首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yield levels in smallholder farming systems in semi-arid sub-Saharan Africa are generally low. Water shortage in the root zone during critical crop development stages is a fundamental constraining factor. While there is ample evidence to show that conservation tillage can promote soil health, it has recently been suggested that the main benefit in semi-arid farming systems may in fact be an in situ water harvesting effect. In this paper we present the result from an on-farm conservation tillage experiment (combining ripping with mulch and manure application) that was carried out in North Eastern Tanzania from 2005 to 2008. Special attention was given to the effects of the tested treatment on the capacity of the soil to retain moisture. The tested conservation treatment only had a clear yield increasing effect during one of the six experimental seasons (maize grain yields increased by 41%, and biomass by 65%), and this was a season that received exceptional amounts of rainfall (549 mm). While the other seasons provided mixed results, there seemed to be an increasing yield gap between the conservation tillage treatment and the control towards the end of the experiment, and cumulatively the yield increased with 17%. Regarding soil system changes, small but significant effects on chemical and microbiological properties, but not on physical properties, were observed. This raises questions about the suggested water harvesting effect and its potential to contribute to stabilized yield levels under semi-arid conditions. We conclude that, at least in a shorter time perspective, the tested type of conservation tillage seems to boost productivity during already good seasons, rather than stabilize harvests during poor rainfall seasons. Highlighting the challenges involved in upgrading these farming systems, we discuss the potential contribution of conservation tillage towards improved water availability in the crop root zone in a longer term perspective.  相似文献   

2.
Comparative studies of drainage and leaching under tillage systems in irrigated tropical and sub-tropical Vertisols are sparse. The objective of this study was to quantify drainage under cotton-based cropping systems sown on permanent beds in an irrigated Vertisol. Drainage and soil water storage were measured with the chloride mass balance method and neutron moisture meter, respectively, during the 2002-03, 2004-05, 2006-07 and 2008-09 cotton seasons in an on-going experiment in a Vertisol in NW NSW. The experimental treatments were: cotton monoculture sown either after conventional tillage or on permanent beds, and a cotton-wheat rotation on permanent beds where the wheat stubble was retained as in situ mulch into which the following cotton crop was sown. Subject to in-crop rainfall, irrigation frequency varied between 7 and 14 days for cotton and 2-3 months for wheat. In 2005, a split-plot design was superimposed on the existing experiment such that the main-plot treatments were irrigation frequency (“frequent”, 7-14-day irrigation interval; “infrequent”, 14-21-day irrigation interval), and sub-plot treatments were the historical tillage system/crop rotation combinations. In comparison with cotton monoculture sown either after conventional tillage or on permanent beds, soil water storage, particularly during the early part of growing season when rainfall provided the major proportion of crop water requirements, and drainage were greatest when a cotton-wheat rotation was sown on permanent beds. Seasonal drainage out of the 1.2 m depth, averaged among all seasons, was of the order of 25 mm, 33 mm and 70 mm with cotton monoculture sown either after conventional tillage or on permanent beds, and a cotton-wheat rotation on permanent beds, respectively. Soil water storage and drainage were also greater when irrigation frequency was greater. Seasonal drainage out of the 1.2 m depth, averaged between the 2006-07 and 2008-09 seasons, was 54 mm with “frequent irrigation”, and 28 mm with “infrequent” irrigation. Infiltration was less in management systems which resulted in wetter soil; viz. frequent irrigation or a cotton-wheat rotation on permanent beds with in situ stubble retention. Drainage water losses in a furrow-irrigated Vertisol may be reduced and soil water storage increased (i.e. water conservation improved) by sowing a cotton-wheat rotation with in situ stubble retention under less frequent irrigation.  相似文献   

3.
For sustainable crop production in semi-arid environments with low and erratic rainfall (<800 mm), runoff must be minimized and water conserved. However, little is known about how soils in semi-arid southern Africa respond to cultivation. This study investigated the hydrological and physical responses of a fersiallitic soil to conventional (flat) and improved (tied ridge) tillage practices over four seasons under natural and simulated rainfall conditions in Zimbabwe. Changes in soil surface roughness and the development of crusts were investigated and related to variation in the runoff ratio (total volume of runoff/total volume of rain). Relationships between runoff, rainfall intensity and antecedent precipitation index (API is an indicator of soil moisture content based on daily rainfall) were established for both systems. For the tied ridge system, API showed no significant contribution to runoff prediction. This reflects the greater and more stable depression storage capacity of the furrow in the tied ridge system. By comparison, the depression storage capacity of the flat system is temporary in nature and, as the micro relief of the soil surface weathers and crusts develop, its capacity declines, as does the time to ponding and runoff generation.  相似文献   

4.
Sustainable food production in semi-arid tropical countries can be achieved through efficient utilization of rainwater. A field experiment to assess the grain yield, seasonal water use (WU), water use efficiency (WUE) and precipitation use efficiency (PUE) of sunflower (Helianthus annuus L.) intercropped with cowpea (Vigna unguiculata L.) on two tillage systems was conducted during the 2007/2008 and 2008/2009 cropping seasons at the University of Venda (22°58′ S, 30°26′ E at 596 m above sea level). The experiment was configured as a 2 × 2 × 2 factorial design with three replications. The tillage treatments were conventional tillage (CT) (control) and in-field rainwater harvesting (IRWH) system. The IRWH is a special crop production technique that promotes runoff on 2.0-m wide no-till strip between crop rows and collects the runoff water in basins where it infiltrates into the soil profile. The treatments in the cropping system (CS) consisted of a sole crop (sunflower or cowpea) and an intercrop (sunflower × cowpea). Results of the experiment revealed that IRWH led to a significant (P < 0.05) increase in sunflower grain yield in the second season but cowpea grain yield was not influenced by tillage systems. IRWH resulted in significantly higher WU, WUE and PUE of both crops compared to CT system in the second season. The CS had significant effects on sunflower grain yield in both seasons but none on the cowpea grain yield. WU was significantly higher in intercrops than in sole cowpea and sole sunflower in the first and second season, respectively. WUE and PUE were significantly greater in sole sunflower than in the intercrops but less in the sole cowpea than in the intercrops.  相似文献   

5.
This paper presents experience on working with farmers in water scarce environments in improving crop yield through the application of locally available materials in semi-arid areas of Mpwapwa District, central Tanzania. Findings are presented from the interdisciplinary study that involved documenting farmers perceptions and on-farm field experimentation. In the farmers’ perceptions study, three different traditional tillage practices applied by smallholder farmers in the area were identified. These are traditional no-till (TNT), shallow tillage (ST) and ridging tillage (RT). The impacts of various tillage practices on soil fertility improvement, reduced weed infestation, soil moisture retention and crop yield were the main factors considered by farmers when selecting a particular tillage practice to apply. In two cropping seasons (i.e. 2006/7 and 2007/8) on-farm field experimentations were carried to test the effects of the three traditional tillage practices, manure and mulching practices on soil moisture retention and crop yield. Results from this experiment showed traditional no-till fields to have the lowest soil moisture retention capacity and the lowest infiltration flow rate as well as lowest crop yield compared to other studied practices. It was observed that improving the current tillage practices by the application of manure to both ST and RT, and mulching to ST at rates affordable to smallholder farmers as identified during perception study (i.e. 5 tons/ha for manure and 3 tons/ha for mulching materials) results in increased crop yield. When the grain yield is compared between traditional no-till and shallow tillage with manure and mulching practices, the yield increase is between 50 and 100%. It was concluded that crop yield in water scarce environments such as the semi-arid areas of Mpwapwa District can be increased by applying locally available materials such as cow manure and mulching at rates affordable to smallholder farmers.  相似文献   

6.
Research was undertaken to assess the potential of using controlled traffic for irrigated double cropping in a semi-arid tropical environment. The research was carried out on a cracking clay soil, in a region where the climate and availability of irrigation water give the potential to grow two crops per year. The controlled traffic system required a number of specific implements to ensure that raised beds could be formed and maintained. Stubble retention, in conjunction with controlled traffic, required the use of planting machinery not usually associated with the conventional farming systems used in the area. A tractor and harvester were fitted with narrow section tyres to minimize the likelihood of damage to the edges of raised beds.  相似文献   

7.
Droughts, resulting in low crop yields, are common in the semi-arid areas of Ethiopia and adversely influence the well-being of many people. The objective of this study was to assess the benefit that in-field rainwater harvesting (IRWH) would have, compared to conventional tillage, on maize yields on a semi-arid ecotope at Dera situated on the eastern part of the Rift Valley. Rainfall-runoff measurements were made during 2003 and 2004 on 2 m × 2 m plots provided with a runoff measuring system and replicated three times for each treatment. There were two treatments: conventional tillage (CT) and no-till (NT), the latter with a flat surface that promotes runoff and therefore IRWH. Rainfall intensity was measured at 1 min intervals with an automatic tipping bucket instrument, and runoff was measured after each rain event. Measured runoff as a function of rainfall intensity and duration from half the rainfall-runoff events was used to determine the critical parameters of a appropriate runoff model. The calibrated model was found to be capable of predicting runoff in a satisfactory way.Rainfall-runoff measurements were made during the rain seasons in 2003 and 2004 during which there were 25 rain events with >9 mm of rain. There was no statistical difference between the runoff on the two treatments. The measured runoff (R) for the two rain seasons, expressed as a fraction of the rainfall during the measuring period (P), i.e. R/P, gave values of 0.46 and 0.39 for the NT and CT treatments, respectively.Results from 7 years of field experiments with IRWH at Glen in South Africa were used to estimate the yield benefit of NT for Dera compared to CT. The results were 696 and 494 kg ha−1 for 2003 and 2004, respectively. Based on the estimated average long-term maize yield of 2000 kg ha−1 at Dera, this was an estimated yield increase ranging from 25% to 35%.  相似文献   

8.
Risk assessment of maize yield was carried out using a crop growth model combined with a deterministic runoff model and a stochastic rainfall intensity model. These were compared with empirical models of daily rainfall–runoff processes. The combination of the deterministic runoff model and the stochastic rainfall intensity model gave more flexible performance than the empirical runoff model. Scenarios of crop simulation included production techniques (water harvesting, WH, and conventional total soil tillage, CT) and initial soil water content at planting (empty, half and full). The in-field water harvesting technique used in the simulation was a no-till type of mini-catchment with basin tillage and mulching. The lower the initial soil water content at planting, the greater the yield difference between the WH and CT production techniques. With the low initial soil water content at planting, the WH production technique had up to 50% higher yield compared to the CT production technique, clearly thus demonstrating the superiority of the WH production technique. Under all the variations in agronomic practices (planting date, plant population, cultivar type) tested, the WH had a lower risk than CT under these semi-arid climatic conditions (i.e., WH increased the probability of higher crop yields).  相似文献   

9.
Cowpea yields obtained by smallholder farmers in the savannah belt of Nigeria are often less than the maximum obtainable yields because water deficit during critical growth stages is a common occurrence. Runoff harvesting to supplement direct rainfall may prove beneficial in improving current smallholder farming systems in this region. We study the effects of macro- and micro-catchments runoff harvesting, with or without in situ soil conservation, on cowpea yield in the savannah belt of Nigeria. The macro-catchments runoff harvesting (RH) experiment consisted of four treatments: conventional tillage and RH (CRH), zero tillage with RH (ZRH), reduced tillage with RH (RRH) and the direct rain fed (DR) treatment which served as the control in a randomized block design with four replicates. The micro-catchment experiment consisted of four treatments: runoff harvesting (RH), semi-circular bunds (SC), semi-circular bunds with runoff harvesting (SRH) and also direct rainfed (DR) in a randomized block design with four replicates. Results suggest that runoff harvesting can be used with existing conservation techniques. Applying harvested runoff water through supplemental irrigation provides the twin benefits of alleviating the prevailing slack periods and improving the yields of smallholder farming systems.  相似文献   

10.
介绍昌图县的自然概况,提出实施保护性耕作机械化技术是本地区防旱保产的最佳选择,阐述保护性耕作技术的优点及其装备的合理选择。通过实地试验监测,结果表明:在半干旱地区实施保护性耕作机械化技术,可以增收节支、降低成本、提高生产率,达到节本增效的目的,值得大面积推广。  相似文献   

11.
Zero tillage and controlled traffic have been proposed as means for more productive and sustainable irrigated farming. Both practices affect soil infiltration characteristics and, therefore, should have effects on sprinkler irrigation performance. This study compared water infiltration and runoff in three sprinkler irrigation tests performed on an alluvial loam soil at different times during a maize (Zea mays L.)–cotton (Gossypium hirstium L.) rotation under two soil managements: permanent beds with crop residue retention (PB: planting beds maintained unaltered from year to year) and conventional beds with residues incorporated with tillage (CB: disc and chisel ploughing followed by rotavator pass and bed forming every year). Traffic was controlled and two types of furrows were distinguished in both tillage systems: with (+T) and without (−T) wheel traffic. The irrigation tests were performed on maize at full cover, on bare soil just before cotton sowing and on cotton with 50% ground cover. Infiltration and runoff were affected notably by both traffic and soil management. The soil under PB infiltrated more water than under CB, and −T furrows more than +T furrows. Considering the combined treatments, −T furrows in the CB system infiltrated more water than +T furrows in the PB system. A sprinkler irrigation model for simulating water application and soil infiltration and runoff was formulated. The model was used to analyse irrigation performance under infiltration characteristic of the CB and PB systems in trafficked and non-trafficked furrows. Five irrigation performance indicators were used to assess the various combinations of tillage and traffic: Wilkox–Swailes coefficient of uniformity; application efficiency; deep percolation ratio; tail water ratio; and adequacy. The model was used to develop operation diagrams and provided guidelines for making irrigation decisions in the new controlled traffic/permanent bed system and in a standard conventional system.  相似文献   

12.
陈柯仰 《农业工程》2014,4(1):19-20
武威市固定道保护性耕作项目主要通过技术引进试验和示范,研究固定道保护性耕作农业技术与措施,及其地区适应性和经济效果,以达到改善农田土壤结构,增加土壤水分入渗及蓄水能力,并改善作物生长环境,降低机具能源消耗及农业生产成本,增加农民收入的目的。   相似文献   

13.
轮胎压实对机具牵引阻力的影响   总被引:3,自引:1,他引:3  
研究了华北平原小麦、玉米一年两熟区固定道保护性耕作对机具田间牵引阻力的影响,对比分析了固定道与非固定道处理下机具田间作业的滚动阻力、开沟器牵引阻力和总牵引阻力.与非固定道保护性耕作时深松、小麦和玉米播种作业相比,固定道保护性耕作下机组总牵引阻力分别降低14.6%、13.3%和13.3%;滚动阻力分别降低26.9%、21.9%和19.7%,平均降低22.9%;机具牵引阻力分别降低7.5%、7.2%和12.4%,平均降低8.8%.固定道处理的开沟器牵引阻力平均比非固定道处理降低22.0%.与非固定道相比,固定道总牵引油耗在3种作业时分别降低17.6%、12.4%和9.1%.试验结果表明,固定道保护性耕作显著降低机具田间牵引阻力,减少了机具田间作业油耗.  相似文献   

14.
For sustainable sunflower production in semi-arid sub-tropical regions, it is essential to increase its water use efficiency. Field studies were conducted for three years on deep alluvial loamy sand (Typic Ustipsamment) and sandy loam (Typic Ustochrept) soils at Punjab Agricultural University, Ludhiana, India, to evaluate the interactive effects of three irrigation regimes (irrigation water to net open pan evaporation ratios, I1, I2, I3) on sunflower yield in relation to tillage (conventional tillage, CT, and deep-tillage, DT) and mulching (no mulch, M0, and residue mulch, M1).Both deep tillage and mulch significantly increased crop yield irrespective of soil type and year. Increase in mean achene yield across soils during three years with DT over CT varied between 10 and 16% and that with mulch over no mulch by 8 to 17%.Deep tillage and/or mulching helped the crop in efficient utilization of water by increasing leaf area index (LAI) and the depth and density of rooting. Irrigation and tillage interacted for their effects on yield on loamy sand, as the crop responded to higher level of irrigation with CT than with DT. On loamy sand, mean achene yield increased with increase in water supply up to IW/PE = 1.5 in a dry year and upto IW/PE = 1.2 in relatively wetter years. On sandy loam, mean yield response to irrigations was observed upto IW/PE = 1.0 in all the three years.Regression analysis of relative yield against water supply during the three years on both the soils, showed that for 80% relative yield the crop required 105 cm water in CTM0, 90 cm in CTM or DTM0 and only 80 cm in DTM. The study suggests that deep tillage or straw mulch may be used to achieve higher water use efficiency in sunflower on coarse textured soils in semi-arid, sub-tropical regions.  相似文献   

15.
轮胎压实对土壤水分入渗性能的影响   总被引:2,自引:0,他引:2  
陈浩  杨亚莉 《农机化研究》2012,34(2):153-156
固定道保护性耕作可以有效地降低土壤压实程度,改善土壤结构。为此,以大田土壤水分入渗试验为依据,分析一年两熟区固定道保护性耕作系统对土壤水分入渗特性的影响,为其推广应用提供理论参考。试验结果显示:一年两熟区机具随机行走作业在表层土壤造成明显的压实;固定道保护性耕作可以降低0~30cm土层容重,降低0~40cm土层土壤紧实度,改善土壤结构,从而显著提高土壤水分入渗性能;相对于非固定道保护性耕作,固定道保护性耕作土壤水分稳定入渗强度提高111.1%,3h累积入渗量提高92.4%。  相似文献   

16.
The Australian Government has recommended that farmers move from cultivation-based dryland farming to reduced or zero tillage systems. The private benefits could include improvements in yields and a decrease in costs while the public benefits could include a reduction in greenhouse gas (GHG) emissions due to a diminution in the use of heavy machinery. The aim of this study is to estimate and compare total on-farm GHG emissions from conventional and zero tillage systems based on selected grain crop rotations in the Darling Downs region of Queensland, Australia. The value chain was identified, including all inputs, and emissions. In addition, studies of soil carbon sequestration and nitrous oxide emissions under the different cropping systems were reviewed.The value chain analysis revealed that the net effect on GHG emissions by switching to zero tillage is positive but relatively small. In addition though, the review of the sequestration studies suggests that there might be soil-based emissions that result from zero tillage that are being under-estimated. Therefore, zero tillage may not necessarily reduce overall GHG emissions. This could have major implication on current carbon credits offered from volunteer carbon markets for converting conventional tillage to reduced tillage system.  相似文献   

17.
In eastern India, farmers grow rice during rainy season (June-September) and land remains fallow after rice harvest in the post-rainy season (November-May) due to lack of sufficient rainfall or irrigation facilities. But in lowland areas of eastern India, sufficient carry-over residual soil moistures are available in rice fallow in the post-rainy season (November-March), which can be utilized for growing second crops in the region. During the post-rainy season when irrigation facilities are not available and rainfall is meager, effective utilization of carry-over residual soil moisture and conservation agriculture become imperative for second crop production after rice. Implementation of suitable tillage/seeding methods and other agro-techniques are thus very much important to achieve this objective. In this study four pulse crops (lathyrus, blackgram, pea, and greengram) were sown utilizing carry-over residual soil moisture and with different tillage/seeding methods viz. relay cropping (RC)/farmers’ practice, reduced tillage (only two ploughing) (RT), conventional tillage (CT) and zero tillage (ZT). Study revealed that the highest grain yields of 580, 630, 605 and 525 kg ha−1 were obtained from lathyrus, blackgram, pea and green gram, respectively, with RT treatment. On the other hand, with conventional tillage, 34-44% lower yields were obtained than that of RT. Crops with reduced tillage performed better than that with zero tillage or relay cropping also. Impacts of different tillage methods on important soil physical properties like infiltration, bulk density were also studied after harvesting first crop (rice) and before growing second crops (pulses) in rice fallow. The lowest mean bulk density (1.42) was recorded in the surface soils of CT treatment while the corresponding value under ZT treatment was 1.54 Mg m−3.  相似文献   

18.
The Southeast U.S. receives an average of 1300 mm annual rainfall, however poor seasonal distribution of rainfall often limits production. Irrigation is used during the growing season to supplement rainfall to sustain profitable crop production. Increased water capture would improve water use efficiency and reduce irrigation requirements. Furrow diking has been proposed as a cost effective management practice that is designed to create a series of storage basins in the furrow between crop rows to catch and retain rainfall and irrigation water. Furrow diking has received much attention in arid and semi-arid regions with mixed results, yet has not been adapted for cotton production in the Southeast U.S. Our objectives were to evaluate the agronomic response and economic feasibility of producing cotton with and without furrow diking in conventional tillage over a range of irrigation rates including no irrigation. Studies were conducted at two research sites each year from 2005 to 2007. Irrigation scheduling was based on Irrigator Pro for Cotton software. The use of furrow diking in these studies periodically reduced water consumption and improved yield and net returns. In 2006 and 2007, when irrigation scheduling was based on soil water status, an average of 76 mm ha−1 of irrigation water was saved by furrow diking, producing similar cotton yield and net returns. Furrow diking improved cotton yield an average of 171 kg ha−1 and net return by $245 ha−1 over multiple irrigation rates, in 1 of 3 years. We conclude that furrow diking has the capability to reduce irrigation requirements and the costs associated with irrigation when rainfall is periodic and drought is not severe.  相似文献   

19.
The practice of long fallowing, by omitting a year of cropping, is gaining renewed focus in the low rainfall zone of the northern agriculture region of Western Australia. The impetus behind this practice change has been a reduced use of pasture breaks in cereal crop rotations, and the belief that a fallow can improve soil water accumulation and thus buffer the negative effects of dry seasons on crop yields. We evaluated the benefits of long fallowing (full stubble retention, no weed growth allowed) in a continuous wheat sequence via simulation modelling with APSIM at two rainfall locations and five soil types. The simulated benefits to long fallowing were attributable to soil water accumulation only, as the effects on soil nitrogen, diseases or weeds were not evaluated.The long-term (100 years) mean wheat yield benefit to fallowing was 0.36-0.43 t/ha in clay, 0.20-0.23 t/ha in sand and loam, and 0-0.03 t/ha in shallow sand and shallow loams. Over the range of seasons simulated the response varied from −0.20 to 3.87 t/ha in the clay and −0.48 to 2.0 t/ha for the other soils. The accumulation of soil water and associated yield benefits occurred in 30-40% of years on better soils and only 10-20% on poorer soils. For the loam soil, the majority of the yield increases occurred when the growing-season (May-September) rainfall following the fallow was low (<210 mm) and the difference in plant available soil water at sowing between fallowed and continuously cropped soil was high (>30 mm), although yield increase did occur with other combinations of growing-season rainfall and soil water. Over several years of a crop sequence involving fallow and wheat, the benefits from long fallowing due to greater soil water accumulation did not offset yield lost from omitting years from crop production, although the coefficient of variation for inter-annual farm grain production was reduced, particularly on clay soils during the 1998-2007 decade of below-average rainfall. We conclude that under future drying climates in Western Australia, fallowing may have a role to play in buffering the effects of enhanced inter-annual variability in rainfall. Investigations are required on the management of fallows, and management of subsequent crops (i.e. sowing earlier and crop density) so as to maximise yield benefits to subsequent crops while maintaining groundcover to prevent soil erosion.  相似文献   

20.
Effects of two tillage treatments and two fallow period managements under continuous maize cropping on soil temperature, soil water dynamics and maize development were evaluated over a 4-year period (2005–2008). Tillage treatments were conventional tillage with mouldboard ploughing and conservation tillage with disk harrowing. The fallow period managements were bare soil or soil sown with a cover crop after maize harvest. For each year, topsoil temperature (0–20 cm-depth) was lower under conservation tillage systems at sowing, from 0.8 to 2.8 °C. This difference persisted several weeks after sowing, and disappeared afterwards. Under conservation tillage, higher soil water content was generally measured at sowing and during the growing season strong fluctuations were observed at 40 cm-depth. Under conventional tillage, soil water content varied mainly in the tilled layer (20 cm-depth). Tillage and fallow period management affected water flow rate at 40 cm-depth. During the maize growing season, the lowest drainage volumes were measured in 2006 and 2008 under conservation tillage in cover cropped plots. No effect of fallow period management on maize development and yield was observed but significantly higher yields were measured under conservation tillage in 2005 and 2007. From this 4-year experiment under continuous maize cropping, using cover crop and reducing tillage intensity enhanced water use efficiency while maintaining or increasing maize yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号