tall fescue-red clover hay ad libitum. Corn gluten feed was fed to cows in 2 pastures to maintain a mean BCS of 5 (9-point scale) at each stocking rate and in the dry lots (high supplementation level) or when weather prevented grazing (low supplementation level) in the remaining 2 pastures at each stocking rate. Mean concentrations of CP in yr 1 and 2 and IVDMD in yr 2 were greater (P < 0.10) in hay than stockpiled forage over the winter. At the end of grazing, cows fed hay in dry lots had greater (P < 0.05) BCS in yr 1 and greater (P < 0.10) BW in yr 2 than grazing cows. Grazing cows in the high supplementation treatment had greater (P < 0.10) BW than cows grazing at the low supplementation level in yr 1. Cows in the dry lots were fed 2,565 and 2,158 kg of hay DM/cow. Amounts of corn gluten feed supplemented to cows in yr 1 and 2 were 46 and 60 kg/ cow and did not differ (P = 0.33, yr 1; P = 0.50, yr 2) between cows fed hay or grazing stockpiled forage in either year. Estimated production costs were greater for cows in the dry lots because of hay feeding.  相似文献   

4.
Two experiments were conducted to determine the effects of sunflower seed supplements with varying fatty acid profiles on performance, reproduction, intake, and digestion in beef cattle. In Exp. 1, 127 multiparous spring-calving beef cows with free-choice access to bermudagrass hay were individually fed 1 of 3 supplements for an average of 83 d during mid to late gestation. Supplements (DM basis) included 1) 1.23 kg/d of a soybean hull-based supplement (control treatment); 2) 0.68 kg/d of linoleic sunflower seed plus 0.23 kg/d of the control supplement (linoleic treatment); and 3) 0.64 kg/d of mid-oleic sunflower seed plus 0.23 kg/d of the control supplement (oleic treatment). During the first 62 d of supplementation, the BW change was 11, 3, and -3 kg for cows fed the control, linoleic, and oleic supplements, respectively (P < 0.001). No difference in BW change was observed during the subsequent period (-65 kg, P = 0.83) or during the entire 303-d experiment (-31 kg, P = 0.49). During the first 62 d of supplementation, cows fed sunflower supplements tended (P = 0.08) to lose more body condition than cows fed the control diet, but BCS was not different (P > 0.22) for any subsequent measurement. At the beginning of the breeding season, the percentage of cows exhibiting luteal activity was greater for cows fed the control diet (43%; P = 0.02) than for cows fed either linoleic (20%) or oleic (16%) supplementation; however, first-service conception rate (67%; P = 0.22) and pregnancy rate at weaning (92%; P = 0.18) were not different among supplements. No differences were detected in calf birth (P = 0.46) or weaning BW (P = 0.74). In Exp. 2, 8 ruminally cannulated steers were used to determine the effects of sunflower seed supplementation on forage intake and digestion. Treatments (DM basis) included 1) no supplement; 2) a soybean hull-based supplement fed at 0.29% of BW/d; 3) whole linoleic sunflower seed fed at 0.16% of BW/d; and 4) whole high-oleic sunflower seed fed at 0.16% of BW/d. Hay intake was not influenced (P = 0.25) by supplement (1.51% of BW/d); however, DMI was greatest (P < 0.01) for steers fed the soybean hull-based supplement (1.93% of BW/d). Sunflower seed supplementation reduced (P < 0.01) NDF and ADF digestibility while increasing (P < 0.01) apparent CP and apparent lipid digestibility. In conclusion, whole sunflower seed supplementation resulted in reduced cow BW gain during mid to late gestation, but this reduction did not influence subsequent cow BW change, pregnancy rate, or calf performance.  相似文献   

5.
To establish the effect of sward height (SH) and concentrate supplementation on performance of grazing cattle, 24 crossbred Angus beef cows (535 kg BW) and calves (114 kg BW) were grouped by weight and calving date. They were randomly assigned to two SH treatments, either 4 to 8 cm or 8 to 11 cm, and fed three levels of supplement, high, low, or none, consisting of 6.24, 3.12, and 0 kg x animal(-1) x d(-1), respectively. The experiment was repeated over three 15-d periods in 1996: May (P1), June/July (P2), and August (P3). No SH x supplement level x period or SH x supplement level interactions (P > 0.10) were evident for responses tested. Cows on lower SH had greater (P < 0.08) DMI but spent an additional 1.3 h/d (P < 0.01) grazing compared with cows on higher SH. Sward height had no influence (P > 0.10) on forage DM digestibility (DMD). Forage DMI, DMD, and grazing time (GT) decreased (P < 0.05) as supplementation increased. Nonetheless, supplemented cows consumed more total DMI (P < 0.08) than unsupplemented cows. Cows consumed 2.4 kg/d more forage DM (P < 0.01) in P1 and P2 than in P3. Cows grazed 1.3 h/d (P < 0.01) less in P1 than in P2 and P3. Grazing efficiency (DMI/h GT) declined as supplementation increased and grazing season advanced to P3 (P < 0.01). Decreased forage DMI and grazing efficiency with increasing supplementation suggests that supplemented cattle should be able to maintain productivity while grazing at SH lower than unsupplemented cattle.  相似文献   

6.
Two experiments were conducted to determine the effects of whole soybean supplementation on intake, digestion, and performance of beef cows of varying age. Treatments were arranged in a 2 x 3 factorial with 2 supplements and 3 age classes of cows (2-yr-old, 3-yr-old, and mature cows). Supplements (DM basis) included 1) 1.36 kg/d of whole raw soybeans, and 2) 1.56 kg/d of a soybean meal/hulls supplement. Supplements were formulated to provide similar amounts of protein and energy, but a greater fat content with the whole soybeans. Supplements were individually fed on Monday, Tuesday, Thursday, and Saturday mornings. During the treatment period, cows had free choice access to bermudagrass hay [Cynodon dactylon (L.) Pers.; 8.4% CP; 72% NDF; DM basis]. In Exp. 1, 166 spring-calving Angus and Angus x Hereford crossbred beef cows were individually fed supplements for an average of 80 d during mid to late gestation. During the first 50 d of supplementation, cows fed soybean meal/hulls gained more BW (10 kg; P < 0.001) and body condition (0.18 BCS units; P = 0.004) than cows fed whole soybeans. However, BW change (P = 0.87) and BCS change (P = 0.25) during the 296-d experiment were not different between supplements. Although calves from cows fed soybean meal/hulls were 2 kg heavier at birth, there was no difference in calf BW at weaning between supplements. Additionally, first service conception rate (68%; P = 0.24) and pregnancy rate (73%; P = 0.21) were not different between supplements. In Exp. 2, 24 cows from Exp. 1 were used to determine the effect of supplement composition on forage intake and digestion; cows remained on the same supplements, hay, and feeding schedule as Exp. 1. Crude fat digestibility was the only intake or digestibility measurement influenced by supplement composition; fat digestibility was higher for cows fed whole soybeans compared with cows fed the soybean meal/hulls supplement (58.1 vs. 48.8%). Hay intake and DMI averaged 1.63 and 1.92% of BW daily, respectively. Dry matter, NDF, and CP digestibility averaged 54.1, 55.1, and 63.2%, respectively. Compared with supplementation with soybean meal/ hulls, whole soybean supplementation during mid to late gestation resulted in reduced BW weight gain during supplementation, inconsistent effects on reproduction, no effect on calf weaning weight, and no effect on forage intake or digestion.  相似文献   

7.
A 2 x 2 factorial study evaluated effects of cow wintering system and last trimester CP supplementation on performance of beef cows and steer progeny over a 3-yr period. Pregnant composite cows (Red Angus x Simmental) grazed winter range (WR; n = 4/yr) or corn residue (CR; n = 4/yr) during winter and within grazing treatment received 0.45 kg/d (DM) 28% CP cubes (PS; n = 4/yr) or no supplement (NS; n = 4/yr). Offspring steer calves entered the feedlot 14 d postweaning and were slaughtered 222 d later. Precalving BW was greater (P = 0.02) for PS than NS cows grazing WR, whereas precalving BCS was greater (P < 0.001) for cows grazing CR compared with WR. Calf birth BW was greater (P = 0.02) for CR than WR and tended to be greater (P = 0.11) for PS than NS cows. Prebreeding BW and BCS were greater (P 0.32) by PS. Calf weaning BW was less (P = 0.01) for calves from NS cows grazing WR compared with all other treatments. Pregnancy rate was unaffected by treatment (P > 0.39). Steer ADG, 12th-rib fat, yield grade, and LM area (P > 0.10) were similar among all treatments. However, final BW and HCW (P = 0.02) were greater for steers from PS-WR than NS-WR cows. Compared with steers from NS cows, steers from PS cows had greater marbling scores (P = 0.004) and a greater (P = 0.04) proportion graded USDA Choice or greater. Protein supplementation of dams increased the value of calves at weaning (P = 0.03) and of steers at slaughter regardless of winter grazing treatment (P = 0.005). Calf birth and weaning BW were increased by grazing CR during the winter. Calf weaning BW was increased by PS of the dam if the dam grazed WR. Compared with steers from NS cows, steer progeny from PS cows had a greater quality grade with no (P = 0.26) effect on yield grade. These data support a late gestation dam nutrition effect on calf production via fetal programming.  相似文献   

8.
Three experiments were conducted to evaluate supplementation of dried distillers grains with solubles (DGS) to spring-calving beef cows (n = 120; 541 kg of initial BW; 5.1 initial BCS) consuming low-quality forage during late gestation and early lactation. Supplemental treatments included (DM basis) 1) 0.77 kg/d DGS (DGSL); 2) 1.54 kg/d DGS (DGSI); 3) 2.31 kg/d DGS (DGSH); 4) 1.54 kg/d of a blend of 49% wheat middlings and 51% cottonseed meal (POS); and 5) 0.23 kg/d of a cottonseed hull-based pellet (NEG). Feeding rate and CP intake were similar for DGSI and POS. In Exp. 1, cows were individually fed 3 d/wk until calving and 4 d/wk during lactation; total supplementation period was 119 d, encompassing 106 d of gestation and 13 d of lactation. Tall-grass prairie hay (5.6% CP, 50% TDN, 73% NDF; DM basis) was fed for ad libitum intake throughout the supplementation period. Change in cow BW and BCS during gestation was similar for DGSI and POS (-5.0 kg, P = 0.61 and -0.13, P = 0.25, respectively) and linearly increased with increasing DGS level (P < 0.01). Likewise, during the 119-d supplementation period, BW and BCS change were similar for DGSI and POS (-72 kg, P = 0.22 and -0.60, P = 0.10) and increased linearly with respect to increasing DGS (P < 0.01). The percentage of cows exhibiting luteal activity at the beginning of breeding season (56%, P = 0.31), AI conception rate (57%, P = 0.62), or pregnancy rate at weaning (88%, P = 0.74) were not influenced by supplementation. In Exp. 2, 30 cows from a separate herd were used to evaluate the effect of DGS on hay intake and digestion. Supplementation improved all digestibility measures compared with NEG. Hay intake was not influenced by DGS (P > 0.10); digestibility of NDF, ADF, CP, and fat linearly increased with increasing DGS. In Exp. 3, milk production and composition were determined for cows (n = 16/treatment) of similar days postpartum from Exp. 1. Daily milk production was not influenced by supplementation (6.3 kg/d, P = 0.25). Milk fat (2.1%) and lactose (5.0%) were not different (P > 0.10). Milk protein linearly increased as DGS increased (P < 0.05) and was greater for DGSI compared with POS. Similar cow performance was achieved when cows were fed DGS at the same rate and level of CP as a traditional cottonseed meal-based supplement. Increasing amounts of DGS did not negatively influence forage intake or diet digestibility.  相似文献   

9.
Three-year-old Angus x Gelbvieh beef cows nutritionally managed to achieve a BCS of 4 +/- 0.07 (479.3 +/- 36.3 kg of BW) or 6 +/- 0.07 (579.6 +/- 53.1 kg of BW) at parturition were used in a 2-yr experiment (n = 36/yr) to determine the effects of prepartum energy balance and postpartum lipid supplementation on cow and calf performance. Beginning 3 d postpartum, cows within each BCS were assigned randomly to be fed hay and a low-fat control supplement or supplements with either high-linoleate cracked safflower seeds or high-oleate cracked safflower seeds until d 60 of lactation. Diets were formulated to be isonitrogenous and isocaloric, and safflower seed supplements were provided to achieve 5% of DMI as fat. Ultrasonic 12th rib fat and LM area were lower (P < 0.001) for cows in BCS 4 compared with BCS 6 cows throughout the study. Cows in BCS 4 at parturition maintained (P = 0.02) condition over the course of the study, whereas cows in BCS 6 lost condition. No differences (P = 0.44 to 0.71) were detected for milk yield, milk energy, milk fat percentage, or milk lactose percentage because of BCS; however, milk protein percentage was less (P = 0.03) for BCS 4 cows. First-service conception rates did not differ (P = 0.22) because of BCS at parturition, but overall pregnancy rate was greater (P = 0.02) in BCS 6 cows. No differences (P = 0.48 to 0.83) were detected in calf birth weight or ADG because of BCS at parturition. Dietary lipid supplementation did not influence (P = 0.23 to 0.96) cow BW change, BCS change, 12th rib fat, LM area, milk yield, milk energy, milk fat percentage, milk lactose percentage, first service conception, overall pregnancy rates, or calf performance. Although cows in BCS of 4 at parturition seemed capable of maintaining BCS during lactation, the overall decrease in pregnancy rate indicates cows should be managed to achieve a BCS >4 before parturition to improve reproductive success.  相似文献   

10.
Twenty-eight Angus (289 +/- 3.8 kg) steers were used in a completely randomized design to evaluate the effect of isocaloric supplementation of 2 different energy sources to steers rotationally grazing tall fescue pastures for 197 d in comparison to positive and negative controls. Steers were supplemented with either corn grain (0.52% BW on a DM basis; PC) or soybean hulls plus corn oil (0.45% BW on a DM basis + 0.10% BW on an as-fed basis; PO) using Calan gates for individual intake measurement. Negative, pasture only (PA), and positive, high-concentrate control diets (85% concentrate:15% roughage on DM basis; C) were also included in the study. Steers on PC, PO, and PA treatments were managed together under a rotational grazing system, whereas C steers were fed a high-concentrate diet for the final 113 d using Calan gates. Forage DMI and apparent DM and NDF digestibility for the grazing treatments were evaluated using Cr(2)O(5) and indigestible NDF as digesta markers. Energy supplementation decreased (P = 0.02) forage DMI (% of BW) with respect to PA, but not (P = 0.58) total DMI. There were no differences (P = 0.53) among grazing treatments on apparent total DM digestibility. However, NDF digestibility was less (P < or = 0.05) in PC than in PO and PA; the latter 2 treatments did not differ (P > 0.05). Overall ADG was greater (P < 0.01) in supplemented, regardless of type, than in nonsupplemented grazing treatments. During the final 113 d, ADG was greater (P < 0.01) in C than in the grazing treatments. Overall supplement conversion did not differ (P = 0.73) between supplement types and was less (P = 0.006) than C. Carcass traits did not differ (P > 0.05) between energy sources. Dressing percentage and HCW were greater (P < 0.01) in supplemented cattle than in PA. Fat thickness and KPH percentage for PA were less (P < 0.05) than for PO but did not differ (P > 0.14) from PC. Marbling score, LM area, and quality grade did not differ (P > 0.05) between grazing treatments. Hot carcass weight for C was heavier (P < 0.001) than for pastured cattle. Quality and yield grades of C carcasses were also greater (P < 0.001) than carcasses from pastured steers. Energy supplementation, regardless of source, to grazing steers increased ADG, dressing percentage, and carcass weight compared with PA steers; however, supplemented steers had less ADG, efficiency, dressing percentage, and carcass weight compared with high-concentrate finished steers.  相似文献   

11.
Eighteen Angus steers (438 +/- 4 kg of BW) were supplemented with varying levels of corn oil (0 g/kg of BW, none; 0.75 g/kg of BW, MED; or 1.5 g/kg of BW, HI) on rotationally stocked, endophyte-free tall fescue to determine the effect of supplemental oil level on in vivo digestibility, intake, performance, and carcass traits. Pelleted cottonseed hulls were used as a carrier for the oil supplements, and all supplements were offered to steers using Calan gate feeders for individual intake determination. On d 49, each steer was dosed with a controlled-release capsule containing chromium sesquioxide, and fecal samples were obtained 12 d later over a 7-d period to estimate fecal output that, with forage, supplement, and fecal indigestible NDF concentration, was used to estimate DMI and in vivo total diet digestibility. Steers were slaughtered at the end of the 116-d grazing period, and carcass data were collected at 24 h postmortem. Total fatty acid intake linearly increased with corn oil supplementation, and forage DMI, total DMI, and total DE intake were linearly decreased (P < 0.01). The decrease in total DMI was reflected in forage substitution rates greater (P < or = 0.01) than 1, with a trend (P = 0.09) for a greater substitution rate in HI than in MED. In vivo DM, OM, and NDF digestibility were linearly decreased (P < 0.01) by corn oil supplementation. Average daily gain and final BW tended (P = 0.09) to increase linearly in response to oil level. Oil conversion (0.36 kg of BW gain/kg of corn oil) was greater (P < or = 0.05) than zero and did not differ (P = 0.15) between MED and HI. Dressing percent (P = 0.09), carcass weight (P = 0.01), and carcass backfat thickness (P = 0.01) increased linearly with oil supplementation. No treatment effect was observed for carcass LM area, KPH percentage, marbling score, or yield grade (P > 0.10). Oil supplementation to grazing steers linearly reduced forage DMI intake; however, animal performance was maintained and tended to be greater for oil-supplemented cattle. Oil supplementation increased carcass fat thickness and weight without altering other carcass quality parameters.  相似文献   

12.
Two trials were conducted to evaluate the effects of corn in protein supplements fed to cattle receiving low-quality forages. In Trial 1, four ruminally cannulated steers (avg BW 500 kg) and four intact steers (avg BW 270 kg) were used in a replicated latin square to determine intake and digestibility fo a low-quality meadow hay (4.3% CP) when fed no supplement (NS), 1.12 g CP/kg BW (PS), 1.12 g CP/kg BW with corn supplying 1.98 g starch/kg BW (PLC) or 1.12 g CP/kg BW with corn supplying 3.96 g starch/kg BW (PHC). Hay DMI decreased (P = .001) and total diet DMI increased (P = .001) quadratically as supplemental corn increased. Diet DM digestibility increased (P = .004) and forage DM and hemicellulose digestibility decreased (P less than or equal to .018) quadratically as level of corn in the diet increased. In Trial 2, 135 cows received either ear corn (1.16 kg TDN and 127 g CP.hd(-1).d(-1), ear corn plus protein (1.16 kg TDN) and 290 g CP g CP.hd(-1).d(-1) or protein (.72 kg TDN and 290 g CP.hd(-1.d(-1) while grazing native Sandhills winter range for 112 d and while receiving hay (10% CP) during the following 60-d calving period. Cows that received ear corn lost (P less than .001) more weight than cows fed ear corn plus protein supplement, which lost more weight than cows fed only protein supplement (-54, -18 and 6 kg, respectively) during the 112-d winter grazing period. Cows that received ear corn and ear corn plus protein gained more (P less than .001) weight during calving and summer grazing (after supplement wa withdrawn) than protein-supplemented cows. Reproductive performance was not affected (P greater than .705) by treatments.  相似文献   

13.
Two experiments were conducted to evaluate the influence of a yeast-derived cell wall preparation (YCW) on forage intake and digestibility, ruminal fermentation characteristics, serum prolactin and prolactin stores, and milk production in beef cattle consuming high-alkaloid tall fescue straw. In Exp. 1, 16 ruminally cannulated Angus x Hereford steers (200 +/- 6 kg of BW) were blocked by BW and within block were assigned to 1 of 4 treatments containing YCW at 0, 20, 40, or 60 g/d. Tall fescue straw (579 mug of ergovaline/ kg of DM) was provided at 120% of the previous 5-d average intake, with soybean meal used as a CP supplement. In the 29-d digestion study, total DM, OM, and NDF intakes and DM, OM, and NDF digestibilities were not affected by YCW supplementation (P > 0.13). Linear decreases in ruminal indigestible ADF outflow (P = 0.10) and liquid dilution rate (P = 0.03) were noted as YCW increased. Weekly serum prolactin was not affected by treatment (P > 0.50), but prolactin stores increased linearly as YCW increased (P = 0.05). In Exp. 2, 60 Angus x Hereford cows (517 +/- 5 kg of BW; approximately 200 d of gestation) were stratified by BCS (5.0 +/- 0.1) and randomly assigned to the same 4 YCW treatments as in Exp. 1 (447 microg of ergovaline/kg of DM, high-alkaloid straw), but with the addition of a low-alkaloid straw (149 microg of ergovaline/kg of DM; no YCW supplementation) as a control. Cows were provided ad libitum access to straw, and diets were supplemented with soybean meal daily. One cow was removed from the 40 g/d treatment because of clinical signs of fescue foot. No differences (P > 0.20) were observed in pre-or postcalving BCS change or postcalving BW change. Control cows gained more BW (P = 0.02) precalving compared with cows given 0 g/d of YCW. A linear increase (P = 0.04) in milk production at 60 d postpartum was observed as YCW increased. Serum prolactin post-calving and the change from initial to postcalving increased linearly (P = 0.02 and P = 0.06, respectively) with increasing YCW supplementation. In addition, postcalving serum prolactin was less for 0 g/d of YCW compared with the control (P = 0.003) and 20 g/d of YCW (P = 0.04). The YCW seemed to alleviate the prolactin depression normally associated with fescue toxicosis and therefore has the potential to be used successfully with other management practices when feeding or grazing high-alkaloid tall fescue.  相似文献   

14.
Sixteen mature, lactating (453 kg) and 16 nonlactating (487 kg) Hereford and Angus x Hereford cows were used to determine effects of different dietary supplements and lactational status on forage intake, digestibility, and particulate passage rate. Supplement treatments and amounts fed (kg/d) were as follows: control, 0; and equal daily amounts of CP from soybean meal (SBM), 1.36; wheat middlings (WM), 3.41; or a blend of corn and soybean meal (corn-SBM; 22% corn and 76% SBM), 3.41. Cows were fed supplements at 0800 and had ad libitum access to prairie hay (4.9% CP) in stalls from 0800 to 1100 and from 1300 to 1600 for three 17-d periods. Lactational status and supplement type did not interact (P greater than .50) for hay DMI, DM digestibility, or particulate passage rate. Cows fed SBM ate more hay DM (P less than .01) and had greater hay DM digestibility (P less than .01) than did cows in other treatment groups. Average hay DMI (kg/100 kg of BW) was 1.95, 2.16, 1.94, and 1.89, and hay DM digestibility was 52, 61, 55, and 53% for control, SBM, WM, and corn-SBM supplements, respectively. Total diet DM digestibility was increased by supplementation (P less than .01), but no differences (P greater than .18) were observed among supplements. Lactating cows ate more (P = .13) hay DM (2.11 vs 1.87 kg/100 kg of BW) and had greater (P less than .05) fecal output (4.6 vs 4.3 kg/d) than did nonlactating cows. Dry matter digestibility and particulate passage rate were not affected (P greater than .35) by lactational status.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
One hundred eighty crossbred cows were assigned to one of six native range pastures during two winters to evaluate forage and supplement intake as affected by liquid supplement (yr 1: 50% crude protein, 84% from urea; yr 2: 57% crude protein, 91% from urea) delivery method and cow age (2, 3, 4, 5, or 6 yr). Treatments were: 1) no supplement (Control); 2) a lick-wheel feeder containing liquid supplement (ADLIB); and 3) a computer-controlled lick-wheel feeder that dispensed 0.9 kg x cow(-1) x d(-1) of liquid supplement (average 0.5 kg of dry matter x cow(-1) x d(-1); Restricted). Each treatment was applied to two pastures. Forage digestibility was increased (P = 0.03) by supplementation. Supplemented cows lost less (P = 0.05) body condition than unsupplemented cows (average -0.3 vs -0.6). Blood urea nitrogen (BUN) was highest (P = 0.001) for ADLIB (8.7 mg/dL), intermediate for Restricted (6.2 mg/dL), and lowest for Control (2.3 mg/dL). Forage DMI was 31% higher (P = 0.01) in 1995 than in 1996, and was increased (P = 0.02) by supplementation both years. Cows supplemented with ADLIB consumed 23% more forage dry matter than Control cows, whereas Restricted cows consumed 21% more dry matter than ADLIB cows. Supplement intake by cows on ADLIB was greater (P = 0.001) than by cows on Restricted in both years. Supplement intake was lowest (P = 0.002) by 2-yr-old cows, intermediate by 3-yr-olds, and greatest by 4-, 5-, and 6-yr-old cows. Variation in supplement intake by individual cows was higher (P = 0.09) for cows in the Restricted treatment (coefficient of variation [CV] = 117%) than those on ADLIB (CV = 68%) during the first year, but did not differ between supplement treatments (average CV = 62%) in the second year. The proportions of cows consuming less than 0.3 kg/d of supplement dry matter intake (DMI) and consuming less than the target amount of supplement (0.5 kg DMI) were less (P = 0.001) for ADLIB than for Restricted during both years. ADLIB cows spent more (P = 0.001) time at the supplement feeder and had more (P < 0.002) supplement feeding bouts than Restricted cows during both years. During the first year, 2- and 3-yr-old cows spent less (P < 0.01) time at the feeder and had fewer feeding bouts per day than 6-yr-old cows. Age had no effect (P > 0.24) on feeding behavior during the second year. Supplementation of beef cows grazing winter range with 50 to 57% crude protein liquid supplement increased forage digestibility and intake. Restricting supplement access increased forage consumption and variability of supplement intake.  相似文献   

16.
The objectives of this study were to quantify the phenotypic variation in residual feed intake (RFI) in pregnant beef heifers offered a grass silage diet and to characterize their productivity. Seventy-three pregnant (mean gestation d 198, SD = 27 d) Simmental and Simmental × Holstein-Friesian heifers (mean initial BW 548, SD = 47.5 kg) were offered grass silage ad libitum. Heifer DMI, BW, BCS, skeletal measurements, ultrasonic fat and muscle depth, visual muscularity score, rumen fermentation, total tract digestibility, blood metabolite and hematology variables, feeding, and activity behavior were measured during an 84-d feed intake study. After parturition calf birth weight, calving difficulty, cow serum IgG, hematology variables, and calf humoral immune status were measured. In a subset of cows (n = 28), DMI, milk yield and various body composition variables were also measured approximately 3 wk postpartum. Phenotypic RFI was calculated for each animal as the difference between actual DMI and expected DMI. Expected DMI was computed for each animal by regressing average daily DMI on conceptus-adjusted mean BW(0.75) and conceptus-adjusted ADG over an 84-d period. Within breed, heifers were ranked by RFI into low (efficient), medium, and high (inefficient) groups by dividing them into thirds. Heifers with high RFI had 8.8 and 17.1% greater (P < 0.001) DMI than medium and low RFI groups, respectively. The RFI groups did not differ in ADG or BW (P > 0.05). Residual feed intake was positively correlated with DMI (r = 0.85) but not with feed conversion ratio, ADG, or BW. The RFI groups did not differ (P > 0.05) in skeletal size, BCS, ultrasonic fat depth, total tract digestibility, calf birth weight, calving difficulty, serum IgG concentrations, or milk yield. Visual muscularity scores, initial test and postpartum ultrasonic muscle depth were negatively correlated with RFI (P < 0.05). Including mean ultrasonic muscle depth into the base RFI regression model increased its R(2) (0.29 to 0.38). Pearson rank correlation between RFI and muscle-adjusted RFI was 0.93. The results show that efficient RFI heifers consumed less feed without any compromise in growth, body composition, or maternal traits measured.  相似文献   

17.
Two experiments were conducted to determine the influence of supplemental nonprotein N (NPN) provided daily (D) or every other day (2D) on ruminant performance and N efficiency. Treatments included an unsupplemented control (CON) and a urea (28.7% CP) or biuret (28.6% CP) supplement provided D or 2D at 0700. In Exp. 1, five wethers (39 +/- 1 kg BW) were used in an incomplete 5 x 4 Latin square with four 24-d periods to determine the influence of supplemental NPN source and supplementation frequency (SF) on the efficiency of N use in lambs consuming low-quality grass straw (4% CP). The amount of CP supplied by each supplement was approximately 0.10% of BW/d (averaged over a 2-d period). In Exp. 2, 80 Angus x Hereford cows (540 +/- 8 kg BW) in the last third of gestation were used to determine the effect of NPN source and SF on cow performance. The NPN treatments were formulated to provide 90% of the estimated degradable intake protein requirement. The supplemented treatments received the same amount of supplemental N over a 2-d period; therefore, the 2D treatments received double the quantity of supplemental N on their respective supplementation day than the D treatments. In Exp. 1, total DM, OM, and N intake; DM, OM, and N digestibility; N balance; and digested N retained were greater (P < 0.03) for supplemented than for CON wethers, with no difference (P > 0.05) between NPN sources or SF. Plasma urea-N (PUN) was increased with N supplementation compared with CON (P < 0.01), and urea treatments had greater PUN than biuret (P < 0.01). In addition, PUN was greater (P = 0.02) for D than for 2D treatments. In Exp. 2, pre- and postcalving (within 14 d and 24 h after calving, respectively) cow weight and body condition score change were more positive (P < 0.05) for supplemented groups than for CON. These results suggest that supplements containing urea or biuret as the primary source of supplemental N can be effectively used by lambs and cows consuming low-quality forage, even when provided every other day.  相似文献   

18.
We evaluated the influence of amount and crude protein (CP) supplementation frequency (SF) on nitrogen (N) use by wethers and the performance of late-gestation beef cows. In exp. 1, seven Western whiteface wethers (31.8 ± 1.4 kg) were used in an incomplete 7 × 4 Latin square to evaluate intake and N use. Wethers received one of the seven treatments in a 2 × 3 factorial design containing two levels of supplemental soybean meal offered at a rate of 100% (F) or 50% (H; 50% of F) of the estimated CP requirement daily, once every 5, or once every 10 d, plus a non-supplemented control (CON). Low-quality cool-season forage (4.9 % CP; dry matter [DM] basis) was provided daily for ad libitum intake. Experimental periods lasted 30 d. In exp. 2, 84 Angus × Hereford cows (560 ± 35 kg) were stratified by age, body condition score (BCS), and expected calving date and allocated to 1 of the 21 feedlot pens (three pens per treatment). Pens were randomly assigned to receive the same treatments as in exp. 1 and cows had free access to low-quality cool-season forage (2.9% CP; DM basis). Cow body weight (BW) and BCS were measured every 14 d until calving and within 24 h after calving. In exp. 1, supplementation did not alter total DM and organic matter (OM) intake (P ≥ 0.26), but both parameters linearly decreased as SF decreased (P = 0.02). Supplementation increased DM, OM, and neutral detergent fiber (NDF) digestibility (P ≤ 0.02). Additionally, F feeding linearly increased DM, OM, and NDF digestibility as SF decreased (P ≤ 0.04). Digestibility of N, N balance, and digested N retained were greater with supplementation (P < 0.01), and N digestibility linearly increased as SF decreased (P = 0.01). Mean plasma urea-N concentration was not only greater (P < 0.01) for supplemented vs. CON wethers but also greater (P = 0.03) for F vs. H. In exp. 2, pre-calving BCS change was greater (P = 0.03) for supplemented cows. A linear effect of SF × supplementation rate for pre-calving BCS change was noted (P = 0.05), as F-supplemented cows lost more BCS compared with H as SF decreased. When considering supplementation intervals greater than 5 d, reducing the quantity of supplement provided, compared with daily supplementation, may be a feasible management strategy to maintain acceptable nutrient use and animal performance while reducing supplement and labor costs.  相似文献   

19.
Three-year-old Angus x Gelbvieh beef cows nutritionally managed to achieve a BCS of 4 +/- 0.07 (479.3 +/- 36.3 kg of initial BW) or 6 +/- 0.07 (579.6 +/- 53.1 kg of initial BW) at parturition were used in a 2-yr experiment (n = 36/yr) to determine the effects of BCS at parturition and postpartum lipid supplementation on cow adipose tissue lipogenesis. Beginning 3 d postpartum, cows within each BCS were randomly assigned to be fed hay and a low-fat control supplement or supplements with either cracked high-linoleate safflower seeds or cracked high-oleate safflower seeds until d 60 of lactation. Diets were formulated to be isonitrogenous and isocaloric, and safflower seed diets provided 5% DMI as fat. Adipose tissue biopsies were collected near the tail-head region of cows on d 30 and 60 of lactation. Dietary treatment did not affect (P > or = 0.43) adipose tissue lipogenesis. Body condition score at parturition did not affect acetate incorporation into lipid (P = 0.53) or activity of acetyl CoA carboxylase (P = 0.77) or fatty acid synthase (P = 0.18). Lipoprotein lipase activity and palmitate incorporation into triacyl-glycerol tended to be greater (P = 0.06), and palmitate esterification into total acylglycerols was greater (P = 0.01) in cows with a BCS of 4 at parturition. Mean activity of acetyl-CoA carboxylase (P < 0.001), lipoprotein lipase (P = 0.01), and rate of palmitate incorporation into monoacylglycerol (P = 0.02), diacylglycerol (P = 0.001), triacylglycerol (P = 0.003), and total acylglycerols (P = 0.002) were greater at d 30 than d 60, suggesting a greater proclivity for fatty acid biosynthesis and esterification by adipose tissue at d 30 of lactation. Although dietary lipid supplementation did not affect adipose tissue lipogenesis, results suggest that cows with a BCS of 4 at parturition have a greater propensity to deliver exogenously derived fatty acids to the adipocyte surface and incorporate preformed fatty acids into acylglycerols as stored adipocyte lipid. Additionally, cows in early lactation seemed to be able to synthesize and incorporate more fatty acids into stored lipid than cows during peak lactation.  相似文献   

20.
To determine the effects of BCS at parturition and postpartum lipid supplementation on blood metabolite and hormone concentrations, 3-yr-old Angus x Gelbvieh beef cows, which were nutritionally managed to achieve a BCS of 4 +/- 0.07 (479.3 +/- 36.3 kg of BW) or 6 +/- 0.07 (579.6 +/- 53.1 kg of BW) at parturition, were used in a 2-yr experiment (n = 36/yr). Beginning at 3 d postpartum, cows within each BCS were assigned randomly to be fed hay and a low-fat control supplement or lipid supplements with either cracked high-linoleate or high-oleate safflower seeds until d 61 of lactation. The diets were formulated to be isonitrogenous and isocaloric, and the safflower seed supplements were formulated to achieve 5% DMI as fat. On d 31 and 61 of lactation, blood samples were collected preprandially and then hourly postprandially (at 0, 1, 2, 3, and 4 h). Serum insulin (P = 0.27) and glucose (P = 0.64) were not affected by BCS at parturition. The mean concentrations of plasma NEFA (P = 0.08) and beta-hydroxybutyrate (P = 0.08) tended to be greater, and serum IGF-I was greater (P < 0.001) in BCS 6 than BCS 4 cows. Conversely, serum GH was greater (P = 0.003) for BCS 4 cows, indicating that regulation of IGF by GH may have been uncoupled in BCS 4 cows. The postpartum diet did not affect NEFA (P = 0.94), glucose (P = 0.15), IGF-I (P = 0.33), or GH (P = 0.62) concentrations. Oleate-supplemented cows had greater (P = 0.03) serum insulin concentrations, whereas control cows had greater (P = 0.01) plasma beta-hydroxybutyrate concentrations. Concentrations of NEFA (P = 0.05) and glucose (P < 0.001) were greater, and beta-hydroxybutyrate tended (P = 0.07), to be greater at d 3, whereas serum IGF-I was greater (P = 0.003) at d 6 of lactation. Similar concentrations of NEFA, glucose, GH, and IGF-I indicate that the nutritional status of beef cows during early lactation was not influenced by lipid supplementation. However, perturbations of the somatotropic axis in BCS 4 cows indicate that the influence of energy balance and BCS of the cow at parturition on postpartum performance should be considered when making managerial decisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号