首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 382 毫秒
1.
落叶松、桦木和柞木木材表面的润湿性   总被引:6,自引:1,他引:6  
测定了水和水性高分子异氰酸酯的主剂对落叶松、桦木和柞木表面的接触角,并通过测量不同表面张力的液体对落叶松、桦木和柞木材表面的接触角,推算出落叶松、桦木和柞木木材表面的自由能。结果表明:水和水性高分子异氰酸酯的主剂对桦木的接触角最大,同时计算得的桦木表面的自由能最低,说明在这3种木材当中,桦木的润湿性最差。通过柞木和落叶松的接触角的测定和表面自由能的计算可以看出:柞木和落叶松木材的表面润湿性相差不是很大,落叶松比柞木的润湿性稍好一些。对落叶松、桦木和柞木木材的径切面的胶合性能进行了研究,结果表明:柞木的常态压缩剪切胶合强度比桦木的略大一些,3种木材当中落叶松的常态压缩剪切胶合强度最低。  相似文献   

2.
人工林杨树胶合工艺及不同纹理方向胶合性能研究   总被引:4,自引:0,他引:4  
本文研究了杨树(1—214)的胶合工艺以及不同纹理方向的胶合性能,测定了胶层的干、湿剪切强度和木破率。结果表明杨树弦向的剪切强度较高,木破率较低,分析其原因可能是,胶液进入木材弦面的纹孔和木射线,形成更多的“胶钉”,增大了木材之间的结合力。而且人工林杨树木材的早材部分在整个年轮中占有很大的比例,在进行力学试验时,早材破坏是木材破坏的主要形式。  相似文献   

3.
利用核磁共振弛豫技术,探究载荷作用下木质材料的二阶矩与木材物理力学性质以及内部微观结构变化的关系。结果表明,环境湿度下的气干材樟子松和青皮杨,均随着载荷作用量的增加二阶矩逐渐增大,木材细胞壁物质的刚性强度增加,木材内部结构呈密实状态;当载荷作用面分别为木材弦切面、径切面和横切面时,木材试件的二阶矩值同样随载荷增加而增大。其中弦切面受力时木材二阶距值最大,其次为径切面,横切面受力时木材试件二阶矩值最小;相同载荷作用下,边材的二阶矩值均大于心材。  相似文献   

4.
高温脱脂处理对马尾松材质的影响   总被引:1,自引:0,他引:1  
脱脂处理后的木材弦向干缩系数为0.244,比素材的0.301减少19.1%,径向和体积干缩系数也具有相同性。脱脂处理材弦向湿胀性为7.3,比素材的8.4减少13.1%。因此,脱脂处理能明显改善木材尺寸稳定性。实验结果还证实了脱脂处理能够提高木材胶合强度和油漆效果。但是脱脂处理后木材顺纹静曲强度为58.21 MPa、顺纹抗压强度为35.38 MPa,比马尾松木材的减少10%-11%。所以在选择脱脂处理工艺时要充分考虑到脱脂对木材力学强度的影响,让固态的树脂酸尽量地保留在木材内,这样做既可缩短处理时间,又可降低生产成本,同时也确保了木材力学性能不受大的影响。  相似文献   

5.
以日本落叶松人工林为研究对象,根据国家物理力学标准,测定日本落叶松木材的基本密度、干缩性、抗弯弹性模量、抗弯强度、冲击韧性、顺纹抗拉强度等物理力学性能,分析评价长势(优势木、平均木和劣势木)、产地(甘肃沙坝和龙门)和胸径等对日本落叶松木材物理力学性能的影响。结果表明:(1)不同长势日本落叶松的木材密度和力学强度差异不显著,劣势木、平均木、优势木的干缩率逐步递增。(2)龙门与沙坝的日本落叶松抗弯弹性模量、抗弯强度、冲击韧性和顺纹抗拉强度差异不显著;沙坝样木的干缩率、抗弯强重比高于龙门,密度则低于龙门。(3)不同胸径日本落叶松物理性质存在显著性差异(P<0.05),木材密度随胸径先增大,后趋于稳定,弦向和体积干缩率以及干缩比与胸径正相关,径向干缩率则随胸径先减小后增大;不同胸径间抗弯强度、冲击韧性与抗拉强度无显著性差异,弹性模量随胸径增加先增大后减小;胸径22~28 cm的日本落叶松材性较优,且处于适伐阶段。(4)产地和长势对日本落叶松木材的密度、径向气干干缩率、干缩比、抗弯强重比有显著的交互作用。  相似文献   

6.
23年生大叶栎木材物理力学性质的初步研究   总被引:2,自引:0,他引:2  
对广西平果县海明林场23年生大叶栎木材的主要物理力学性质进行了测定和分析。结果表明:大叶栎木材的气干密度(含水率为12%)、基本密度和全干密度分别为0.583 g.cm-3、0.462 g.cm-3和0.507 g.cm-3,气干密度属于国产木材的中等级水平;径向、弦向和体积干缩系数分别为0.099%、0.183%、0.296%,湿胀率依次为4.106%、7.958%和12.627%,差异干缩为1.5-1.9,其尺寸稳定性较好;冲击韧性为52.12 kJ.m-2,端面、径面和弦面硬度分别为41.53 MPa、31.41 MPa和35.51 MPa,顺纹抗压强度为44.50 MPa,抗弯弹性模量和抗弯强度分别为12.63 GPa和127.31 MPa,径面和弦面顺纹抗剪强度分别为8.76 MPa和10.54MPa,抗劈强度依次为124.3 N.mm-1和138.6 N.mm-1。除冲击韧性和硬度较低外,大叶栎木材的主要力学强度均属于国产木材的中等级水平。  相似文献   

7.
蒙古栎木材MOR与MOE的近红外光谱预测模型分析   总被引:1,自引:1,他引:0  
蒙古栎是重要的结构用材,对其抗弯强度(MOR)与抗弯弹性模量(MOE)进行快速准确的无损检测是具有工程应用价值的科学问题。为实现蒙古栎木材MOR与MOE的快速无损检测,以900~1 700 nm的便携式近红外光谱仪为检测手段,提出一阶导数与S-G卷积平滑处理相结合的数据预处理方法,采用木材径切面与弦切面2个切面近红外光谱的平均值作为建模数据,利用Isomap-PLS算法建立预测模型估计木材的MOR、MOE。试验采用135个300 mm20 mm20 mm的无疵小试样为样本,其中90个组成校正集,45个组成预测集。结果表明:一阶导数处理能够消除光谱背景平缓区域干扰,S-G卷积处理能滤除高频噪声;采用径切面与弦切面光谱的平均值,比采用单一切面建模效果好,校正相关系数大,校正标准误差小;Isomap-PLS模型优于PLS、iPLS、MWPLS、CSMWPLS、BiPLS、LLE-PLS模型,MOR预测相关系数为0.89,预测标准误差(SEP)为11.43,相对分析误差(RPD)为2.552.5;MOE预测相关系数为0.88,SEP为2.73,RPD为2.582.5。可见,所建近红外模型可以完成蒙古栎无疵木材快速有效的无损检测。   相似文献   

8.
白桦及毛白杨小径材木方软化工艺的研究   总被引:4,自引:1,他引:3  
用正交试验法,对白桦及毛白杨小径材木方进行了切板前水煮软化处理。结果表明,在一定范围内,软化介质的温度越高及保温时间越长,木材软化效果越好。超过一定范围以后,继续升温或延长保温时间,会因木材的结构被破坏而降低软化效果。试验还表明,含水率低于纤维饱和点的木方,水煮前进行水浸泡处理能改进软化效果。  相似文献   

9.
白蜡木干缩和湿胀性能的研究   总被引:1,自引:0,他引:1  
白蜡木是一种坚硬有弹性的木材,可应用于制作家具、工具柄、运动器材等.本研究采用干燥及吸湿的方法对其干缩和湿胀性能进行分析,初步探讨了这种木材在3个方向的尺寸及体积上随着木材含水率的变化而变化的特性,并且将这个特性与其他树种进行比较.结果表明,白蜡树的基本密度是0.73 g.cm-3,其干缩和湿胀性表现为:弦向>径向>纵向,当白蜡树木材的含水率小于FSP时,其干缩和湿胀性能非常明显,而当其含水率大于FSP时,其干缩和湿胀性趋于0.当木材含水率小于FSP时,在相同的含水率下,白蜡树木材比白松有更大的干缩和湿胀性.  相似文献   

10.
间伐强度对湿地松人工林木材质量的影响效应   总被引:6,自引:0,他引:6  
湿地松10年生人工林间伐显著地促进了林木胸径、单株材积的生长,有利于培育大径材,间伐后单位面积上畜积量和单位面积材积总生长量(包括间伐材)均显著高于未间伐的林分。间伐措施对湿地松人工林木材管胞壁腔比、腔径比、S2层微纤丝角,对径向和弦向干缩、体积和纵向干缩率、差异干缩、主要化学成分没有显著的影响,对木材管胞长度、长宽比值有显著负面影响。结合间伐后湿地松林分单位面积蓄积量及材积总生长量,培育纸浆材宜选用33.3%-50.0%的间伐强度。50.0%间伐强度的林分适宜培育建筑结构用材,其大径阶的木材比例高,单位面积上生长量、蓄积量也较大,木材晚材率、基本密度、顺纹抗压强度最大,抗弯性能最好。  相似文献   

11.
脲醛树脂稻壳板平面抗拉强度的研究   总被引:1,自引:0,他引:1  
脲醛树脂压制的稻壳板主要问题是平面抗拉强度低。从组成脲醛树脂的成分、树脂特性、增强剂及固化剂等几方面研究了稻壳板的平面抗拉强度。研究结果表明,采用适合稻壳特点的脲醛树脂并在适当增强剂和固化剂的配合下,可大幅度提高稻壳板的平面抗拉强度,即使施加较抵的胶量,稻壳板的平面抗拉强度仍然达到标准。  相似文献   

12.
为了系统研究不同表面状态下桦木单板的胶接性能,在比较桦木素材、染色桦木以及固色桦木表面润湿性能的基础上,采用湿固化异氰酸酯胶黏剂,对比分析了素材、染色和固色桦木3种试件在含水率30%、50%、70%和90%条件下的干状及湿状胶接强度.结果表明:随着含水率的升高,素材、染色和固色桦木表面的平衡接触角均呈上升趋势,胶接强度均呈下降趋势,并且其湿状胶接强度均明显低于各自的干状胶接强度;素材的干湿状胶合强度均明显高于染色和固色两种试件.  相似文献   

13.
竹木复合板水平剪切强度的研究   总被引:1,自引:0,他引:1  
采用短梁法研究了竹木复合板的水平剪切强度。研究结果表明,竹木复合板试件的跨距是影响水平剪切强度测定的主要因素,水平剪切强度随跨距的增加而明显降低,合理的跨距为板厚的4倍;竹木复合板水平剪切强度的范围为3.2~11.1MPa。  相似文献   

14.
木质人造板的耐候性研究   总被引:2,自引:2,他引:0  
人造板的室外自然老化和加速老化,以及两者之者的等效性试验结果表明:3年的自然老化和BS法的老化程度相当,喷蒸和沸煮或夏天的高温和雷雨对板材性能影响最显著,性能下降幅度随暴露时间的延长而减少;PF胶胶结或纤维间靠木素胶合和氢键结合的人造板较氨基树脂制造的人造板耐候性强.  相似文献   

15.
采用氮气作为保护气对落叶松进行高温热处理,研究了不同处理温度、处理时间的落叶松经油性漆、水性漆和木蜡油涂饰后的性能变化,分析了不同处理条件下的落叶松涂饰后表面颜色、耐干热、耐湿热、附着力、耐磨性、铅笔硬度以及抗弯强度的变化趋势。研究结果表明:经涂饰处理后的热处理落叶松,随着温度的升高和时间的延长,色饱和度差(ΔC*)明显下降,色差(ΔE*)及色相差(ΔH*)显著增加,说明涂饰可以有效改善木材表面的颜色;相对于热处理时间,热处理温度对落叶松涂饰过程的影响更明显;涂饰后的落叶松漆膜性能结果分为国家标准(GB/T 4893.2—2005、GB/T 4893.3—2005、GB/T 4893.4—2013和GB/T 4893.8—2013)的一级或二级,抗弯强度的改变相对较小。  相似文献   

16.
利用动态热机械分析仪检测了落叶松和白桦试材在不同含水率下的玻璃化转变温度(tg),研究了二者的关系及不同初含水率下储能模量随温度变化的规律。结果表明:落叶松和白桦试材玻璃化转变温度均随含水率升高而线性降低,表征二者关系的两个线性方程之决定系数分别高达0.996 46与0.979 86;含水率每增大1%所引起的玻璃化转变温度的降低值,落叶松为6.71℃,大于白桦的6.64℃。落叶松和白桦的储能模量均随其温度、初含水率的升高而减小。落叶松的储能模量以约70 MPa/℃的平均幅度随温度的升高近似呈线性减小趋势。白桦储能模量在初含水率6%~13%时,约以146.9 MPa/℃的平均幅度随温度的升高呈近似线性减小趋势;初含水率在15%~22%,随温度的上升产生了较为明显的突变点,在100℃左右急剧减小。所得落叶松和桦木储能模量与温度及含水率关系的两个数学表达式的决定系数分别达到0.910 43和0.886 54。  相似文献   

17.
<正> 胶合板的生产工艺中,陈化是一个必不可少的工序。在一定的生产工艺中,陈化时间将直接影响产品的胶粘质量。高温固化的酚醛树脂要形成比较理想的胶粘层,首先要保证(1)在热压过程中,树脂固化之前具有一定的流动性,以便树脂能湿润所有的接触面。所谓的接触面应包括胶层两侧木材表面和胶粘剂渗入一定深度所接触的表面;(2)胶粘剂经热压后必须充分固化。木材用水溶性酚醛树脂胶粘时不可避免地要有相当数量的水分带入木材(约为施胶量的50%)。胶粘剂中的水对胶粘层形成的质量有很大的影响,例如胶在基材中的流动性。水分过多胶的流动性便大,渗透性也随之增加,造成胶层过薄或缺胶,降低了胶粘质量。水分不足,胶的流动性差,不能很好地湿润材面,而且渗透性不够。另一方面如果胶层中的水没有充分排出,酚醛胶就不能彻底固化,也不能得到很高的胶粘强度。陈化就是为了调节胶层中的水分,使胶对某种木材具有适当的湿润性和渗透性。  相似文献   

18.
杉木指接集成板的生产工艺与技术   总被引:2,自引:1,他引:2  
采用南方速生杉木制造指接集成板,从杉木材性、加工工艺、设备性能、材料利用率、生产成本、产品质量和市场需求等方面出发,研究和分析了南方速生杉木制造指接集成板的特点和应掌握的技术问题.结果表明,这种杉木有高胶接强度和浸渍剥离强度,但自身剪切强度较低.采取恰当的工艺与技术,用南方速生杉木可以生产出满足市场需求的较高质量的指接集成板。  相似文献   

19.
[目的]研究大兴安岭北部兴安落叶松林、樟子松林和白桦林根际与非根际微生物数量及其主要生理类群的垂直分布规律。[方法]采用稀释平板法对土壤微生物进行分离和培养。统计各林型根际与非根际土壤垂直方向细菌、真菌、放线菌数量。[结果]3种林型根际土壤微生物数量均大于非根际;3种林型根际细菌数量均有先增大后减小的趋势,非根际细菌数量随着土层的加深而逐渐减小;落叶松林根际真菌数量随着土层的加深而逐渐减小。樟子松林和白桦林根际真菌数量则先增大后减小。3种林型非根际真菌均有逐渐减小的规律;3种林型根际与非根际放线菌则有先增大后减小的趋势。非根际樟子松林微生物总数的层化比率最大,落叶松林次之,白桦林最小。[结论]白桦林的土壤微生物最为活跃,各个土层微生物总量高于落叶松林和樟子松林。该研究为大兴安岭地区土壤质量的研究提供基础资料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号