首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quinoa (Chenopodium quinoa) is a hardy and nutritious Latin American pseudo-cereal. Studies on the seeds led to the isolation of five ecdysteroids using column chromatography. Their structures were determined as ecdysterone, makisterone A, 24-epi-makisterone A, 24(28)-dehydromakisterone A, and 20,26-dihydroxyecdysone by spectroscopic methods. This study demonstrates that quinoa seeds are a source of ecdysteroids, which were reported to be molting hormones in insects.  相似文献   

2.
Six triterpenoid saponins were isolated from the seeds of Chenopodium quinoa (Chenopodiaceae). Their structures were as follows: phytolaccagenic acid 3-O-[alpha-L-arabinopyranosyl-(1' '-->3')-beta-D-glucuronopyranosyl]-28-O-beta-D-glucopyranoside (1); spergulagenic acid 3-O-[beta-D-glucopyranosyl-(1-->2)-beta-D-glucopyranosyl-(1-->3)-alpha-L-arabinopyranosyl-28-O-beta-D-glucopyranoside (2); hederagenin 3-O-[beta-D-glucopyranosyl-(1-->3)-alpha-L-arabinopyranosyl]-28-O-beta-D-glucopyranoside (3); phytolaccagenic acid 3-O-[beta-D-glucopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->4)-beta-D-glucopyranosyl]-28-O-beta-D-glucopyranoside (4); hederagenin 3-O-[beta-D-glucopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->4)-beta-D-glucopyranosyl]-28-O-beta-D-glucopyranoside (5); and spergulagenic acid 3-O-[alpha-L-arabinopyranosyl-(1' '-->3')-beta-D-glucuronopyranosyl]-28-O-beta-D-glucopyranoside (6). Saponins 5 and 6 are new. The structures were characterized on the basis of hydrolysis and spectral evidence, including IR, UV, optical rotations, 1D- and 2D-NMR (HMQC and HMBC), ESIMS, and FABMS analyses.  相似文献   

3.
At least 16 saponins were detected in the seeds of Chenopodium quinoa. The 5 previously isolated major saponins, 3-O-beta-D-glucuronopyranosyl oleanolic acid 28-O-beta-D-glucopyranosyl ester, 3-O-alpha-L-arabinopyranosyl hederagenin 28-O-beta-D-glucopyranosyl ester, 3-O-beta-D-glucopyranosyl-(1-->3)-alpha-L-arabinopyranosyl hederagenin 28-O-beta-D-glucopyranosyl ester, 3-O-alpha-L-arabinopyranosyl phytolaccagenic acid 28-O-beta-D-glucopyranosyl ester, 3-O-beta-D-glucopyranosyl-(1-->3)-alpha-L-arabinopyranosyl phytolaccagenic acid 28-O-beta-D-glucopyranosyl ester, and the new saponin 3-O-beta-D-glucopyranosyl-(1-->3)-alpha-L-arabinopyranosyl phytolaccagenic acid were isolated and characterized using mainly NMR spectroscopy, mass spectrometry, and chemical methods. The antifungal activity against Candida albicans and hemolytic activity on erythrocytes of these compounds and derived monodesmosides were evaluated. Both bidesmosides and derived monodesmosides showed little or no antifungal activity, whereas a comparatively higher degree of hemolytic activity could be determined for monodesmosides.  相似文献   

4.
Six triterpenoid saponins were isolated from the edible grain quinoa, which is seeds of Chenopodium quinoa (Chenopodiaceae). Following are their structures: phytolaccagenic acid 3-O-[alpha-L-arabinopyranosyl-(1' '-->3')-beta-D-glucuronopyranosyl]-28-O-beta-D-glucopyranoside (1); phytolaccagenic acid 3-O-[beta-D-glucopyranosyl-(1' '-->3')-alpha-L-arabinopyranosyl]-28-O-beta-D-glucopyranoside (2); phytolaccagenic acid 3-O-[beta-D-glucopyranosyl-(1' "-->3' ')-beta-D-xylopyranosyl-(1' '-->2')-beta-D-glucopyranosyl]-28-O-beta-D-glucopyranoside (3); phytolaccagenic acid 3-O-[beta-D-glucopyranosyl-(1' "-->2' ')-beta-D-glucopyranosyl-(1' '-->3')-alpha-L-arabinopyranosyl]-28-O-beta-D-glucopyranoside (4); oleanolic acid 3-O-[alpha-L-arabinopyranosyl-(1' '-->3')-beta-D-glucuronopyranosyl]-28-O-beta-D-glucopyranoside (5); and oleanolic acid 3-O-[beta-D-glucopyranosyl-(1' '-->3')-alpha-L-arabinopyranosyl]-28-O-beta-D-glucopyranoside (6). The oleanane-type saponins (5, 6) were isolated for the first time in this plant, two of the phytolaccagenane (1, 3) were new compounds and two (2, 4) were previously found in quinoa. The structures were characterized on the basis of hydrolysis and spectral evidence, including 1D- and 2-D NMR (HMQC and HMBC) and ESI-MS analyses.  相似文献   

5.
The adjuvant activity of Chenopodium quinoa (quinoa) saponins on the humoral and cellular immune responses of mice subcutaneously immunized with ovalbumin (OVA) was evaluated. Two quinoa saponin fractions were obtained, FQ70 and FQ90, and 10 saponins were determined by UPLC/Q-TOF-MS. Mice were immunized subcutaneously with OVA alone or adjuvanted with Quil A (adjuvant control), FQ70, or FQ90. FQ70 and FQ90 significantly enhanced the amount of anti-OVA-specific antibodies in serum (IgG, IgG1, and IgG2b) in immunized mice. The adjuvant effect of FQ70 was significantly greater than that of FQ90. However, delayed type hypersensitivity responses were higher in mice immunized with OVA adjuvanted with FQ90 than mice treated with FQ70. Concanavalin A (Con A)-, lipopolysaccharide-, and OVA-stimulated splenocyte proliferation were measured, and FQ90 significantly enhanced the Con A-induced splenocyte proliferation. The results suggested that the two quinoa saponin fractions enhanced significantly the production of humoral and cellular immune responses to OVA in mice.  相似文献   

6.
Quinoa is a pseudocereal from South America that has received increased interest around the world because it is a good source of different nutrients and rich in antioxidant compounds. Thus, this study has focused on the effects of different agronomic variables, such as irrigation and salinity, on the phenolic and saponin profiles of quinoa. It was observed that irrigation with 25% of full water restitution, with and without the addition of salt, was associated with increases in free phenolic compounds of 23.16 and 26.27%, respectively. In contrast, bound phenolic compounds were not affected by environmental stresses. Saponins decreased if samples were exposed to drought and saline regimens. In situations of severe water deficit, the saponins content decreased 45%, and 50% when a salt stress was added. The results suggest that irrigation and salinity may regulate the production of bioactive compounds in quinoa, influencing its nutritional and industrial values.  相似文献   

7.
Triterpene saponins from Medicago truncatula aerial parts have been separated and their structures determined by the extensive use of 1D- and 2D-NMR experiments including 1H-1H (DQF-COSY, 1D-TOCSY) and 1H-13C (HSQC, HMBC) spectroscopy along with ESIMS. Fifteen individual compounds were isolated that included seven medicagenic acid and eight zanhic acid glycosides. Additionally, two soyasapogenol B and soyasapogenol E glycosides were identified by MS/MS and TLC. Four medicagenic acid glycosides (5, 11, 12, 14) and eight zanhic acid glycosides (1-4, 6-9) are reported here for the first time. The common feature of M. truncatula aerial part saponins is the (1-->3) linkage between the two glucose units at C-3 of medicagenic and zanhic acids, which is different from that found in alfalfa (Medicago sativa), where this linkage was always (1-->2). This may suggest differences in glucosyltransferases between these two Medicago species.  相似文献   

8.
A new liquid chromatography methodology coupled to a diode array detector and a time-of-flight mass spectrometer has been developed for the simultaneous determination of phenolic compounds and saponins in quinoa (Chenopodium quinoa Willd). This method has allowed the simultaneous determination of these two families of compounds with the same analytical method for the first time. A fused-core column C18 has been used, and the analysis has been performed in less than 27 min. Both chromatographic and electrospray ionization time-of-flight mass spectrometry parameters have been optimized to improve the sensitivity and to maximize the number of compounds detected. A validation of the method has also been carried out, and free and bound polar fractions of quinoa have been studied. Twenty-five compounds have been tentatively identified and quantified in the free polar fraction, while five compounds have been tentatively identified and quantified in the bound polar fraction. It is important to highlight that 1-O-galloyl-β-D-glucoside, acacetin, protocatechuic acid 4-O-glucoside, penstebioside, ethyl-m-digallate, (epi)-gallocatechin, and canthoside have been tentatively identified for the first time in quinoa. Free phenolic compounds have been found to be in the range of 2.746-3.803 g/kg of quinoa, while bound phenolic compounds were present in a concentration that varies from 0.139 and 0.164 g/kg. Indeed, saponins have been found to be in a concentration that ranged from 5.6 to 7.5% of the total composition of whole quinoa flour.  相似文献   

9.
Abstract

Sensitivity to photoperiod in quinoa (Chenopodium quinoa Willd.) was studied under controlled conditions to enhance crop adaptation to environments outside its centre of origin. Two varieties, a traditional variety from Bolivia (Real), which will not mature under Danish conditions, and an early maturing variety (Q52), developed for Danish climatic conditions, were used in this reciprocal transfer experiment. Plants were moved from a short daylength of 10 h (SD) to a long daylength of 18 h (LD) and vice versa at set intervals from sowing to 100 days after sowing (DAS). A reaction of LD in time to flowering was observed only in the Bolivian variety Real. Under SD both varieties flowered after 39 DAS. For Real the LD regime resulted in a moderate increase in time to flowering to 44 DAS. The non-sensitive, juvenile period in Real was estimated to be approximately 16 days. In Q52 a moderate increase in the number of leaves was formed on the main stem after flowering at LD, which indicates that some daylength sensitivity remains. The most striking difference occurred during seed filling, when going from SD to LD. In Q52 the time from the end of flowering to maturity increased from 39 to 52 days. Under SD, Real had a seed-filling period similar to Q52, but at LD Real remained with green leaves during seed filling. Hard seed was observed in the still green perigonium 57 days after end of flowering. At this moment re-shooting occurred from the inflorescence, and seed maturity was not reached at the termination of the experiment at 150 DAS. This study shows that flower induction is not a major problem for adaptation of quinoa to North European conditions but that a very strong, daylength sensitive, stay green reaction is the main cause of the late maturity of South American introductions.  相似文献   

10.
Genetic Resources and Crop Evolution - Chenopodium quinoa Willd. is a species of great interest for global food security because of its ability to adapt to different environmental conditions and...  相似文献   

11.
Fourteen triterpene saponins (1-14) have been isolated from the roots of Medicago hybrida and their structures elucidated by FAB-MS and NMR analysis. Two of them are new compounds and were identified as hederagenin 3-O-[alpha-L-rhamnopyranosyl(1-->2)-beta-D-glucopyranosyl(1-->2)-beta-D-glucopyranosyl]-28-O-beta-D-glucopyranoside (7) and oleanolic acid 3-O-[beta-D-galactopyranosyl(1-->2)-beta-D-glucuronopyranosyl]-28-O-[alpha-L-rhamnopyranosyl(1-->4)-beta-D-glucopyranoside] (14). Seven saponins being mono- and bidesmosides of hederagenin (1, 5, 6, 9), one bidesmoside of bayogenin (2), and two bidesmosides of 2beta,3beta-dihydroxyolean-12-en-23-al-28-oic acid (11) and oleanolic acid (13) are known compounds but not previously reported as saponin constituents of Medicago, whereas five other saponins, being mono- and bidesmosides of medicagenic acid (3, 4, 8, 10, 12), and one monodesmoside of hederagenin (8) have been previously isolated from other Medicago species. The presence of 2beta,3beta-dihydroxyolean-12-en-23-al-28-oic acid might represent an interesting intermediate in the biosynthesis of these substances.  相似文献   

12.
Triterpene saponins from aerial parts of Medicago arabica L   总被引:3,自引:0,他引:3  
Eight major triterpene saponins have been isolated from the aerial parts of Medicago arabica and their structures elucidated by FAB-MS and NMR analysis. Three of them are new compounds and are identified as 3-O-(alpha-L-arabinopyranoside) bayogenin, 3-O-(alpha-L-arabinopyranosyl), 28-O-(beta-D-glucopyranoside) bayogenin, and 3-O-[alpha-L-arabinopyranosyl(1-->2)-beta-D-glucuronopyranosyl], 28-O-beta-D-glucopyranoside 2-beta-hydroxyoleanolic acid. Two saponins, identified as 3-O-(alpha-L-arabinopyranoside) hederagenin and 3-O-(alpha-L-arabinopyranosyl), 28-O-(beta-D-glucopyranoside) hederagenin are known compounds but not previously reported as saponin constituents of Medicago species, while three other saponins, being mono- and bidesmosides of hederagenin, have been previously isolated from roots of M. sativa.  相似文献   

13.
采用96孔板微量法和牛津杯法研究藜麦种子总黄酮对大肠杆菌、金黄色葡萄球菌、枯草芽孢杆菌、白色念珠菌、铜绿假单胞菌的抑制作用。结果表明,藜麦种子总黄酮对供试菌株的抑制效果由大到小顺序为大肠杆菌、枯草芽孢杆菌、白色念珠菌、铜绿假单胞菌,对金黄色葡萄球菌基本没有抑菌作用。最低抑菌浓度值分别为:大肠杆菌32 mg/mL、枯草芽孢杆菌64 mg/mL、白色念珠菌128 mg/mL、铜绿假单胞菌256 mg/mL、金黄色葡萄球菌512 mg/mL。说明藜麦种子总黄酮对大肠杆菌、枯草芽孢杆菌、白色念珠菌和铜绿假单胞菌有抑菌作用,对金黄色葡萄球菌不敏感。  相似文献   

14.
The objectives of this work were to investigate the nutritional and physicochemical characteristics as well as the functional properties of quinoa protein isolates (QPI) from different varieties, and to determine their potential use of such protein isolates in food products. Proteins were isolated by isoelectric precipitation at pH 5 from quinoa flour, and the QPI had a protein percentage of over 85%. The comparison of the flours and QPI electrophoretic profiles indicated that the extraction method allowed isolating practically all proteins of each variety. All the varieties analyzed had high lysine content, compared with cereals, and the essential amino acid content of Bolivian varieties was higher than varieties from Peru. The pH value affected the solubility and foaming capacity, and the magnitude of effects depended on the variety. Cluster analysis showed a strong influence of variety source and amino acid composition on protein physicochemical and functional properties; samples from Bolivia (cluster 2) were characterized as having the highest thermal stability, oil binding capacity, and water binding capacity at acid pH; samples from Peru (cluster 1) had the highest water binding capacity at basic pH and foaming capacity at pH 5. QPI presented a potential as an alternative vegetable protein for food application, in particular for vegetarian and vegan diets.  相似文献   

15.
Starches from garden orach (Atriplex hortensis) and sweet quinoa (Chenopodium quinoa Willd. ‘Surumi’) seeds were isolated, examined for compositional characteristics, and compared with bitter quinoa (Cheno‐podium quinoa Willd.) starch. Garden orach and sweet quinoa seeds were similar in fat and ash contents, while garden orach seeds contained ≈10% more protein. Starches were isolated from seeds following a 12‐hr soak in dilute alkaline solution using a series of grinding, screening, centrifugation, and washing steps. Isolated starches viewed by scanning electron microscopy yielded angular, polygonal granules ≈1–2 μm in diameter. Starches displayed typical A‐type crystalline packing arrangements as determined by X‐ray powder diffractometry. Apparent amylose contents for garden orach (21.2%), sweet quinoa (20.6%), and bitter quinoa (19.8%) were determined according to colorimetric procedure. Differential scanning calorimetry data indicated a higher and wider gelatinization temperature range for garden orach as compared with sweet and bitter quinoa starches. Starch pasting profiles generated using a Rapid Visco Analyser indicated a reduced peak paste viscosity for garden orach starch relative to sweet and bitter quinoa and common corn starches.  相似文献   

16.
Two new oleanene saponins were isolated from the MeOH extract of the shell of Argania spinosa.They possess protobassic acid and 16alpha-protobassic acid as aglycons. The disaccharide moiety linked to C-3 of the aglycon is made up of two glucose units; the pentasaccharide moiety linked to C-28 is made up of arabinose, xylose, and three rhamnose units. Their structures were elucidated by 1D and 2D NMR experiments including (1)H-(1)H (DQF-COSY, 1D TOCSY, and 2D HOHAHA) and (1)H-(13)C (HSQC and HMBC) spectroscopy along with mass spectrometry.  相似文献   

17.
Determination and toxicity of saponins from Amaranthus cruentus seeds.   总被引:3,自引:0,他引:3  
The concentrations of four triterpene saponins present in amaranth seeds were determined with high-performance liquid chromatography. It was shown that the total concentration of saponins in seeds was 0. 09-0.1% of dry matter. In germinating seeds an increase in concentration to 0.18% was observed after 4 days of germination, which remained stable for the next 3 days and later dropped to 0.09%. Highly purified extracts from the seeds were tested for their toxicity against hamsters. The hydrophobic fraction obtained by the extraction of seeds with methylene chloride showed no toxicity; the behavior of tested animals was similar to that of the group given an equivalent dose of rapeseed oil. A crude saponin fraction, containing approximately 70% of pure saponins in the matrix, showed some toxicity; the approximate lethal dose was calculated as 1100 mg/kg of body weight. It is concluded that low contents of saponins in amaranth seeds and their relatively low toxicity guarantee that amaranth-derived products create no significant hazard for the consumer.  相似文献   

18.
Four new steroidal saponins from the seeds of Allium tuberosum   总被引:3,自引:0,他引:3  
Four new steroidal saponins, 26-O-beta-D-glucopyranosyl-(25S,20R)-20-O-methyl-5alpha-furost-22(23)-en-2alpha,3beta,20,26-tetraol 3-O-alpha-L-rhamnopyranosyl-(1-->2)-[alpha-L-rhamnopyranosyl-(1-->4)]-beta-D-glucopyranoside (1); 26-O-beta-D-glucopyranosyl-(25S,20R)-5alpha-furost-22(23)-en-2alpha,3beta,20,26-tetraol 3-O-alpha-L-rhamnopyranosyl-(1-->2)-[alpha-L- rhamnopyranosyl-(1-->4)]-beta-D-glucopyranoside (2); 26-O-beta-D-glucopyranosyl-(25S,20S)-5alpha-furost-22(23)-en-2alpha,3beta,20,26-tetraol 3-O-alpha-L-rhamnopyranosyl-(1-->2)-[alpha-L- rhamnopyranosyl-(1-->4)]-beta-D-glucopyranoside (3); and 26-O-beta-D-glucopyranosyl-(25S,20S)-5alpha-furost-22(23)-en-3beta,20,26-triol 3-O-alpha-L-rhamnopyranosyl-(1-->2)-[alpha-L-rhamnopyranosyl-(1-->4)]-beta-D-glucopyranoside (4), have been isolated from the seeds of Allium tuberosum. Their structures were established by spectroscopic studies such as MS, IR, NMR, and 2D-NMR and the results of acid hydrolysis and named tuberosides F, G, H, and I, respectively.  相似文献   

19.
为优化藜麦淀粉碱法提取工艺,以藜麦为试验材料,采用岭脊分析法研究料液比、NaOH 质量分数和浸提时间对淀粉提取率的影响,并对藜麦淀粉的颗粒形貌、化学结构及淀粉糊化特性进行研究。结果表明,碱法提取藜麦淀粉的优化工艺参数为料液比1:5 g/mL、NaOH质量分数0.2%和浸提时间5.5 h,淀粉提取率为98.94%±0.26%;藜麦淀粉为限制性膨胀淀粉,形态多呈不规则形,具有-OH、-CH2、-CHO、C-O-C和吡喃环典型淀粉分子官能团;随静置时间增加,淀粉透光率降低,凝沉体积增加,12 h后基本稳定;藜麦淀粉糊第四次冻融循环后达到稳定状态;对淀粉凝胶质构特性分析,硬度、内聚性、弹性、胶黏性和咀嚼性5个指标都随藜麦淀粉糊浓度增加而增大;流变性分析表明藜麦淀粉糊为假塑性流体,其弹性优于黏性。该文系统研究藜麦淀粉提取工艺和糊化特性,拓展了新的淀粉资源,同时也为藜麦淀粉的生产和应用提供一定的借鉴和参考。  相似文献   

20.
The amylose concentration in starch from 16 quinoa (Chenopodium quinoa Willd.) genotypes grown under identical conditions was 4–20%. Based on the amylose content, a selection of six genotypes was made. Starch granule‐bound proteins were extracted from six genotypes and analyzed using denaturing gel electrophoresis. Two major polypeptides with apparent molecular masses of 56 and 62 kDa were present in all genotypes. Both were identified as granule‐bound starch synthase I (GBSSI) using immunoblot analysis and internal peptide sequencing. The content of the two GBSSI isoforms in starch granules from the six genotypes, as determined by densiometry of the peptide bands, was positively correlated with the concentration of amylose in starch from mature seed. Starch synthase activity in developing seed was positively correlated to starch concentration in seed and amylose concentration in starch during seed development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号