首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study evaluated cadmium (Cd), lead (Pb), zinc (Zn), and copper (Cu) sorption characteristics of three tropical soils. Data obtained conformed to Freundlich sorption model and the S-shaped isotherm curve. Sorption efficiency of Zn and Pb were highest in alkaline soil while slightly acid soil had the highest Cd and Cu sorption efficiency for monometal sorption. In competitive sorption, metals were more sorbed in slightly acid soil while the least efficiency was recorded in acid soil. Distribution coefficient; Kd (average across soil types) in monometal sorption followed the order: Pb > Zn > Cd > Cu. For competitive sorption, the order was Zn > Pb > Cu > Cd. When in competition, Cd was preferentially sorbed in slightly acid and alkaline soils and Zn for acid soil. Conclusively, lead is more in equilibrium solution when in competition with Cd, Zn and Cu making it potential agent of soil and groundwater pollution.  相似文献   

2.
EVALUATION OF HEAVY METAL REMEDIATION USING MINERAL APATITE   总被引:1,自引:0,他引:1  
The current study investigated the sorption and desorption of dissolved lead (Pb), cadmium (Cd) and zinc (Zn) from aqueous solutions and a contaminated soil by North Carolina mineral apatite. Aqueous solutions of Pb, Cd, and Zn were reacted with the apatite, followed by desorption experiments under a wide variety of pH conditions ranging from 3 to 12, including the extraction fluids used in the Toxicity Characteristic Leaching Procedure (TCLP) of the United States Environmental Protection Agency (US EPA). The sorption results showed that the apatite was very effective in retaining Pb and was moderately effective in attenuating Cd and Zn at pH 4–5. Approximately 100% of the Pb applied was removed from solutions, representing a capacity of 151 mg of Pb/g of apatite, while 49% of Cd and 29% of Zn added were attenuated, with removal capacities of 73 and 41 mg g-1, respectively. The desorption experiments showed that the sorbed Pb stayed intact where only 14–23% and 7–14% of the sorbed Cd and Zn, respectively, were mobilized by the TCLP solutions. The apatite was also effective in removing dissolved Pb, Cd, and Zn leached from the contaminated soil using pH 3–12 solutions by 62.3–99.9, 20–97.9, and 28.6–98.7%, respectively. In particular, the apatite was able to reduce the metal concentrations in the TCLP-extracted soil leachates to below US EPA maximum allowable levels, suggesting that apatite could be used as a cost-effective option to remediating metal-contaminated soils, wastes, and/or water. The sorption mechanisms are variable in the reactions between the apatite and dissolved Pb, Cd, and Zn. The Pb removals primarily resulted from the dissolution of the apatite followed by the precipitation of hydroxyl fluoropyromorphite. Minor otavite precipitation was observed in the interaction of the apatite with aqueous Cd, but other sorption mechanisms, such as surface complexation, ion exchange, and the formation of amorphous solids, are primarily responsible for the removal of Zn and Cd.  相似文献   

3.
The objective of this study was to investigate sorption, desorption, and immobilization of Pb in the clay and calcareous loamy sand soils treated with inorganic ligands (NO3?, Cl? and H2PO4?). Pb sorption was also determined in the presence of oxalate and citrate. The maximum Pb sorption capacities (q) ranged from 42.2 to 47.1 mmol kg?1 for the clay soil, and from 45.2 to 47.0 mmol kg?1 for loamy sand soil. It was observed that the binding energy constant (k) for Pb sorbed onto loamy sand soil (528–1061) is higher than that for clay soil (24.38–55.29). The loamy sand soil-sorbed greater quantities of Pb compared to the clay soil when initial pH was ≥ 3. However, it had lower sorption capacity at the lowest initial pH of 2. Additionally, the greatest Pb sorption and immobilization occurred in the soil treated with H2PO4. In the clay soil, the sorption of Pb was depressed at 0.1 mol kg?1 of Cl?, as compared with other ligands. Concerning organic acids, citrate ligand showed the highest decrease in Pb sorption. It could be concluded that the nature of Pb sorption can depend on the type and quantity of ligands present, as well as the soil type.  相似文献   

4.
The hydrous oxides of Mn, Fe, and Al avidly sorbed Sb from μM Sb(OH), solutions, with uptake levelling off as initial Sb concentration increased. Capacity values decreased along the sequence MnOOH > Al(OH)3 > FeOOH. The amount sorbed by each substrate decreased gradually at pH values > 6. Addition of 0.4M CH3COONa to the aqueous phase (to minimise retention of weakly bound Sb) had little effect on MnOOH uptake capacity (~160 mmol, kg?1 at pH < 7) but retention dropped rapidly at higher pH. With the other two substrates (pH 6–7) the calculated capacity values for specific Sb sorption were ~ 45 mmol kg?1 FeOOH and ~ 33 mmol kg? Al(OH)3; about a third of the total capacity values. On these substrates specific Sb sorption tended to peak in the pH 7 to 8 region. The pH response pattern was modified using Sb tartrate sorbate solutions. Factors influencing Sb sorption included substrate surface charge, chemical form of Sb and surface interactions. Formation of a sparingly soluble metal coating was indicated by the uptake plateaus observed when increasing amounts of solid were added to Sb solutions containing acetate.  相似文献   

5.
The sorption of metal ions (Pb2+, Zn2+ and Cu2+) and soil humic acids (HA) from aqueous solutions onto mineral particles (sand, calcite and clay) was investigated using a batch equilibrium system. The sorption reactions in two- component systems (heavy metals-mineral particles and humic acids- mineral particles), as well as interactions in three-component system (heavy metals-humic acids-mineral particles) were examined. Results showed that the presence of humic acids, dissolved or bound onto mineral surfaces, considerably influenced the fixation of heavy metals. The various effects, depending on mineral type, humic concentration and specific metal-ion, were observed in three- component system. Sorption of Cu2+-ions on all minerals studied rapidly increased as the concentration of dissolved HA increased. The amount of Pb2+-ions sorbed on sand slightly decreased, while on kaolin increased between 15 and 20%. Sorption of Zn2+-ions on all minerals studied decreased at pH 4. At pH 5.5 the sorption of Zn2+-ions onto calcite decreased, while on kaolin and sand increased as a function of the humic acid concentration giving the curve with maximum at c(HA) = 2.5 mmol C L-1. At pH 6.5 sorption onto kaolin and sand increased. This effect occurs as a result of the conditional stability constant of Zn-HA complexes increasing at higher pH which in turn promotes the chelation of Zn2+-ions to mineral- bound humic substances. The enhanced sorption of metal ions from the aqueous phase in three-component systems is not only the result of mineral sorption of free metals but also the result of chelation with HA sorbed on the mineral surface.  相似文献   

6.
Soil/solution partitioning of trace metals (TM: Cd, Co, Cr, Cu, Ni, Sb, Pb and Zn) has been investigated in six French forest sites that have been subjected to TM atmospheric inputs. Soil profiles have been sampled and analysed for major soil properties, and CaCl2‐extractable and total metal content. Metal concentrations (expressed on a molar basis) in soil (total), in CaCl2 extracts and soil solution collected monthly from fresh soil by centrifugation, were in the order: Cr > Zn > Ni > Cu > Pb > Co > Sb > Cd , Zn > Cu > Pb = Ni > Co > Cd > Cr and Zn > Ni > Cu > Pb > Co > Cr > Cd > Sb , respectively. Metal extractability and solubility were predicted by using soil properties. Soil pH was the most significant property in predicting metal partitioning, but TM behaviour differed between acid and non‐acid soils. TM extractability was predicted significantly by soil pH for pH < 6, and by soil pH and Fe content for all soil conditions. Total metal concentration in soil solution was predicted well by soil pH and organic carbon content for Cd, Co, Cr, Ni and Zn, by Fe content for Cu, Cr, Ni, Pb and Sb and total soil metal content for Cu, Cr, Ni, Pb and Sb, with a better prediction for acidic conditions (pH < 6). At more alkaline pH conditions, solute concentrations of Cu, Cr, Sb and Pb were larger than predicted by the pH relationship, as a consequence of association with Fe colloids and complexing with dissolved organic carbon. Metal speciation in soil solutions determined by WHAM‐VI indicated that free metal ion (FMI) concentration was significantly related to soil pH for all pH conditions. The FMI concentrations of Cu and Zn were well predicted by pH alone, Pb by pH and Fe content and Cd, Co and Ni by soil pH and organic carbon content. Differences between soluble total metal and FMI concentrations were particularly large for pH < 6. This should be taken into account for risk and critical load assessment in the case of terrestrial ecosystems.  相似文献   

7.
《Geoderma》2005,124(1-2):91-104
The bioavailability and ultimate fate of heavy metals in the environment are controlled by chemical sorption. To assess competitive sorption of Pb and Cd, batch equilibrium experiments (generating sorption isotherms) and kinetics sorption studies were performed using single and binary metal solutions in surface samples of four soils from central Spain. For comparisons between soils, as well as, single and binary metal solutions, soil chemical processes were characterized using the Langmuir equation, ionic strength, and an empirical power function for kinetic sorption. In addition, soil pH and clay mineralogy were used to explain observed sorption processes. Sorption isotherms were well described by the Langmuir equation and the sorption kinetics were well described by an empirical power function within the reaction times in this study. Soils with higher pH and clay content (characterized by having smectite) had the greatest sorption capacity as estimated by the maximum sorption parameter (Q) of the Langmuir equation. All soils exhibited greater sorption capacity for Pb than Cd and the presence of both metals reduced the tendency for either to be sorbed although Cd sorption was affected to a greater extent than that of Pb. The Langmuir binding strength parameter (k) was always greater for Pb than for Cd. However, these k values tended to increase as a result of the simultaneous presence of both metals that may indicate competition for sorption sites promoting the retention of both metals on more specific sorption sites. The kinetic experiments showed that Pb sorption is initially faster than Cd sorption from both single and binary solutions although the simultaneous presence of both metals affected the sorption of Cd at short times while only a minor effect was observed on Pb. The estimated exponents of the kinetic function were in all cases smaller for Pb than for Cd, likely due to diffusion processes into micropores or interlayer space of the clay minerals which occurs more readily for Cd than Pb. Finally, the overall sorption processes of Pb and Cd in the smectitic soil with the highest sorption capacity of the studied soils are slower than in the rest of the soils with a clay mineralogy dominated by kaolinite and illite, exhibiting these soils similar sorption rates. These results demonstrate a significant interaction between Pb and Cd sorption when both metals are present that depends on important soil properties such as the clay mineralogy.  相似文献   

8.
Abstract

Laboratory experiments were carried out to evaluate lead (Pb), copper (Cu), zinc (Zn), and cadmium (Cd) sorption‐desorption by three soils of contrasting characteristics. Talamanca (silt loam, montmorillonite, Calcic Haploxeralfs), Mazowe (clay, kaolinite, Rhodic Kandiustalf), and Realejos (sandy silt loam, allophane, Typic Hapludands). A second objective was to study the effect of nitriloacetic acid (NTA) on the sorption process. The Talamanca soil, which had a native pH of 6.4 and presented the highest effective cation exchange capacity (ECEC), sorbed more of each of the metal tested than did the other two soils. When the other two soils were compared metal sorption was also related to pH and ECEC. The very low sorption capacity showed by Realejos may be attributed to the low net surface negative charge density of this soil, arising from its allophanic nature. A common feature of the three soils was the relative strong sorption of both Pb and Cu relative to Cd and Zn with Pb showing the highest sorption levels. The selectivity sequences of metals retention were Pb>Cu>Zn>Cd for Talamanca soil, Pb>Cu>Zn≈Cd for Mazowe, and Pb>Cu>Cd>Zn for Realejos. Metal desorption values were low. The order of metal desorption (Cd≈Zn>Cu>Pb) was the same for the three soils studied. Quantitative differences observed in the extractability of the sorbed metals between the soils (Realejos>Mazowe>Talamanca) indicated that soil properties which enhanced metal sorption contributed at the same time to slow down the backward reaction. The addition of NTA to the soil suspension significantly depressed metal sorption by the three soils investigated. Compared with the free ligand system Pb, Cu, Zn, and Cd sorption in the presence of NTA decreased roughly 50%.  相似文献   

9.
土层性质对铜和铅在土壤中保持和迁移的影响   总被引:1,自引:0,他引:1  
The mobility and bioavailability of heavy metals in soils is largely governed by sorption and desorption phenomena.Cu2+ and Pb2+ are among the most potentially toxic heavy metals and they are present,often concomitantly,in many polluting spills and in agrochemicals.The objective was to assess and compare the competitive sorption and desorption capacities and sorption hysteresis of Cu2+ and Pb2+,as well as their migration through the profiles of four natural soils:a Humic Umbrisol,an Umbric Cambisol,an Endoleptic Luvisol and a Humic Cambisol.In all horizons Pb2+ was invariably sorbed and retained to a greater extent than Cu2+.The sorption and retention of Cu2+ were most in?uenced by pH,e?ective cation exchange capacity(CECe) and Mn oxide content.On the other hand,the fixation capacity of Pb2+ was most in?uenced by pH,CECe,and Mn oxide and organic matter contents.pH and CECe were the individual soil properties most markedly in?uencing Cu2+ and Pb2+ sorption and retention.In all the horizons Pb2+ exhibited greater hysteresis than Cu2+.In each soil the hysteresis in the A horizon was greater than that in the B horizon,except in the Bt horizon of the Endoleptic Luvisol,due to its high pH and vermiculite content.Based on migration indices,Pb2+ was less mobile than Cu2+ in the studied soils.  相似文献   

10.
The effects of phosphate on zinc sorption by a soil   总被引:6,自引:0,他引:6  
Zinc sorption curves were obtained after treatment of a soil with several rates of phosphate and with two rates of lime. The lime permitted evaluation of the effects of phosphate on Zn sorption via its effects on pH. The phosphate was either incubated with the soil at a high temperature before reaction with Zn or was supplied at the same time as the Zn. This produced treatments with similar concentration of phosphate in solution but different amounts of sorbed phosphate.
Two distinct effects of phosphate addition on Zn sorption were detected. One arose from effects of phosphate on pH. This effect could be large and could either increase or decrease Zn sorption depending on the direction of the pH effect. A second effect was correlated with the amount of sorbed phosphate and was assumed to operate through the effects of phosphate on charge. The effects were small at low levels of Zn but larger at higher levels. This suggested that Zn and phosphate were sorbed at opposite ends of a spectrum of electrostatic potentials and overlap only occurred when the level of application was high. A third possible effect, due to reaction of the soil with zinc phosphate complexes in solution, was not proved.  相似文献   

11.

Purpose

Combined contamination of lead (Pb), cadmium (Cd), and arsenic (As) in soils especially wastewater-irrigated soil causes environmental concern. The aim of this study is to develop a soil amendment for simultaneous immobilization of Pb, Cd, and As in combinative contaminated soil.

Materials and methods

A soil amendment of iron hydroxyl phosphate (FeHP) was prepared and characterized, and its potential application in simultaneous immobilization of Pb, Cd, and As in combined contaminated soil from wastewater-irrigated area was evaluated. The effects of FeHP dosage, reaction time, and soil moisture on Pb, Cd, and As immobilization in the soil were examined.

Results and discussion

The immobilization efficiencies of Pb, Cd, and As generally increased with the increasing of FeHP dosage. With FeHP dosage of 10 %, the immobilization percentages of NaHCO3-extractable As and DTPA-extractable Pb and Cd reached 69, 59, and 44 %, respectively. The equilibrium time required for immobilization of these contaminants was in the following order: NaHCO3-extractable As (0.25 days) < DTPA-extractable Cd(3 days) < DTPA-extractable Pb (7 days). However, the immobilization efficiencies of Pb, Cd, and As have not changed much under soil moisture varied from 20 to 100 %. According to the results of the sequential extraction, the percentages of Pb, Cd, and As in residual fractions increased after the application of FeHP amendment, while their percentages in exchangeable fractions decreased, illustrating that FeHP can effectively decrease the mobilities and bioavailabilities of Pb, Cd, and As in the soil. Moreover, the application of FeHP will not have soil acidification and soil structure problem based on the soil pH measurements and soil morphology.

Conclusions

FeHP can immobilize Pb, Cd, and As in the combinative contaminated soil from wastewater irrigation area simultaneously and effectively. Thus, it can be used as a potential soil amendment for the remediation of Pb, Cd, and As-combined contaminated soil.
  相似文献   

12.
生物炭/石灰混施对重金属复合污染土壤的稳定化效应   总被引:1,自引:0,他引:1  
采用室内模拟实验,以南方砷镉铅复合污染的酸性红壤为对象,利用化学钝化原理,探讨钝化材料对重金属稳定化的技术效果及应用配方,以期为砷镉铅复合污染红壤修复与安全利用提供依据。具体做法为:选择生物炭(BC)和石灰(SH)为钝化材料,以土壤重量的1%、4%为材料添加量,单一或混合施用于砷镉铅复合污染土壤,并于恒温(25℃)条件下培养60d,在实验进行至第1天、第30天、第60天时取样,测定红壤酸碱度(pH)和水溶态(Water soluble)有效砷(As)、镉(Cd)、铅(Pb)即WSAs、WSCd、WSPb含量,以及土壤重金属As、Cd、Pb结合态含量与占比的变化,明确生物炭石灰单/混施对重金属的稳定化效应。结果表明:生物炭/石灰无论单施或混施均能不同程度地降低土壤中水溶态WSCd和WSPb含量,钝化效率分别为33.51%~78.89%和9.05%~96.24%。而材料单施(1BC、4SH)和两者混施高用量(4BC4SH)处理,均能大幅降低土壤中有效As含量,钝化效率为10.25%~55.27%,其中以两者混施高用量(4BC4SH)处理对土壤重金属As、Cd、Pb协同钝化的效果最佳,当培养实验进行至第60天时,钝化效率依次达55.27%、76.39%和96.24%。培养后土壤中As形态由易被植物吸收的非专性吸附态、专性吸附态转化为稳定的残渣态,土壤中Cd和Pb则由活性最强的酸可提取态转化为残渣态,土壤中As、Cd、Pb的稳定化效应明显,迁移系数下降;此外,生物炭/石灰的单施及混合施用,均可导致土壤酸碱度(pH)显著提升(P<0.05),有利于南方酸化土壤的改良。总体而言,本研究中生物炭/石灰两者混施高用量水平下(4BC4SH)土壤重金属的钝化效果最优,可实现对As、Cd和Pb复合污染红壤的稳定化修复。  相似文献   

13.
An experiment was conducted to observe the phosphate sorption potential of some soils of Bangladesh. Three soil series of calcareous origin, namely Sara (Aquic Eutrochrept), Gopalpur (Aquic Eutrochrept) and Ishurdi (Aeric Haplaquept), and two soil series of non-calcareous origin, namely Tejgaon (Rhodic Paleustult) and Ghatail (Aeric Haplaquept), were selected. The soils were equilibrated with dilute solution of calcium chloride containing graded concentrations of phosphate (0, 1, 2, 5, 10, 25 and 50?μg?P?mL?1), and the amount of phosphate sorbed or desorbed was determined. Although all the soils showed potential for sorbing phosphate from applied phosphorus, their ability to sorb phosphorus differed. Increasing rates of phosphate application increased the amount of P sorption but reduced phosphate sorption percentage in all soils except Tejgaon. Phosphate was sorbed by the soils in the order: Tejgaon > Ghatail > Ishurdi > Gopalpur > Sara at 50?μg?P?mL?1 application. Soils possessing higher amounts of free iron oxide and clay sorbed more phosphate from applied phosphorus.  相似文献   

14.
Sorption and desorption of cobalt by soils and soil components   总被引:2,自引:0,他引:2  
The sorption of Co by individual soil components was studied at solution Co concentrations that were within the range found in natural soil solutions. Soil-derived oxide materials sorbed by far the greatest amounts of Co although substantial amounts were also sorbed by organic materials (humic and fulvic acids). Clay minerals and non-pedogenic iron and manganese oxides sorbed relatively little Co. It is considered that clay minerals are unlikely to have a significant influence on the sorption of Co by whole soils. Cobalt sorbed by soil oxide material was not readily desorbed back into solution and, in addition, rapidly became non-isotopically exchangeable with solution Co. In contrast, Co was relatively easily desorbed from humic acid and a large proportion of the Co sorbed by humic acid remained isotopically exchangeable. Cobalt sorbed by montmorillonite was more easily desorbed than that sorbed by soil oxide but less easily than that sorbed by humic acid. Cobalt sorption isotherms for whole soils at low site coverage were essentially linear and the gradients of isotherms increased with pH. A comparison of isotherm gradients for whole soils and individual soil components supported the suggestion that Co sorption in whole soils is largely controlled by soil oxide materials.  相似文献   

15.
The objective of this study was to examine the effect of soil pH on zinc (Zn) sorption and desorption for four surface soils from the Canterbury Plains region of New Zealand. Zinc sorption by the soils, adjusted to different pH values, was measured from various initial solution Zn concentrations in the presence of 0.01 M calcium nitrate [Ca(NO3)2]. Zinc desorption isotherms were derived from the cumulative Zn desorbed (µg g?1 soil) after each of 10 desorption periods by sequentially suspending the same soil samples in fresh Zn‐free 0.01 M Ca(NO3)2. Zinc sorption and desorption varied widely with soil pH. Desorption of both native and added Zn decreased continuously with rising pH and became very low at pH values greater than 6.5. The proportion of sorbed Zn that could be desorbed back into solution decreased substantially as pH increased to more than 5.5. However, there were differences between soils regarding the extent of the hysteresis effect.  相似文献   

16.
Abstract

In this study the influence of zeolite application and soil liming on cadmium (Cd) sorption by soils in Greece was investigated. The zeolite was natural and consisted mainly of clinoptilolite. The soil samples were strongly acid surface horizons of an Alfisol limed from a pH of 4.0 to 8.5, and a neutral Bt horizon. The result showed that liming and zeolite application substantially increased sorption of Cd in the soils. Cadmium sorption was described adequately by the Freundlich equation whereas the Langmuir model failed to describe Cd sorption in the soils. The Freundlich constant K increased in value by zeolite application as well as by soil liming. A strong relationship was observed between this parameter and soil pH. A high percentage of cadmium sorbed was released in the desorption procedure. The amount of Cd released was reduced by zeolite application as well as by soil liming. It is concluded that zeolite application as well as soil liming increased Cd sorption by the soils.  相似文献   

17.
The effect of pH on the adsorption of copper (Cu), lead (Pb) and cadmium (Cd) by a peat soil was studied, and the results compared with those corresponding to cation binding by a dissolved peat humic acid (HA), and interpreted with a NICA–Donnan model. A potentiometric titration technique was used to determine the adsorption isotherms for H+, at different ionic strengths, and for Cu2+, Pb2+ and Cd2+ at different pH values, in a peat soil. The effect of the ionic strength on proton binding was similar for the soil (solid) organic matter and for dissolved HA. The adsorption isotherms for cation–peat and the binding curves cation–dissolved HA are almost parallel, although more cation was adsorbed per kg of C in the dissolved HA. The effect of pH on cation binding is similar for dissolved organic matter and for the organic soil. At low metal concentration the amount of adsorbed metal followed the order Cu2+ > Pb2+ > Cd2+. The cation-binding parameters obtained with the NICA–Donnan model allow excellent simulation of the effect of pH on the adsorption of Cu, Pb and Cd ions in the studied peat soil. The binding constants for the peat suspension were greater than the corresponding generic parameters for dissolved HA. Speciation calculations showed that for Cu and Pb, the most abundant fraction was the metal adsorbed on peat, whereas for Cd the most abundant fraction was dissolved metal.  相似文献   

18.
结合吸附实验和X光吸收精细结构光谱(XAFS)分析,研究了草酸根和胡敏酸对As(V)在红壤中吸附的影响,分析了As(V)在红壤中的化学形态和微观结构以及草酸根、胡敏酸的影响特征。结果表明,当pH6.0时,红壤主要是通过基团交换反应吸附As(V),草酸根和胡敏酸可以通过竞争吸附位点抑制红壤中As(V)的吸附,其抑制作用随浓度增大而增强。XAFS光谱学数据表明,红壤中吸附的砷以+5价态存在,主要与铁铝矿物形成以约0.317 nm As-Al和0.328 nm As-Fe原子间距为特征的双齿双核结构的内层复合物,复合物结构类型不受砷浓度和草酸根、胡敏酸的影响。  相似文献   

19.
Abstract

The sorption of Cu and Zn on soils, as a function of pH, is important to an understanding of their mobility in the soil solution and their availability for plant nutrition. Copper and Zn sorption as a function of the pH were measured for six B horizons of two Orthic Humic Gleysols, two Orthic Humo‐Ferric Podzols, one Orthic Dystric Brunisol and one Orthic Sombric Brunisol. The results show that: 1) for the same amount of metal in solution and the same pH, more Cu is sorbed than Zn and 2) there is a maximum of sorption at or just above pH 5.00 and a large decrease as pH decreases.

During the pH‐dependent sorption of Cu and Zn on six B horizons of Quebec soils, it was found that ions were released into solution thus altering the charge generated by the soil at low pH and the sorption behavior of Cu and Zn. The solid phase most likely to control the level of ions in solution is believed to be the amorphous and oxide forms of Al and Fe. The dissolution of these metal oxide or hydrous oxide materials also releases cations adsorbed on, or occluded in, the amorphous material.  相似文献   

20.
施入粉煤灰和污泥对酸性淋溶土镉和铅吸附的影响   总被引:1,自引:0,他引:1  
The safe recycling of fly ash (FA) and sewage sludge (SS) in the agricultural processes comprises an important environmental technology on waste management. Soils amended with FA and SS may change their ability to adsorb heavy metals due to either increase of soil pH or decomposition of sludge-borne organic matter. Thus, Cd and Pb sorption was investigated by 1-month incubation under soil moisture content at field capacity and room temperature with an acidic Typic Haploxeroalf from central Greece amended with varying amounts of FA and SS. Batch experiments were conducted by equilibrating the soil samples with CaCl2 solutions containing 0-400 mg Pb L-1 or 0-100 mg Cd L-1. The results showed that the Freundlich equation described well the Cd and Pb sorption. Distribution coefficient (Kd) values of Pb were higher than those of Cd in all the treatments of this study. Application of FA increased Kd values for Cd and Pb to 8.2 and 2.3 times more than the controls, respectively. Simultaneous applications of FA and SS caused a Kd increase of 3.8 and 2.1 times compared to the treatments that received only SS for Cd and Pb, respectively. Treatment of SS alone did not significantly change Cd and Pb sorption compared to the controls. The sorption reactions seemed to be mainly affected by soil pH, which was revealed by the significant correlations of Cd and Pb sorption with soil pH. These suggested that fly ash was very useful as a low-cost adsorbent for Cd and Pb and could be used as an ameliorant for biosolid-amended acidic soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号