首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In boreal forest lakes, high Hg concentrations in fish are common, even in remote areas. In this paper, the effects of atmospheric Hg pollution in Sweden are synthesized and related to a concept based on the strong interaction of Hg with biogenic matter (Hg/B). Based on this concept, a compartment model is developed to predict concentrations, pool sizes, flux rates and turnover times of Hg along the biogeochemical cycle, including atmosphere, forest soils, surface runoff, lake waters, and aquatic biota. The aim is to provide a conceptual framework, both for a comprehensive mechanistic model, and for predictions from readily available information, such as regional data on acid deposition, air temperature and surface runoff, and local data on the trophic status of lakes with respect to humus and nutrient concentrations. The model is in good agreement with observations from recent Swedish field studies in all compartments. It suggests a strong influence of climate on the susceptibility of soil and lake ecosystems in the boreal region to Hg contamination. The high Hg concentrations in fish from forest lakes can be largely attributed to the low productivity of both terrestrial and aquatic biota. The impact of historical point sources of Hg is considered, as well as the slow turnover of Hg in forest soils, both resulting in elevated fish Hg levels in humic lakes for centuries following atmospheric deposition.  相似文献   

2.
Concentrations of total Hg and five operationally defined Hg species were determined in the surface water of 25 Swedish forest lakes of different type. Regional and seasonal variations were studied during the ice-free season of 1986. The concentration of total Hg was usually in the range of 2 to 10 μg m-3. Hg concentrations were highly correlated to the concentration of humic matter measured as water color. Hg concentrations were about twice as high in acidic lakes (pH 5) than in circumneutral lakes, which is attributed basically to the acidity of humic compounds acting as Hg carriers in boreal waters. Significant seasonal variations were caused by hydrological processes. During periods of high water flow, Hg concentrations increased dramatically, especially in humic lakes. Between spring and autumn, chemically reactive Hg compounds were gradually replaced by more inert species. Hg/C ratios were higher than in surface runoff from forest watersheds, indicating a significant impact of direct deposition of Hg on lake surfaces during summer. Regional differences were small despite differences in Hg contamination.  相似文献   

3.
During the last decade a new pattern of Hg pollution has been discerned, mostly in Scandinavia and North America. Fish from low productive lakes, even in remote areas, have been found to have a high Hg content. This pollution problem cannot be connected to single Hg discharges but is due to more widespread air pollution and long-range transport of pollutants. A large number of waters are affected and the problem is of a regional character. The national limits for Hg in fish are exceeded in a large number of lakes. In Sweden alone, it has been estimated that the total number of lakes exceeding the blacklisting limit of 1 mg Hg kg-1 in 1-kg pike is about 10 000. The content of Hg in fish has markedly increased in a large part of Sweden, exceeding the estimate background level by about a factor of 2 to 6. Only in the northernmost part of the country is the content in fish close to natural values. There is, however, a large variation of Hg content in fish within the same region, which is basically due to natural conditions such as the geological and hydrological properties of the drainage area. Higher concentrations in fish are mostly found in smaller lakes and in waters with a higher content of humic matter. Since only a small percentage of the total flow of Hg through a lake basin is transferred into the biological system, the bioavailability and the accumulation pattern of Hg in the food web is of importance for the Hg concentrations in top predators like pike. Especially, the transfer of Hg to low trophic levels seems to be a very important factor in determining the concentration in the food web. The fluxes of biomass through the fish community appear to be dominated by fluxes in the pelagic food web. The Hg in the lake water is therefore probably more important as a secondary source of Hg in pike than is the sediment via the benthic food chain. Different remedy actions to reduce Hg in fish have been tested. Improvements have been obtained by measures designed to reduce the transport of Hg to the lakes from the catchment area, eg. wetland liming and drainage area liming, to reduce the Hg flow via the pelagic nutrient chains, eg. intensive fishing, and to reduce the biologically available proportion of the total lake dose of Hg, eg. lake liming with different types of lime and additions of selenium. The length of time necessary before the remedy gives result is a central question, due to the long half-time of Hg in pike. In general it has been possible to reduce the Hg content in perch by 20 to 30% two years after treatments like lake liming, wetland liming, drainage area liming and intensive fishing. Selenium treatment is also effective, but before this method can be recommended, dosing problems and questions concerning the effects of selenium on other species must be evaluated. Regardless how essential these kind of remedial measures may be in a short-term perspective, the only satisfactory long-term alternative is to minimize the Hg contamination in air, soil and water. Internationally, the major sources of Hg emissions to the atmosphere are chlor-alkali factories, waste incineration plants, coal and peat combustion units and metal smelter industries. In the combustion processes without flue gas cleaning systems, probably about 20 to 60% of the Hg is emitted in divalent forms. In Sweden, large amounts of Hg were emitted to the atmosphere during the 50s and 60s, mainly from chlor-alkali plants and from metal production. In those years, the discharges from point sources were about 20 to 30 t yr 1. Since the end of the 60s, the emission of Hg has been reduced dramatically due to better emission control legislation, improved technology, and reduction of polluting industrial production. At present, the annual emissions of Hg to air are about 3.5 t from point sources in Sweden. In air, more than 95% of Hg is present as the elemental Hg form, HgO0. The remaining non-elemental (oxidized) form is partly associated to particles with a high wash-out ratio, and therefore more easily deposited to soils and surface waters by precipitation. The total Hg concentration in air is normally in the range 1 to 4 ng m-3. In oceanic regions in the southern hemisphere, the concentration is generally about 1 ng m?3, while the corresponding figure for the northern hemisphere is about 2 ng m-3. In remote continental regions, the concentrations are mainly about 2 to 4 ng m?3. In precipitation, Hg concentrations are generally found in the range 1 to 100 ng L?1. In the Nordic countries, yearly mean values in rural areas are about 20 to 40 ng L?1 in the southern and central parts, and about 10 ng L?1 in the northern part. Accordingly, wet deposition is about 20 (10 to 35) g km?2 yr?1 in southern Scandinavia and 5 (2 to 7) in the northern part. Calculations of Hg deposition based on forest moss mapping techniques give similar values. The general pattern of atmospheric deposition of Hg with decreasing values from the southwest part of the country towards the north, strongly suggests that the deposition over Sweden is dominated by sources in other European countries. This conclusion is supported by analyses of air parcel back trajectories and findings of significant covariations between Hg and other long range transported pollutants in the precipitation. Apart from the long range transport of anthropogenic Hg, the deposition over Sweden may also be affected by an oxidation of elemental Hg in the atmosphere. Atmospheric Hg deposited on podzolic soils, the most common type of forest soil in Sweden, is effectively bound in the humus-rich upper parts of the forest soil. In the Tiveden area in southern Sweden, about 75 to 80% of the yearly deposition is retained in the humus layer, chemically bound to S or Se atoms in the humic structure. The amount of Hg found in the B horizon of the soils is probably only slightly influenced by anthropogenic emissions. In the deeper layers of the soil, hardly any accumulation of Hg takes place. The dominating horizontal flow in the soils takes place in the uppermost soil layers (0 to 20 cm) during periods of high precipitation and high groun water level in the soils. The yearly transport of Hg within the soils has been calculated to be about 5 to 6 g km?2. The specific transport of total Hg from the soil system to running waters and lakes in Sweden is about 1 to 6 g km?2 yr1. The transport of Hg is closely related to the transport of humic matter in the water. The main factors influencing the Hg content and the transport of Hg in run-off waters from soils are therefore the Hg content in soils, the transport of humic matter from the soils and the humus content of the water. Other factors, for example acidification of soils and waters, are of secondary importance. Large peatlands and major lake basins in the catchment area reduce the out-transport of Hg from such areas. About 25 to 75% of the total load of Hg of lakes in southern and central Sweden originates from run-off from the catchment area. In lakes where the total load is high, the transport from run-off is the dominating pathway. The total Hg concentrations in soil solution are usually in the range 1 to 50, in ground water 0.5 to 15 and in run-off and lake water 2 to 12 ng L?1, respectively. The variation is largely due to differences in the humus content of the waters. In deep ground water with a low content of humic substances, the Hg concentration is usually below 1 ng L?1. The present amount and concentrations of Hg in the mor layer of forest soils are affected by the total anthropogenic emissions of Hg to the atmosphere, mainly during this century. Especially in the southern part of Sweden and in the central part along the Bothnian coast, the concentrations in the mor layer are markedly high. In southern areas the anthropogenic part of the total Hg content is about 70 to 90%. Here, the increased content in these soils is mainly caused by long-range transport and emissions from other European countries, while high level areas in the central parts are markedly affected by local historical emissions, mainly from the chlor-alkali industry. When comparing the input/output fluxes to watersheds it is evident that the present atmospheric deposition is much higher than the output via run-off waters, on average about 3 to 10 times higher, with the highest ration in the southern parts of Sweden. Obviously, Hg is accumulating in forest soils in Sweden at the present atmospheric deposition rate and, accordingly, the concentrations in forest soils are still increasing despite the fact that the emissions of Hg have drastically been reduced in Sweden during the last decades. The increased content of Hg in forest soils may have an effect on the organisms and the biological processes in the soils. Hg is by far the most toxic metal to microorganisms. In some regions in Sweden, the content of Hg in soils is already today at a level that has been proposed as a critical concentration. To obtain a general decrease in the Hg content in fish and in forest soils, the atmospheric deposition of Hg has to be reduced. The critical atmospheric load of Hg can be defined as the load where the input to the forest soils is less than the output and, consequently, where the Hg content in the top soil layers and the transport of Hg to the surface waters start to decrease. A reduction by about 80% of the present atmospheric wet deposition has to be obtained to reach the critical load for Scandinavia.  相似文献   

4.
Atmospheric mobilization and exchange at the air-water interface are significant features of biogeochemical cycling of Hg at the Earth's surface. Our marine studies of Hg have been extended to terrestrial aquatic systems, where we are investigating the tropospheric cycling, deposition and air-water exchange of Hg in the mid-continental lacustrine environs of northcentral Wisconsin. This program is part of a multidisciplinary examination into the processes regulating the aquatic biogeochemistry of Hg in temperate regions. Trace-metal-free methodologies are employed to determine Hg and alkylated Hg species at the picomolar level in air, water and precipitation. We have found Hg concentrations and atmospheric fluxes in these fresh water systems to be similar to open ocean regions of the Northern Hemisphere. A well constrained mass balance for Hg has been developed for one of the lakes, Little Rock Lake, which is an extensively studied clear water seepage lake that has been divided with a sea curtain into two basins, one of which is untreated (reference pH: 6.1) while the other is being experimentally acidified (current pH: 4.7). This budget shows that the measured total atmospheric Hg deposition (ca. 10 μg m−2 yr−1) readily accounts for the total mass of Hg in fish, water and accumulating in the sediments of Little Rock Lake. This analysis demonstrates the importance of atmospheric Hg depositional fluxes to the geochemical cycling and bioaccumulation of Hg in temperate lakes. It further suggests that modest increases in atmospheric Hg loading could lead directly to enhanced levels of Hg in biota. Analogous modeling for monomethylmercury (MMHg) is as yet limited. Nevertheless, preliminary data for the atmospheric deposition of MMHg indicate that this flux is insufficient. to account for the amounts of MMHg observed in biota. An in-lake synthesis of MMHg is implicated. The importance of volatile Hg which is principally in the elemental form, and its evasion to the atmosphere is also illustrated. We suggest that the in-lake production of Hg° can reduce the Hg (II) substrate used in the in-lake microbiological synthesis of MMHg.  相似文献   

5.
We measured Hg concentrations in northern pike (Esox lucius) from 17 small lakes in Evo forest area, Lammi, southern Finland. The mean Hg concentration in muscle tissue of a 1 kg pike ranged from 0.15 to 1.36 μg g−1 (ww) in the lakes. There was a trend towards higher concentrations in acidic and humic lakes than in circumneutral and clear-water lakes. The Hg content of pike from successive lakes of a lake chain was similar, whereas there were clear differences in the Hg concentrations among seepage lakes and the uppermost lakes of other lake chains. The latter was probably due to special characteristics of the lakes: in one lake pike was the only fish species, two of the lakes were regulated by beaver, and one lake was a groundwater or spring lake. Our observations indicate that Hg concentrations in pike can vary considerably from lake to lake in a small geographical area and that the variation among lakes in the accumulation of Hg in fish largely depends on lake characteristics and on the diet of pike.  相似文献   

6.
As a result of air pollution, the content of Hg in fish has significantly increased in a large part of Scandinavia and North America. In this paper, the occurence and fluxes of Hg in Swedish forest soils and waters are reviewed and synthesized. The main objective is to describe and evaluate the present transport of anthropogenic Hg from atmospheric deposition, through the terrestrial compartment and running waters to lake basins and also to comprehend the main factors influencing these fluxes. The transportation and distribution. of Hg in forest soils and waters is closely related to the flow of organic matter. The content of Hg in humic matter is higher in southern and central areas compared to the north of the country. Compared to background concentrations, the Hg content has increased in the southern and central part by about a factor of 4–7, while the overall increase in the north is by about a factor of 2 to 3. The increased content of Hg in forest soils may have an effect on organisms and biological processes in the soil. Regarding budget calculations for whole catchment areas and for the mor layer of the soil, a reduction of about 80% from present atmospheric wet deposition must be obtained to reach “critical load” with respect to conditions in Scandinavia.  相似文献   

7.
Hg and As are widespread contaminants globally and particularly in Asia. We conducted a field study in Baiyangdian Lake, the largest lake in the North China Plain, to investigate bioaccumulation and trophic transfer of potentially toxic metals (total mercury and arsenic) in sites differing in proximity from the major point sources of nutrients and metals. Hg concentrations in fish and As concentrations in water are above critical threshold levels (US Environmental Protection Agency based) considered to pose some risk to humans and wildlife. Hg concentrations in biota are within the range of concentrations in lakes in the Northeast US despite the high levels of Hg emission and deposition in China whereas As concentrations are much higher. Dissolved concentrations of both Hg and As decrease with increasing chlorophyll concentrations suggesting that there is significant uptake of metal from water by algae. These results provide evidence for algal blooms controlling dissolved metal concentrations and potentially mitigating the trophic transfer of Hg to fish. This study also underscores the need for further investigation into this contaminated ecosystem and others like it in China that are an important source of fish and drinking water for consumption by local human populations.  相似文献   

8.
Increases in industrial mercury (Hg) emissions in recent years have led many researchers to believe that Hg from the atmosphere constitutes a main source of Hg to aquatic biota in the absence of point source discharges. Established background levels for fish (0.2–1.0 mg kg-1) now exceed the pre industrial level of 0.15 mg kg-1, suggesting an anthropogenic origin. This review of recent literature illustrates how levels of mercury (Hg) species in the atmosphere are effectively transported into the aquatic arena, where chemical parameters combine to determine bioaccumulation rates in fish. Limited studies on methyl mercury (MeHg) in precipitation shown that concentrations average from 5% of total-Hg (T-Hg), to 1% in industrial regions. Observations of increased Hg is snow and precipitation from the Arctic Circle, related to poleward atmospheric circulation patterns, also demonstrate a spring maximum accompanying ozone depletion. Increases in oxidants and soil derived Hg in the atmosphere during the summer best explain summer Hg maximums observed in precipitation, while increased temperatures raise fish metabolism increasing Hg uptake through respiration and ingestion rate. The major route of entry for MeHg to fish appears to be biomagnification, after input from precipitation, runoff and inlake methylation. Regions buffered against acid precipitation maintain low fish-Hg levels by reduced MeHg production and maintaining gill function. When considering the bioaccumulation of Hg in fish this study shows that there are many variables to consider, not all of which originate from inside the aquatic arena. Both catchment and atmospheric processes combine with aquatic variables to dictate the overall levels of MeHg observed in fish tissue. There now appears to be sufficient knowledge to develop an axiom for the identification of aquatic systems likely to be susceptible to bioaccumulation from atmospheric derived Hg.  相似文献   

9.
Three Hg sources were characterised and mass balance calculations were used to determine their relative contributions to the contamination of the Amazonian environment. About an order of magnitude more Hg is emitted to the atmosphere by goldmining activity than by the burning of forest biomass. However, anthropogenic atmospheric Hg cannot account for the high Hg burdens found in terrestrial ecosystems: deposition of Hg from goldmining sources is estimated to account for less than 3% of the Hg present in the surface horizons of soils. We propose that erosion of deforested soils following human colonization constitutes a major disturbance of the natural Hg cycle. Deforestation thus increases soil Hg mobilisation by runoff, which may explain the increase of Hg burdens in Amazonian aquatic ecosystems in newly colonized watersheds.  相似文献   

10.
Concerns about Hg contamination of fish have changed in emphasis from Hg-contaminated systems to more remote and apparently unpolluted systems. For remote lakes, a negative relationship between lake pH and Hg in fish has been demonstrated, implying an effect on Hg uptake from lake acidification. Though this relationship was discussed, and hypotheses put forward concerning the possible mechanisms 8 yr ago, the factors regulating Hg uptake by aquatic biota are still poorly understood. Several recent studies have prompted workers to observe that frequently cited concepts about processes affecting Hg accumulation and cycling are in fact over-simplifications. This review attempts to synthesize and clarify the present state of knowledge. We critically evaluate evidence for a number of controlling factors in the context of the concentrations, the chemical species and the biological uptake processes for Hg. The factors include: trophic status and organic content of water, food chain transfer and biomagnification of Hg, organism age and size effects, feeding strategies, biological and chemical methylation, concentration of cations including H+ and Ca2+ and the immediate source of Hg.  相似文献   

11.
A number of recent studies have documented elevated concentrations of mercury (Hg) in fish caught in remote lakes and a pattern of increased concentrations of Hg in fish tissue with decreasing water column pH. Because of the potential linkage between fish Hg and surface water acidification, factors regulating water column concentrations and bioavailability of Hg were investigated in Adirondack lakes through a field study and application of the Mercury Cycling Model (MCM). Concentrations of total Hg and total MeHg were highly variable, with concentrations of total MeHg about 10% of total Hg in lakes which did not show anoxic conditions. In lakes exhibiting anoxic conditions in the hypolimnion during summer stratification, concentrations of total MeHg were elevated. Concentrations of total Hg and total MeHg increased with decreasing pH in remote Adirondack lakes. However, more importantly, concentrations of total Hg and total MeHg increased with increasing concentrations of dissolved organic carbon (DOC) and percent near-shore wetlands in the drainage basin. Mercury concentrations in muscle tissue of yellow perch from Adirondack lakes were elevated above the U.S. FDA action level (1 μg/g Hg) in 7% of the fish sampled or in one or more individual fish from 9 of the 16 lakes sampled. Fish Hg concentrations generally increased with increasing fish length, weight and age. Patterns of increasing Hg concentration with age likely reflect shifts in prey of yellow perch and the bioconcentration of Hg along the food chain. For age 3 to 5 perch, concentrations of Hg increased with increasing concentrations of DOC and percent near-shore wetlands in the drainage basin. However, for a lake with very high DOC concentrations, fish concentrations of Hg declined. Calculations with the MCM also show that concentrations of Hg species increase with increasing DOC due to complexation reactions. Increases in DOC result in increasing concentrations of Hg in biota but decreases in the bioconcentration factor of Hg in fish tissue. This research suggests that DOC is important in the transport of Hg to lake systems. High concentrations of DOC may complex MeHg, diminishing its bioavailability. At high concentrations of monomeric Al, the complexation of MeHg with DOC apparently decreases, enhancing the bioavailability of MeHg.  相似文献   

12.
Average rates of atmospheric deposition of total phosphorus (TP) and total nitrogen (TN) to Narrow Lake, located on sedimentary bedrock in the boreal forest of central Alberta, were 20 and 424 mg m?2 yr?1, respectively, between 1983–1986. There were no significant differences (P > 0.05) in deposition rates between sites on Narrow Lake, on the lake shore, and on land 18 km away. Deposition of TP, but not TN, followed a distinct pattern during the open-water season; TP was highest just after ice-off (May) and decreased throughout the remainder of the open-water season. Deposition during the winter accounted for only 4 and 12% of the annual TP and TN loads, respectively. Dry fallout contributed 50 and 33% of atmospheric deposition of TP and TN, respectively. In both dry and wet fallout, dissolved P (< 0.45 μm) and organic N were the predominant fractions of TP and TN, respectively. During July 1986, unusually heavy rainfalls caused an increase in TP, but not TN, concentrations in the epilimnion of Narrow Lake. Wet fallout accounted for only 9% of the observed increase of epilimnetic TP; the rest was from surface runoff from the drainage basin. The design of sampling programs to measure atmospheric deposition of nutrients to lakes is discussed.  相似文献   

13.
14.
15.
Enhanced Hg deposition to productive marine systems may result in concurrent increases in monomethyl Hg (MMHg) concentrations of marine fish. Consequently, it is important to understand what effects an increasing Hg supply may have on the marine food chain. A simple ocean model is employed to estimate the fraction of total Hg inputs which is required to sustain “average” marine fish MMHg concentrations annually. Calculations show that upwelling zones require 20% of total annual Hg inputs, coastal zones 5%, and open-ocean regions only 0.02%. The value for coastal areas is similar to that calculated for the acidified basin of Little Rock Lake, Wisconsin, a small fresh water seepage lake. These calculations point to Hg source strength and rates of particle scavenging as being key factors in controlling the rate of transport to sites of methylation (and subsequent entry into the marine food chain). If biological variables (scavenging rates, primary productivity) remain constant while anthropogenically-derived Hg deposition increases, it is likely that concentrations in marine biota (including fish) will rise in accord.  相似文献   

16.
Concentrations of mercury (Hg) were measured in six dated cores from four lakes in western Whatcom County, Washington, USA, that were at various bearings from a chlor-alkali plant, two municipal waste incinerators and a municipal sewage sludge incinerator. The importance of atmospheric emissions of Hg from these local municipal and industrial sources was evaluating by comparing the temporal trends in sedimentation of the lake cores with the emission history of each Hg species and by examining the geographical distribution of Hg sedimentation in relation to the region’s primary wind pattern. Local municipal and industrial sources of atmospheric Hg were not responsible for the majority of the Hg in the upper layer of sediments of Whatcom County lakes because of (1) the significant enrichment of Hg in lake sediments prior to emissions of local industrial and municipal sources in 1964, (2) smaller increases in Hg concentrations occurred after 1964, (3) the similarity of maximum enrichments found in Whatcom County lakes to those in rural lakes around the world, (4) the inconsistency of the temporal trends in Hg sedimentation with the local emission history, and (5) the inconsistency of the geographic trends in Hg sedimentation with estimated deposition. Maximum enrichment ratios of Hg in lake sediments between 2 and 3 that are similar to rural areas in Alaska, Minnesota, and New England suggest that global sources of Hg were primarily responsible for increases of Hg in Whatcom County lakes beginning about 1900.  相似文献   

17.
The work deals primarily with data from 894 Swedish lakes. The following parameters are discussed: Hg- and Se-concentrations and Hg-quantity in the mor layer reflecting the atmospheric deposition of Hg and Se-, Hg- and S-emissions deposition from Swedish and continental sources, precipitation, Hg in pike, lake area, lake mean depth, pH, color, alkalinity, hardness, S and chloride in lake water. The results are focused on geographical variations and statistical correlations for the Hg-content in 1-kg pike (=FHg), and on computer simulations to get insights and data on the linkages between various historical Hg-emissions and FHg. Selected results: Increased FHg-values may be attributed to atmospheric emissions of Hg and to acid rain. Southern Sweden is significantly influenced by continental Hg-emissions. East Germany, Great Britain, West Germany and Poland seem to have contributed with the largest foreign Hg-amounts in the Swedish mor layer and, at the end, to increased Hg-concentrations in Swedish fish. We have calculated that there are about 10 300 Swedish lakes with FHg > 1 mg Hg kg?1 (= the Swedish blacklisting limit). What would happen with FHg if atmospheric depositions of Hg and S were significantly reduced? Reductions of S would be beneficial primarily for lakes in S. Sweden. About 50% of the elevated levels of Hg in Swedish pike in the 1980s may be linked to Swedish Hg-emissions during the last 100 yr, about 10 to 15% could be attributed to foreign Hg-emissions and 35 to 40% to acid rain. There is a long lag phase between emission reduction and reduction of FHg. The known, major Swedish emissions of Hg have already been significantly reduced, but new point sources of Hg have appeared. There has been a significant change in the character of the Hg-emissions during the last decades. High FHg-values in fish in Swedish lakes will be a major environmental problem for decades to come.  相似文献   

18.
Given the variation observed in mercury in fish from natural lakes, it is difficult to determine what represents a background mercury level. Mercury in aquatic sediments is a potential source of this trace metal to biota, notably fish. Site specific factors, such as acidity and dissolved organic carbon have been shown to affect the mobilization of mercury and methylation of mercury. Methyl mercury is the most toxic form of this metal and the form most readily accumulated by biota. Thirty-four headwater lakes, selected for a range in pH, were sampled for sediment mercury levels as part of an investigation of the impacts of acid rain on insular Newfoundland lakes. Selected physical and chemical data were also collected on all of the study sites. Acidity was not found to be significantly related to sediment mercury concentrations despite the wide range in pH. Pearson correlation analysis indicated that sediment mercury level was positively correlated with WA:LA (watershed to lake area ratio). WA:LA was also correlated with Secchi depth and colour. Linear regression was used to estimate the parameters of a model relating sediment mercury to WA:LA. Watershed area to lake area ratio was more important than site specific factors in governing the concentration of sediment mercury in lakes without industrial input.  相似文献   

19.
Polar regions are recognized as important sinks for long-range transport and deposition of Hg derived from natural and anthropogenic sources at lower latitudes. In previous studies we found enhanced Hg accumulation in soils, mosses and lichens from ice-free areas of Victoria Land facing the Terra Nova Bay coastal polynya. This study extends research to the distribution of organic C, total N, S, Hg, Al and Fe in surface soils, cyanobacterial mats and short sediment cores from four lacustrine ecosystems, each with different environmental characteristics and varying distances from the polynya. Results show that planktonic and benthic mats from lakes, along with mosses in the watershed, are the main sinks for Hg in summer meltwater. The C-normalized Hg concentrations in short sediment cores were higher in samples from lakes more exposed to marine aerosols from the coastal polynya. Reactive halogens in the aerosol promote the oxidation and deposition of atmospheric Hg in coastal ecosystems. The analysis of sediment cores did not reveal increasing Hg concentrations in recent sediments, except in the Lake 14 at Edmonson Point. The latter ice-free area is unaffected by the polynya and the increase in Hg concentrations in surface sediments could be due to local changes in lake water level and S biogeochemistry. Although change in sea ice coverage may enhance the role of Antarctic coastal ecosystems as sink in the global Hg cycle, our results seem to exclude possible risks for Antarctic terrestrial and freshwater organisms.  相似文献   

20.
Purpose

Select South Dakota, USA water bodies, including both natural lakes and man-made impoundments, were sampled and analyzed to assess mercury (Hg) dynamics and historical patterns of total Hg deposition.

Materials and methods

Sediment cores were collected from seven South Dakota lakes. Mercury concentrations and flux profiles were determined using lead (210Pb) dating and sedimentation rates.

Results and discussion

Most upper lake sediments contained variable heavy metal concentrations, but became more consistent with depth and age. Five of the seven lakes exhibited Hg accumulation fluxes that peaked between 1920 and 1960, while the remaining two lakes exhibited recent (1995–2009) Hg flux spikes. Historical sediment accumulation rates and Hg flux profiles demonstrate similar peak and stabilized values. Mercury in the sampled South Dakota lakes appears to emanate from watershed transport due to erosion from agricultural land use common to the Northern Great Plains.

Conclusions

For sampled South Dakota lakes, watershed inputs are more significant sources of Hg than atmospheric deposition.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号