首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

CASE HISTORY: A Jersey herd of 350 cows and 70 heifers located in the Taranaki region of New Zealand ceased milking in June 2011. Ten cows died during the subsequent 14 days. For at least 9 months, the cows had received palm kernel expeller (PKE) and molasses supplements. Additional Cu supplementation was provided through the water system. Total Cu intake was calculated to be 400?mg/day/cow.

CLINICAL AND PATHOLOGICAL FINDINGS: Half of the cows died suddenly while others presented with anorexia, depression and ataxia, which progressed to recumbency and death after 1 to 3 days. Clinical signs were mild dehydration, cyanosis and firm faeces which were covered in dark blood. Mean concentrations of Cu in liver and kidney in three of the dead cows were 3,900 and 440?µmol/kg fresh weight (FW), respectively. Haemorrhages were observed throughout the alimentary tracts and in muscles, and there were ecchymotic haemorrhages on the epi- and endocardia. The livers were swollen and the gall bladder walls were inflamed.

DIAGNOSIS: High concentrations of Cu in the liver and kidney are characteristic findings of chronic Cu toxicity.

TREATMENT: The remaining herd was fed 200?mg Mo, as sodium molybdate, per cow per day and all Cu supplements were removed including those provided by the water supply. This reduced mean concentrations of Cu in liver from 3,100 to 1,320?µmol/kg FW within 26 days in the five live animals that were biopsied. There were no further deaths.

CLINICAL RELEVANCE: In dairy herds where excessive Cu intakes have resulted in high liver Cu concentrations and caused chronic Cu toxicity, the removal of all Cu supplements and provision of high intakes of Mo (200?mg/cow/day) can markedly reduce liver Cu stores within 4 weeks.  相似文献   

2.
AIM: To compare the efficacy of chelated versus inorganic forms of dietary Cu supplements, fed as a bolus, when challenged by a daily bolus of dietary Mo in cattle on a low-Cu diet.

METHODS: Forty non-lactating, Friesian dairy cows of adequate Cu status were assigned to four groups and fed a basal diet of baled silage containing 5.3 mg Cu and 0.4 mg Mo/kg DM. The experimental design was a factorial of two chemical forms of supplemental Cu and two levels of Mo intake, provided as pelleted grain supplements made from crushed barley/molasses plus Cu and Mo. The supplements contained 140 mg Cu/kg as Cu sulphate pentahydrate (CS), 140 mg Cu/kg as Cu glycinate (CG), CS plus 38 mg Mo/kg as sodium molybdate (CS+Mo), or CG plus 38 mg Mo/kg (CG+Mo). Commencing on Day 0, supplements were fed once daily (offered 1–1.2 kg/cow) and were completely consumed within 5–10 minutes, which constitutes a bolus type of administration. Liver samples were collected by biopsy at Days ?24, 13, 41 or 47, and 69 for Cu determinations.

RESULTS: The diets fed to the Cu+Mo groups were roughly equivalent to 25 mg Cu and 5.7 mg Mo/kg DM. Mean initial concentration of Cu in liver for all groups was 516 (SE 54) μmol Cu/kg fresh tissue. In cows supplemented with CS and CG, the final (Day 69) concentrations increased (p<0.01) to 939 (SE 166) and 853 (SE 163) μmol Cu/kg, respectively. These values were not different (p=0.72). For groups CS+Mo and CG+Mo, the final concentrations of 535 (SE 122) and 453 (SE 102) μmol Cu/kg were not different from initial values or from each other (p>0.25). The rate of accumulation of Cu in liver following bolus Cu and Mo intake was highly variable but was not affected by initial concentration of Cu in liver (p>0.9) or by the form of Cu (p>0.6). Mean rates of accumulation of Cu in liver were 4.0 (SD 3.8) and 0.65 (SD 2.0) μmol Cu/kg fresh tissue/day for the Cu-only treatments and the Cu+Mo treatments, respectively.

CONCLUSIONS: When fed together as a bolus, high Mo intake negated the effect of supplemental Cu but it did not reduce liver Cu stores. There was no difference in the reaction of dietary Mo with chelated Cu (as glycinate) versus inorganic Cu (as sulphate) dietary supplements.  相似文献   

3.
AIM: To minimise the impact of initial variation in liver copper (Cu) on assessments of Cu supplements for cattle in depletion/repletion experiments.

METHODS: Efficacy of two Cu injections was assessed with 18 calves, weighing 200–250 kg, given a Cu-deficient barley diet, containing 4.1 mg Cu/kg dry matter (DM) and added molybdenum (3 mg/kg) and sulphur (3 g/kg). Initial liver biopsy Cu ranged from 3.15–14.17 mmol/kg DM and nine calves with the highest values were given three subcutaneous injections of 235 mg tetrathiomolybdate (TTM) after 42–46 days depletion to lower liver Cu. Untreated (L) and TTM-treated (H) calves were ranked separately for liver Cu after 50 days depletion and allocated to one of three treatments: 100 mg Cu given subcutaneously as CuCaEDTA in either a paraffin (CuP) or aqueous base (CuA) after 56 days depletion (Day 0) or no injection (O). Thereafter, plasma and liver biopsy Cu were measured every 2–4 weeks for 16 weeks. Responses in liver Cu to Cu injections were compared with and without loge transformation and by linear regression.

RESULTS: Prior to Cu injection, the fractional decline in liver Cu concentration (FDLCu) after 50 days depletion was 0.64 (SE 0.066) and 0.80 (SE 0.090) in H and L calves, respectively (p=0.09) and mean liver Cu did not differ on Day ?6 (6.65 (SE 0.516) and 4.91 (SE 0.681) mmol/kg DM, respectively). Mean plasma Cu was higher in H than L calves on Day 0 (16.6 (SE 0.52) and 13.3 (SE 0.49) μmol/L, respectively (p<0.001)). Rates of decline in loge liver Cu between Days 0–84 in treatments L and H were: 0.0138 and 0.0071 for Groups O; 0.0033 and 0.0016 for Groups CuP; 0.0073 and 0.0049 for Groups CuA (pooled SE 0.0014) mmol/kg DM/day, respectively. Between Days 84–114, FDLCu was uniformly high across experiments and groups (0.59 (SE 0.042)). Cu injections did not affect plasma Cu, which remained 3.1 (SE 0.41) umol/L higher in Experiment H than in L (p=0.017).

CONCLUSIONS: The use of rates of change in liver copper concentrations improved the assessment of efficacy for two parental copper supplements and that of pre-treatment with tetrathiomolybdate, which, contrary to expectation, slowed Cu turnover by mechanisms that remain unclear.  相似文献   

4.
Copper poisoning in a dairy herd fed a mineral supplement   总被引:3,自引:1,他引:2       下载免费PDF全文
Copper poisoning in a dairy herd resulted in the death of 9 of 63 (14%) adult Holstein cows. Clinical signs were acute anorexia, weakness, mental dullness, poor pupillary light reflexes, and scant nasal discharge. These were followed by recumbency, chocolate-colored blood, jaundice, and death. Four animals exhibited signs of hyperesthesia and/or rumen stasis prior to death. At necropsy there was generalized icterus of body tissues, with the liver appearing orange and the kidneys dark blue. Histologically, there was accumulation of hemosiderin in Kupffer cells, and severe to moderate hepatocellular necrosis in all cases. Ammonium molybdate added to the ration, combined with the cessation of mineral supplementation, arrested the outbreak.

These cases illustrate significant mortality, due to copper poisoning, in adult cattle fed a low-dose mineral dietary supplement for over two years. Dietary copper intake of the herd (on a dry matter basis) was 37.5 mg/kg for lactating cows and 22.6 mg/kg for dry cows.

  相似文献   

5.
6.
Chronic copper toxicity was diagnosed in a Jersey herd in the Waikato region of New Zealand following an investigation into the deaths of six cattle from a herd of 250 dry cows. Clinical signs and post-mortem examination results were consistent with a hepatopathy, and high concentrations of copper in liver and blood samples of clinically affected animals confirmed copper toxicity. Liver copper concentrations and serum gamma-glutamyl transferase activities were both raised in a group of healthy animals sampled at random from the affected herd, indicating an ongoing risk to the remaining cattle; these animals all had serum copper concentrations within normal limits. Serum samples and liver biopsies were also collected and assayed for copper from animals within two other dairy herds on the same farm; combined results from all three herds showed poor correlation between serum and liver copper concentrations.To reduce liver copper concentrations the affected herd was drenched with 0.5 g ammonium molybdate and 1 g sodium sulphate per cow for five days, and the herd was given no supplementary feed or mineral supplements. Liver biopsies were repeated 44 days after the initial biopsies (approximately 1 month after the end of the drenching program); these showed a significant 37.3% decrease in liver copper concentrations (P <0.02). Also there were no further deaths after the start of the drenching program. Since there was no control group it is impossible to quantify the effect of the drenching program in this case, and dietary changes were also made that would have depleted liver copper stores.Historical analysis of the diet was difficult due to poor record keeping, but multiple sources of copper contributed to a long term copper over supplementation of the herd; the biggest source of copper was a mineral supplement. The farmer perceived this herd to have problems with copper deficiency prior to the diagnosis of copper toxicity, so this case demonstrates the importance of monitoring herd copper status regularly. Also the poor correlation between liver and serum copper concentrations in the three herds sampled demonstrates the importance of using liver copper concentration to assess herd copper status.  相似文献   

7.
AIMS: To describe and evaluate the current practices used to manage and prevent facial eczema (FE) in North Island dairy herds, and determine the within-herd prevalence of cows with elevated activities of gamma glutamyl transferase (GGT), and with concentrations of Zn in serum <18?μmol/L.

METHODS: Between January and May 2014, 105 herd managers from throughout the North Island of New Zealand were invited to participate in the study when regional spore counts for Pithomyces chartarum started to rise towards 30,000 spores/g pasture. Managers selected 10 representative cattle that were weighed and blood-sampled by the herd veterinarian. Blood samples were analysed for concentrations of Zn in serum and GGT activity. Pasture samples were also collected and submitted for spore count estimation. Finally a survey of farm management practices relating to prevention of FE was completed by the herd manager. A mixed-effects logistic regression model was used to determine associations between herd-level and cow-level explanatory variables and the probability of a cow having a concentration of Zn in serum <18?µmol/L.

RESULTS: Of the 1,071 cows tested, 79 (7.3 (95% CI=5.8–9.0)%) had GGT activity in serum >300?IU/L, and 35/106 (33 (95% CI=24.2–42.8)%) herds had ≥1 of the 10 cows sampled with GGT activity >300?IU/L. Of the 911 cows that were being treated with Zn, concentrations of Zn were between 18–35?μmol/L in 398 (43.6 (95% CI=40.4–46.9)%) cows, were >35?μmol/L in 32 (3.5 (95% CI=2.4–4.1)%) cows, and <18?μmol/L in 479 (52.6 (95% CI=49.3–55.9)%) cows. After adjusting for the confounding effect of region, the odds of a cow having concentrations of Zn in serum <18?μmol/L were 5.5 (95% CI=1.1–29) times greater for cows supplemented with zinc in water compared with those supplemented by drenching. Of the 105 herd managers, 103 (98%) stated that they had access to regional spore count data, but only 35/105 (33%) reported that they measured spore counts on their own farm. Overall, 98/105 (93%) managers reported that they had some form of FE management programme in place. Fungicides were used on their own or in combination with zinc treatments in 10 herds, ZnSO4 in water troughs was used in 68 herds, oral drenching with ZnO in nine herds, and ZnO supplied in-feed in 26 herds. Estimated daily dose rates of zinc were less than that required to treat a 400?kg cow on 42/68 farms that administered ZnSO4 in the water or ZnO as a drench.

CONCLUSION AND CLINICAL RELEVANCE: This study has shown that FE management on dairy farms in the North Island of New Zealand could be substantially improved. It is likely that improved FE management would occur if herd managers were provided with more feedback on the success (or otherwise) of their FE management programmes.  相似文献   

8.
  1. The diet of broiler chickens supplemented with increasing concentrations of copper (Cu) was assessed for the effect of Cu on liver mitochondrial function.

  2. A total of 160, 1-d-old Cobb 500 broilers (Gallus domesticus) were randomly assigned in equal numbers into 4 groups, which differed in the concentration of copper supplements in the diet; 11 (control), 110, 220 and 330 mg of Cu/kg dry matter. Liver mitochondrial function was recorded at 12, 24, 36, 48 and 60 d of age.

  3. Supplementation with 110 mg Cu/kg dry matter enhanced mitochondrial function and activities of complexes I–V, and this was significant at 36 d of age compared with the other diets (P < 0.05). Supplementation with 220 mg Cu/kg dry matter and 330 mg Cu/kg dry matter enhanced mitochondrial function and activities of complexes I–V at 12, 24 and 36 d of age, but displayed reduced function (P < 0.05) at 48 and 60 d of age except in complex IV (P > 0.05). Mitochondrial hydrogen peroxide (H2O2) production was also increased (P < 0.05) with an increase of copper supplementation in the diet.

  4. The results indicate that appropriate dietary copper supplements are sufficient for improving mitochondrial function and activities of the respiratory complexes. Higher concentrations of copper, on the other hand, lead to copper toxicity by affecting certain respiratory complexes.

  相似文献   

9.
The effect of Cu status, supplementation, and source on pituitary responsiveness to exogenous GnRH was evaluated using nine multiparous, nonpregnant, nonsuckling, ovariectomized Angus cows (7.1 +/- 3.3 yr; 622.9 +/- 49.8 kg; BCS = 6.0 +/- 0.5). Cows were considered Cu-deficient based on liver Cu concentrations (< 30 mg of Cu/kg of DM) after receiving a low-Cu, forage-based diet supplemented (DM basis) with 5 mg of Mo/kg and 0.3% S for 216 d. Copper-deficient cows were stratified based on age, BW, BCS, and liver Cu concentration and assigned randomly to repletion-phase treatments. Treatments included 1) control (no supplemental Cu); 2) organic (ORG; 100% organic Cu); and 3) inorganic (ING; 100% inorganic CuSO4). Treatments were formulated to meet all NRC recommendations, except for Cu, which was supplemented to ORG and ING cows at 10 mg of Cu/kg of dietary DM. During the 159-d repletion phase, Cu status was monitored via liver biopsy samples, and all cows received exogenous progesterone. A controlled intravaginal drug-release device (replaced every 14 d) was used to maintain luteal phase progesterone as a means to provide negative feedback on the hypothalamic-pituitary axis. During the repletion phase, liver Cu concentrations did not differ between ORG and ING cows at any time. By d 77 of the repletion phase, all supplemented cows were considered adequate in Cu, and liver Cu concentrations were greater in supplemented than in nonsupplemented control cows on d 77 (P < 0.05) and throughout (P < 0.01) the repletion phase. Beginning on d 99, exogenous GnRH was administered to all cows at low (0, 3, and 9 microg; Exp. 1) and high doses (0, 27, and 81 microg; Exp. 2) at six different times. Cows were catheterized every fifth day, and blood samples were collected every 15 min for 1 h before and 4 h after GnRH administration and analyzed for LH concentration. In Exp. 1, Cu status and supplementation did not affect basal or peak LH concentrations, but total LH released tended (P < 0.07) to be greater in Cu-supplemented vs. control cows when 3 microg of GnRH was administered. In Exp. 2, there was no effect of Cu supplementation or source on basal, peak, or total LH released, regardless of GnRH dose. Pituitary LH concentrations did not differ across treatments. In conclusion, Cu status, supplementation, and source did not affect GnRH-induced LH secretion or pituitary LH stores in ovariectomized, progesterone-supplemented cows in this experiment.  相似文献   

10.
Two experiments were conducted to determine whether the supplementation of Cu in the organic or inorganic form to 2-yr-old cows, before and after calving, affects reproduction rate, calf health and performance, passive transfer of immunoglobulin, or liver and serum Cu concentrations compared with unsupplemented controls. Cows (n = 75 in 1997; n = 120 in 1998) were randomly assigned by estimated calving date and body condition score to one of three treatments: 1) Control, control; 2) Inorganic, inorganic Cu supplement (200 mg Cu from CuSO4); 3) Organic, organic Cu supplement (100 mg Cu from AvailaCu). In 1998, a fourth treatment was added; 4) CU-ZN, organic Cu and Zn (400 mg Zn from AvailaZn in the Organic diet). Cows were fed a hay-based diet and individually fed supplements for approximately 45 d before and 60 d after calving (approximately January 15 to May 15 each year). Liver biopsies were obtained from cows before supplementation began, and from cows and calves at 10 and 30 d after calving. Blood samples were obtained from both cows and calves at calving, and colostrum samples were collected for IgG and mineral content. Cow liver Cu concentrations before supplementation began were 58 mg/kg in 1997 and 40 mg/kg (DM basis) in 1998. By 10 d after calving, liver Cu concentrations of Control cows had decreased (P < 0.05) to 24 mg/kg (Cu deficient) in both years, whereas liver Cu concentrations of Cu-supplemented cows increased (P < 0.05) in both years. Calf liver Cu concentrations at 10 d of age were similar (P > 0.10) for all treatment groups. No differences (P > 0.10) were found in colostrum Cu concentrations, or in calf health among treatments. No differences (P > 0.10) were found in cow BW change, calf serum Cu concentrations, calf weaning weights, or in cow 60-d pregnancy rates among treatments in either year. In 1998, cows in the Organic group had higher (P < 0.05) 30-d pregnancy rate than Control cows. Neither serum samples nor placental tissue were reliable indicators of Cu status in cows. Feeding supplemental Cu (either inorganic, organic, or organic with extra Zn) to cows with liver Cu concentrations of approximately 50 mg/kg before calving did not improve cow 60-d pregnancy rates or the health and performance of their calves when compared with unsupplemented cows.  相似文献   

11.
Estimated copper requirements of angus and simmental heifers   总被引:7,自引:0,他引:7  
In Exp. 1, Simmental (n = 21) and Angus (n = 21) heifers, approximately 9 mo of age, were used in a 160-d study to determine the effect of dietary Cu on growth and Cu status. Two- or three-yr-old first-calf heifers (21 Angus and 21 Simmental) entering into their last trimester of pregnancy were used in Exp. 2 to estimate Cu requirements of the two breeds during gestation and early lactation. Treatments in both studies consisted of 0 (control), 7, or 14 mg of supplemental Cu (as CuSO4)/kg of DM. The control corn silage-based diets contained 6.4 and 4.4 mg of Cu/kg of DM in Exp. 1 and 2, respectively, and 1.2 mg of Mo/kg. Dietary Cu did not affect performance in either breed in Exp. 1. Copper supplementation generally did not affect plasma Cu concentrations in Angus heifers, but increased (P < 0.05) plasma Cu in Simmental heifers from d 37 until the end of Exp. 1. Final liver Cu concentrations were lower (P < 0.05) than initial concentrations in control Angus and Simmental heifers; however, liver Cu increased (P < 0.01) in Cu-supplemented heifers. In Exp. 2, Cu supplementation of the control diet increased (P < 0.05) plasma Cu during gestation and greatly increased (P < 0.01) liver Cu in both breeds. Calves born to cows not supplemented with Cu also had lower plasma Cu concentrations than Cu-supplemented calves by 73 d of age. In both studies, control Simmental heifers had lower (P < 0.05) plasma Cu concentrations than Angus on most sampling dates. When Cu was supplemented at 7 or 14 mg/kg of DM,few differences in plasma Cu concentrations were observed between breeds. Results suggest that Angus heifers have a lower minimal Cu requirement than Simmental. Based on liver Cu, the control diets containing 4.4 or 6.4 mg of Cu/kg of DM did not meet the Cu requirement of either breed during gestation and lactation or growth. Addition of 7 mg of Cu/kg of DM to the control diets met Cu requirements of both breeds.  相似文献   

12.
Following the initial diagnosis of chronic copper poisoning (CCP), the copper (Cu) status of a British dairy herd was investigated. Eight fatal cases of CCP were identified over a 17-month period, from December 1999 to May 2001, involving seven Jersey cows and one Holstein-Friesian; seven cows were dry when CCP occurred. Case diagnostic criteria were necrotising hepatopathy associated with abnormally high liver and kidney Cu concentrations. Analysis of the ration for the high-yielding Jersey cow group revealed about 50 mg Cu/kg dry matter intake (DMI). Risk factors predisposing to fatal CCP were Jersey breed, previous high yield, first two weeks of the dry period and moderately high dietary Cu (greater than 40 mg Cu/kg DMI).  相似文献   

13.
AIM: To determine the effect of increasing molybdenum (Mo) intakes on serum and liver copper (Cu) concentrations and growth rates of grazing red deer (Cervus elaphus).

METHODS: Molybdenum- and Cu-amended fertilisers were applied to six 1.1-ha paddocks in a 3 × 2 design. Three levels of Mo were applied on two paddocks at each level in mid April (designated Day 1); levels were: none (control), 0.5 (medium) and 1.0 (high) kg Mo/ha as sodium molybdate. In late May (Day 39), two levels of Cu (none and 3.0 kg Cu/ha, as copper sulphate) were applied to each of the three levels of Mo-treated paddocks. Pasture Mo, Cu and sulphur (S) concentrations were measured at about fortnightly intervals. In late June (Day 74), ten 6-month-old red deer hinds were placed on the six experimental pastures, and serum and liver Cu concentrations were monitored at about monthly intervals for 102 days. The hinds were weighed on four occasions during the trial.

RESULTS: Mean pasture Mo concentrations on Day 56 were 2, 4.6 and 11.3 mg/kg dry matter (DM) for the untreated control, medium and high Mo-treated pastures, respectively. Pasture Cu concentration was 95 mg/kg DM on Day 59, 53 mg/kg DM on Day 90, and 9 mg/kg DM by Day 153. Mean S concentration in pasture was 3.3 (range 3.03–3.45) g/kg DM. Copper application to pasture had no significant effect on serum and liver Cu concentrations in deer so data were pooled within Mo treatment. Mean initial (Day 74) serum Cu concentration was 9.2 µmol/L. In the deer grazing the control Mo pasture, this increased to 10.3 µmol/L on Day 112, before decreasing to 6.4 µmol/L on Day 176. In deer grazing the medium and high Mo-treated pastures, mean serum Cu concentrations were 3.8 and 3.9 µmol/L, respectively, on Day 112, and 2.5 and 3.3 µmol/L, respectively, on Day 176. Mean initial (Day 74) liver Cu concentration was 131 µmol/kg fresh tissue. In the deer grazing the control Mo pasture, this declined to 120 and 52 µmol/kg on Days 112 and Day 176, respectively. In deer grazing the medium and high Motreated pastures, liver Cu concentrations decreased to 55 and 52 µmol/kg fresh tissue, respectively, on Day 112, and 21 and 20 µmol/kg fresh tissue, respectively, on Day 176. Mean serum and liver Cu concentrations were not significantly different between deer grazing the medium and high Mo-treated pastures, and were lower (serum p=0.003, liver p<0.001) in those groups than in deer grazing the untreated control pastures. No clinical signs of Cu deficiency associated with lameness were observed. Deer grazing pastures that had Mo concentrations >10 mg/kg DM had lower (p=0.002) growth rates (100 vs 130 g/day) than those on pastures containing <2.4 mg Mo/kg DM.

CONCLUSION: Increasing pasture Mo concentrations from 2 mg/kg DM to ≥4.6 mg/kg DM significantly reduced serum and liver Cu concentrations in grazing deer. Reduced growth rate was observed at pasture Mo concentrations >10 mg/kg DM.  相似文献   

14.
Cattle from 2 herds developed copper toxicosis after the ingestion of chicken litter. The affected animals were adult Holstein cows and crossbred steers that ate 9 to 16 kg of litter/day. These cattle developed a sudden onset of weakness, depression, anorexia, icteric mucous membranes, and dark reddish brown urine. Liver copper concentrations in 2 cattle (1 from each herd) were 436 and 730 ppm. Results of copper analyses of chicken litter ranged from 620 to 920 ppm. Sodium molybdate and sodium thiosulfate were added to the ration of the dairy herd. Two cows with clinical signs of copper toxicosis recovered after being given additional sodium molybdate and thiosulfate supplements, orally.  相似文献   

15.
The objective of this experiment was to evaluate the effect of concentrate/milk yield ratios on feed intake, nutrient digestibility, rumen fermentation efficiency, and milk production in dairy cows fed with a basal diet of whole crop rice silage (WCRS). Sixteen crossbred cows (75 % Holstein-Friesian (HF) and 25 % Thai cows) in mid-lactation were assigned to four dietary treatments in a completely randomized design. Treatments corresponding to four concentrate/milk yield ratios (0, 1:1, 1:2, and 1:3 (kg/kg)) were used. All cows were offered WCRS (with 1.5 % urea and 3 % molasses) ad libitum. Silage and concentrate were fed individually twice a day. Results revealed that dry matter intake (12.8–14.5 kg/day), nutrient digestibility (62.5–68.7 %), and rumen fermentation efficiency were not significantly affected by concentrate supplementation. Milk yield (10.2–11.5 kg/day) and milk composition were similar between cows fed with sole WCRS and those supplemented with concentrate mixture, although milk fat tended to increase in cows fed with sole WCRS. In conclusion, sole WCRS fed to dairy cows without concentrate supplementation resulted in similar feed intake, nutrient digestibility, rumen fermentation, and milk production as compared to those supplemented with concentrate in lactating dairy cows. These results suggest that in tropical areas where rice crop is surplus, WCRS could sustain reasonable levels of milk production among dairy cows with little or no concentrate supplementation provided that urea and molasses are included in the silage.  相似文献   

16.
Performance, immune response, and liver trace mineral status were measured in growing heifers supplemented with different copper (Cu) concentrations and sources when diets contained the Cu antagonists Mo, S, and Fe. Sixty Angus x Hereford heifers were managed in two groups for 112 d and were either individually fed diets and mineral treatments using individual feeding stalls (Stall) or pen-fed grass hay and individually supplemented mineral treatments (Pen). The basal diet of grass hay, rolled barley, and soybean meal was analyzed to contain 6 mg Cu/kg DM. The treatments consisted of 1) no supplemental Cu (Control); 2) 49 mg Cu/kg DM from Cu sulfate (i.e. approximately five times NRC recommendation for Cu from CuSO4) (5X-SO4); 3). 22 mg Cu/kg DM from CuSO4 (2X-SO4); 4). 22 mg Cu/kg DM from a combination of 50% CuSO4 and 50% Cu-amino acid complex (50-50); and 5). 22 mg Cu/kg DM from a combination of 25% CuSO4, 50% Cu-amino acid complex, and 25% Cu oxide (CuG) (25-50-25). All heifers were supplemented with the Cu antagonists Mo (10 mg/kg DM), S (2,900 mg/kg DM), and Fe (500 mg/kg DM). These diets resulted in dietary Cu:Mo ratios that averaged 0.5:1 for Control, 4.5:1 for the 5X-SO4, and 2.4:1 for 2X-SO4, 50-50, and 25-50-25. Rate and efficiencies of gain and cell-mediated immune function were not different (P > 0.10) among treatments. Data suggest supplements containing combinations of inorganic and complexed Cu interacted differently in the presence of Mo, S, and Fe. Heifers consuming the 25-50-25 supplement in the Stall group initially lost hepatic Cu rapidly but this loss slowed from d 50 to d 100 compared to the Control (P = 0.07), 50-50 (P < 0.05), and 2X-SO4 (P < 0.05) heifers and was similar (P > 0.10) to that in the 5X-SO4 heifers. In the Pen group, total hepatic Cu loss tended to be greater for 25-50-25 and 2X-SO4 compared to 5X-SO4 heifers (P = 0.09 and P = 0.06, respectively); Cu loss in the 50-50 heifers was similar (P > 0.10) to that in the 5X-SO4 heifers. This suggests that supplementing combinations of inorganic and amino acid-complexed Cu was as effective in limiting hepatic Cu loss during antagonism as was increasing dietary Cu levels to five times the NRC recommendation. A combination of 25% CuSO4 , 50% Cu-amino acid complex, and 25% CuO limited liver accumulation of Mo compared to supplements without CuO and could provide a strategic supplementation tool in limiting the systemic effects of Cu antagonism in beef cattle.  相似文献   

17.
The study assessed the effect of Acacia mearnsii tannin extract supplementation grazing dairy cows on dry matter (DM) intake, enteric methane (CH4) emission, and performance. Twelve Holstein cows were divided into two groups and subjected to two treatments that consisted of millet pasture (Pennisetum glaucum L.) plus supplementation with 6 kg of concentrate (750-g/kg ground corn and 250-g/kg soybean meal) including or excluding 120-g tannin extract. The trial design was a double reversal using three periods of 28 days each, with 21 days for the adaption period, and 7 days for sample collection. Herbage intake was measured using the n-alkane technique, and daily CH4 emission was measured with the sulfur hexafluoride tracer gas technique. Individual total DM intake (mean = 17.1 kg/day), herbage DM intake (mean = 11.8 kg/day), and milk production (mean = 19.2 kg/day) were similar between treatments. CH4 emission significantly decreased (32%, P < 0.05) in the animals supplemented with tannin extract, compared to non-supplemented animals. On the other hand, as proportion of DM intake or milk production, methane emission tended to decrease in tannin-supplemented animals. Supplementing dairy cows grazing a millet pasture with 120-g tannin extract reduced daily CH4 emission without affecting animal performance.  相似文献   

18.
CASE HISTORY: A 400-cow dairy unit in the Waikato suffered a severe outbreak of facial eczema (FE) despite consistent zinc supplementation and significantly elevated serum zinc concentrations.

CLINICAL FINDINGS: FE prevention had begun in mid-January 2006, via zinc sulphate supplementation in the water. Photosensitisation was reported on 06 April, contemporaneous with a marked increase in the number of Pithomyces chartarum spores in pasture samples. Within 10 days of this first clinical case, 100 affected cows had been dried off, eight of which subsequently died or were culled. Blood samples were collected from ten affected cows; all had serum zinc concentrations >17 µmol/L, and eight had gamma-glutamyl transferase (GGT) activities >200 U/ml, indicating that the photosensitisation was secondary to liver damage, i.e. probably FE. Further investigation identified that this herd had been receiving excess copper supplementation; 4/6 culled cows had liver copper concentrations within or above the marginal range for copper toxicity.

DIAGNOSIS: Severe FE despite zinc supplementation that increased serum zinc concentrations above recommended levels

CLINICAL RELEVANCE: As zinc supplementation significantly reduces apparent copper status, copper supplementation is often used to counteract this. Previous excess copper intake may reduce the efficacy of zinc in preventing FE, thus copper intake should be assessed prior to the start of zinc supplementation.  相似文献   

19.
In this cross-sectional study, we assessed and mapped the seroprevalence of brucellosis in small-scale dairy farming in an urban and peri-urban area of Tajikistan and investigated factors associated with seropositivity. As urban and peri-urban farming is both an opportunity to improve the livelihood for small-scale farmers and a potential public health hazard, studies are warranted to reveal possible peculiarities in the epidemiology of brucellosis in this type of dairy farming. In total, 904 cows of breeding age belonging to 443 herds in 32 villages were serologically tested with indirect enzyme-linked immunosorbent assay (ELISA) and positive samples confirmed with competitive ELISA. Two logistic regression models were used to investigate an association between seropositivity and risk factors at herd and individual level. The herd and individual seroprevalences were 4.1 and 2.0 %, respectively. Herds with a history of abortions were found to be associated with seropositivity [odds ratio (OR)?=?5.3; 95 % confidence interval (CI), 1.3–21.3]. Large herds with more than eight cattle were more likely to be seropositive compared to smaller herds with one to two cattle (OR?=?13.9; 95 % CI, 1.6–119). The number of calves produced per cow (indicating age) was found to be associated with seropositivity. Younger cows with one to two produced calves were less likely to be seropositive compared to older cows with more than six produced calves (OR?=?0.24; 95 % CI, 0.06–1.0). Neither introduction of new cattle to the herd nor communal grazing was associated with seropositivity. This study shows that infection with Brucella (1) is present in small-scale urban and peri-urban dairy farming in Tajikistan and (2) has significant negative effects on reproductive performance in this farming system and (3) that some previously known risk factors for seropositivity in rural farming system were absent here.  相似文献   

20.
High-quality protein roughage is an important feed for productive ruminants. This study examined the effects of strategic feeding of lactating cows with cassava (Manihot esculenta) top silage (CTS) on rumen fermentation, feed intake, milk yield, and quality. Four early lactating crossbred dairy cows (75% Holstein-Friesian and 25% Thai) with body weight (BW) 410?±?30 kg and milk yield 12?±?2 kg/day were randomly allotted in a 4?×?4 Latin square design to four different supplementation levels of CTS namely, 0, 0.75, 1.50, and 2.25 kg/day of dry matter (DM). Strategic supplementation of CTS significantly affected ruminal fermentation end-products, especially increased propionate production, decreased protozoal population and suppressed methane production (P?<?0.05). Increasing the CTS supplementation level substantially enhanced milk yield and the 3.5% FCM from 12.7 to 14.0 kg/day and from 14.6 to 17.2 kg/day (P?<?0.05) for non-supplemented group and for the 2.25 kg/day supplemented group, respectively. We conclude that high-quality protein roughage significantly enhances rumen fermentation end-products, milk yield, and quality in dairy cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号