首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
F. Scheffer  H. Gebhardt 《Geoderma》1977,17(2):145-163
In spite of the fact that Ramann's concept of Braunerde was extensively used throughout the world, some pedogenic processes and soil properties which are important for the formation and existence of Brown Forest Soils (eutrophic brown earths) are still not well known. Hence, a soil was investigated which was classified as a “Braunerde” by Ramann in 1909. The main question was, whether there might be soil constituents such as inorganic amorphous substances (allophanes) which are able to stabilize the brown-earth fabric, or to inhibit clay migration. From chemical data as well as from the magnitude of the pH-dependent CEC, it was deduced that there are no appreciable amounts of allophanes within the soil. The fabric, however, seems to be stabilized by colloid-chemical flocculation of the clay particles caused by large amounts of carbonates and silicates deposited with the parent material (loess). The decalcified solum is still rich in silicates, especially sand and coarse-silt-sized micas and feldspars (60–200 and 20–60 μm fractions, respectively). Since - in comparison - loesses and loess-derived soils of the Central German mountain region contain less silicates, mainly in fine and medium silt fractions (2–6 and 6–20 μm diameter, respectively), the coarser-grained silicates were assumed to be important for maintaining the Ca2+ and Mg2+ saturation of the soil by continuous weathering and thus stabilizing the brown-earth fabric.Although the soil is saturated predominantly with Ca2+ and Mg2+ ions, clay migration proceeds within the upper horizons. This was shown by calculation of the amounts of clay formed by breakdown of micas originally present in the parent material (“clay formation balance”), as well as by micromorphological studies. Furthermore, micromorphological studies and x-ray diffraction data gave some evidence for the migration of preferably finest grained montmorillonitic clays (smectites) penetrated by organic substances (humus). This kind of “selective clay migration” was assumed to be caused by high Ca2+ (or Mg2+) concentrations in soil solution required for flocculation of humus-penetrated (humus-coated) smectites. From the occurrence of these “humus-smectites” the possibility was assumed that the soil studied has been developed from a former Chernozem type.Quantitatively, clay migration does not reach the amounts of clay formation (breakdown of micas) accompanied by precipitation of iron oxides on mineral surfaces (“Verbraunung”). Thus, the soil profile visually and macromorphologically clearly exhibits the features of brown earths. On the other hand, however, some clay migration was observed. Hence, the soil was classified as a “brown earth with some clay migration” (“schwach durchschlämmte Braunerde”).Judging from the results of the “clay formation balance” an appreciable pedogenic (autigenic) clay formation from weathering products of feldspars was excluded for the soil studied.  相似文献   

2.
Relationships between the clay mineralogy and the primary mineral association were studied on seventeen Andosol samples (<3,000 years old) collected from Aomori, Hokkaido, and Iwate. Opaline silica, allophane, and imogolite were predominant in the soils derived from volcanic ashes which contained practically no quartz, while opaline silica, crystalline layer silicates, alumina-rich gel-like materials, and allophanelike constituents were abundant in the soils which contained abundant quartz. There was no positive indication of the presence of allophane in any quartz andesitic Andosols. High contents of finely comminuted amphibole and mica in the quartz andesitic volcanic ashes suggested that the crystalline layer silicates are inherited and are not formed pedochemically from amorphous materials.  相似文献   

3.
The phosphate fixation capacity at pH 4.5 and an equilibrium concentration of 250 mM phosphate was measured. The soil samples were divided into five groups according to their clay mineralogical composition. The first group soils contain opaline silica and allophanelike constituents, and some unidentified minerals, the second opaline silica and crystalline layer .i1icates, the third opaline silica and crystalline layer silicates with additional allophanelike constituents or aluminarich gel-like materials, the fourth allophanelike constituents, allophane and imogolite and the fifth crystalline layer silicates, allophanelike constituents and alumina-rich gel-like materials, plus some halloysite-like minerals, respectively. The first group soils had phosphate fixation capacities of 3,000 to 8,000, the second group soils 1,000 to 3,000, the third group loib 2,000 to 13,000, the fourth group soils 8,000 to 15,000 and the fifth group soil. 5,000 to 12,000 mg P2O5/100 g oven-dry soil, respectively. The fourth group soils in which allophane and imogolite predominated showed the highest phosphate fixation capacity.

The fractions which dissolved from almost all soil samples by treatments with 6% H2O2 Na2S2O4-NaHCO2-Na citrate and 2% Na2CO3 were estimated to have very high phosphate fixation capacities (8,000 to 19,000 mg P2O5/100 g dry-matter), and there was not much difference among the soil samples examined. Iron and aluminum combined with humus, allophanelike constituents, alumina-rich gel-like materials and halloysite-like minerals in addition to allophane and imogolite contribute to the phosphate fixation of Ando soils.  相似文献   

4.

Background

Glyphosate (GLP) is a widely used herbicide with possible adverse effects on human health and the environment. In soils, GLP strongly adsorbs on clay-sized minerals, depending on pH, the amount of organic carbon, as well as the contents and properties of Al and Fe oxyhydroxides and clay minerals. Many clay-sized minerals have already been investigated regarding GLP adsorption behavior, but information on minerals commonly found in volcanic soils is still lacking.

Aim

The aim of this study was to investigate for the first time the pH-dependent adsorption of GLP on allophane and halloysite, typical minerals found in volcanic soils.

Methods

GLP adsorption was studied in batch experiments at three pH values (5, 6, and 7). Synthetic allophanes with two different initial Al:Si ratios (1.4 and 1.8) and a halloysite were used as adsorbents.

Results

The adsorption capacity (AC) increased with rising Al:Si ratio and decreasing pH. The AC of allophane was significantly higher than that of halloysite. GLP adsorption on allophane was larger than that reported for other clay minerals and Al and Fe oxyhydroxides, especially at low pH. The AC of halloysite was higher than reported for most other clay minerals.

Conclusion

Different mineral formation pathways in volcanic soils, notably the formation of halloysite versus allophanes, strongly affect the soils’ retention capacity for GLP. The high AC of allophanes may induce the low mobility of GLP in allophane-containing soils. Long-term use of GLP may accumulate the herbicide in these soils with potential effects on biodiversity and ecosystem services.  相似文献   

5.
Abstract

The extractant Mehlich‐1 is routinely used in Brazil for determination of soil nutrients, whereas Mehlich‐3 has been suggested as a promising extractor for soil fertility evaluation. Both were used for extraction of molybdenum (Mo) in Brazilian soils with Mo dosage by the KI+H2O2 method. The Langmuir and Freundlich isotherms were used to study soil Mo adsorption. Mehlich‐1 extracted more Mo than Mehlich‐3 in soils with high contents of organic matter, clay, and iron (Fe) oxides. Mehlich‐3 and Mehlich‐1 extractions correlated positively and significantly with amorphous Fe oxides, crystalline Fe oxides, and organic matter. Molybdenum recovering rates correlated to crystalline Fe oxides and clay contents but not to organic matter, pH, and Mo adsorption capacity. Amorphous and crystalline Fe oxides, clay, and organic matter were responsible for most of the Mo adsorption. The Langmuir isotherm described better the Mo adsorption to soil amorphous Fe oxides and organic matter than the Freundlich isotherm.  相似文献   

6.
The clay mineralogical composition of soils on volcanic ashes from Mashū and Kamuinupuri-dake volcanoes, Hokkaido, which are rich in cristobalite, was determined using petrological, X-ray diffraction, differential thermal, and selective dissolution and differential infrared spectroscopic methods.

The cristobalite occurred in abundance in every size of fraction from coarse sand to clay and every soli from approximately 1,700 to 8,400 years old, and was concluded to be of igneous origin. The major clay minerals were allophanelike constituents and allophane with some layer silicates as the minor clay mineral, being similar to those of andesitic ash soils and different from those of volcanic ash soils containing abundant quartz. The quartz of volcanic ashes was presumed to bederived from the groundmass-equivalent portion of the ashes which had been formed from magma at a low temperature.  相似文献   

7.
Towada Ando soils consisted of five soils—Towada-a (1,000 years old), Towada-b (2,000 years old), Chuseri (4,000 years old), Nanbu (8,600 years old), and Ninokura soils (10,000 years Amorphous clay materials of these soils taken at different localities were studied by the combined use of selective dissolution and differential infrared spectroscopy, X-ray analysis, electron microscopy, etc.

The main clay minerals of Towada-a soils, present-day soils, were montmorillonite-vermic-ulite chloritic intergrades and opaline silica, or these minerals and allophane in the humus horizons, and allophane in the non-humus ones. Towada-b soils overlain by the Towada-a soils showed the clay mineralogical constituents similar to those of Towada-a soils. However, allophane was one of the main clay minerals in all the humus horizons as well as non-humus ones. The main clay minerals of Chuseri soils were allophane and layer silicates consisting chiefly of chloritic intergrades and chlorite in the humus horizons, and allophane in the non-humus ones. Opaline silica was present in minor amounts in the humus horizons of Chuseri soils, but nearly absent in Nanbu and Ninokura soils.

There were remarkable differences in the clay mineralogical composition of Nanbu and Ninokura soils with differences of their environmental conditions. Allophane and imogolite Were dominant in the clay fractions of both humus and non-humus horizons of very shallowly buried Nanbu soil which was subjected to the strong leaching process. Allophane was the main clay mineral of deeply buried Nanbu and Ninokura soils which showed the absence of notable accumulation of bases and silica. On the contrary, halloysite with a small amount of siliceous amorphous material appeared in very deeply buried Nanbu and Ninokura soils where bases and silica were distinctly accumulated. The amounts of halloysite in the clay fractions were larger in the humus horizons than non-humus ones, and in Ninokura soil than Nanbu soil.

Soil age, soil organic matter, and depositional overburden of tephras were observed to be conspicuous among various factors relating to the weathering of amorphous clay materials in Towada Ando soils.  相似文献   

8.
The retention of dissolved organic matter in soils is mainly attributed to interactions with the clay fraction. Yet, it is unclear to which extent certain clay‐sized soil constituents contribute to the sorption of dissolved organic matter. In order to identify the mineral constituents controlling the sorption of dissolved organic matter, we carried out experiments on bulk samples and differently pretreated clay‐size separates (untreated, organic matter oxidation with H2O2, and organic matter oxidation with H2O2 + extraction of Al and Fe oxides) from subsoil horizons of four Inceptisols and one Alfisol. The untreated clay separates of the subsoils sorbed 85 to 95% of the dissolved organic matter the whole soil sorbed. The sorption of the clay fraction increased when indigenous organic matter was oxidized by H2O2. Subsequent extraction of Al and Fe oxides/hydroxides caused a sharp decrease of the sorption of dissolved organic matter. This indicated that these oxides/hydroxides in the clay fraction were the main sorbents of dissolved organic matter of the investigated soils. Moreover, the coverage of these sorbents with organic matter reduced the amount of binding sites available for further sorption. The non‐expandable layer silicates, which dominated the investigated clay fractions, exhibited a weak sorption of dissolved organic matter. Whole soils and untreated clay fractions favored the sorption of ”︁hydrophobic” dissolved organic matter. The removal of oxides/hydroxides reduced the sorption of the lignin‐derived ”︁hydrophobic” dissolved organic matter onto the remaining layer silicates stronger than that of ”︁hydrophilic” dissolved organic matter.  相似文献   

9.
三种铁氧化物的磷吸附解吸特性以及与磷吸附饱和度的关系   总被引:17,自引:0,他引:17  
采用三种人工合成铁氧化物(针铁矿、赤铁矿和水铁矿)比较了结晶态和无定形铁氧化物对磷的吸附—解吸特性以及与磷吸附饱和度的关系。结果表明,三种铁氧化物的磷吸附特性均可用Langumir方程来描述,相关系数均大于0.9,达到极显著水平。从磷最大吸附量(Qm)、吸附反应常数(K)和最大缓冲容量(MBC)三项吸附参数综合考虑,水铁矿(无定形)对磷的吸附无论在容量还是强度方面均比结晶态铁氧化物针铁矿和赤铁矿大得多。水铁矿吸附的磷比针铁矿和赤铁矿所吸附的磷更难解吸;水铁矿的大量活性表面并没有表现出增加磷释放的作用。磷吸附饱和度有望作为评价土壤或铁氧化物磷吸附—解吸的强度和容量因子的一个综合指标。  相似文献   

10.
The clay mineralogy of 22 samples of the Ap horizons of Ando soils was determined by a combination of methods. Of these samples, 15 did and 7 did not contain allophane and imogolite. Opaline silica was found in 4 samples, whereas aluminum—humus complexes, iron oxides and layer silicates were found in all samples. The presence of allophane and imogolite and the absence of opaline silica in a few Ap horizons was related to mixing of A1 horizons and subsoils by cultivation and to lower supplies of organic matter relative to the amounts of aluminum released from volcanic ash by weathering. The contents of 2:1 and 2:1:1 layer silicates and their intergrades were larger in soils in which quartz predominated in fine fractions. It was inferred that aluminum bound with humus and in allophane-like constituents, rather than aluminum in allophane and imogolite, is important in reactions with phosphate and fluoride.  相似文献   

11.
DING Chang-Pu 《土壤圈》1995,5(2):171-178
A greater part of water-soluble organic substances,accounting for 60-70% of the total,could be adsorbed by soils,which included strongly and weekly reducing substances,positively and negatively charged substances and substances containing amido.There existed a tendency of decrease in adsorption of the negatively charged organic substances by the soil from South China to North China,with expression as Coulombian adsorption.A simulatneous reduction of iron and manganese appeared with clear voltammertric behaviours upon oxidation of water-soluble organic substances,Complexation of organic ligands with ferrous iron and manganous manganee was proved by differential pulse voltammetric method,with disappearance of oxidation peaks of ferrous iron and manganous manganese at 0.00 V and 0.35 V and occurrence of Fe^2 -complex and Mn^2 -complex at 0l75 V and 1.2V respectively,whose peak potentials shifted backward.  相似文献   

12.
Biochemical properties are considered to be the best indicators available at present for assessing soil quality. However, there are still many gaps in our knowledge about how these properties are affected by abiotic factors and how these factors interact with soil management. With the aim of understanding how climate and soil management affect soil biochemical properties in grasslands soils from a temperate-humid area (Galicia, NW Spain), a total of 60 soils were analyzed for several microbial and biochemical properties. Grasslands were divided into groups according to the type of management applied (native compared with intensive) and to the climate in the area where they were sampled (Mediterranean subhumid with centroeuropean drift climate compared with Atlantic climate). We found that management had a greater influence on soil biochemical properties than climate. Altitude, which strongly influences climate in the region where the soils were analyzed, was found to be a significant factor that affected most soil biochemical properties. In conclusion, the results show that microbially-mediated processes are greatly affected by both, management and abiotic factors and that, for some properties (like net N mineralization and cellulase and casein-protease activities), abiotic factors can have an important influence on soil biochemical properties.  相似文献   

13.
Formation of sequence isomers of layer silicates By formation of sequence isomers the swelling clay minerals can be altered by procedures used in the investigation of soils. The reasons are discussed.  相似文献   

14.
The nature of amorphous silicates, allophane,ö The name allophane is used in this paper in a dual sense; the one stands for a group of amorphous or nearly amorphous aluminum silicates associated with minor amounts of other metals, and the other in some restricted sense for amorphous silicates other than imogolite. The latter term, imogolite, is used for convenience to denote a component that shows broad x-ray diffractions at 14 (strong), 7.6 (medium) and 5.6 (weak) Å, gives an endotherm at 430°C, and appears as thread-like particles of diameter 100 to 200 Å in electronmicrographs (21). as a main clay constituent determines many of the physical and chemical properties of volcanic ash soils. Recent developments in the study of allophane together with other amorphous inorganic materials in relation to their nature and occurrence in soils have been reviewed by MITCHELL et al. (12).  相似文献   

15.
A contrasting occurrence of clay minerals was found within a soil profile which was derived from volcanic materials in the suburbs of Fukuoka-city, Northern Kyushu. The soil profile is located on an isolated terrace, and the morphological characteristics of the soil correspond exactly to Andosols, so-called Kuroboku soils or Humic Allophane soils.

The clay fraction of upper horizons of the soil consists largely of alumina-rich gel-like materials, gibbsite, and layer silicates such as chlorite and chloritevermiculite intergrades, while that of lower horizons is composed of allophane and gibbsite or halloysite. There was no positive indication of allophane in the upper horizons. Corresponding with the clay mineralogical composition, quartz is abundant in the fine sand fraction of the upper horizons, while the mineral is very scarce or none in the lower horizons, suggesting a close relation between the petrological nature of parent volcanic materials and the mineralogical composition of weathering products. The dominant clay mineral in the volcanic 1.10il might be dependent on the petrological nature of parent materials, and allophane is mostly formed from andesitic materials, and alumina-rich gel-like materials and layer silicates have come from quartz andesitic materials. Allophane would transform to gibbsite or halloysite according to weathering conditions, and aluminarich gel-like materials change to gibbsite under a well-drained condition.

The soil materials have been so greatly weathered that some horizons contain gibbsite of even more than 40 per cent or halloysite over 70 per cent. The morphology and mineralogy are quite similar to so-cailed “non-volcanic Kuroboku soils.”  相似文献   

16.
FLUORIDE ADSORPTION BY ILLINOIS SOILS   总被引:8,自引:0,他引:8  
Fourteen surface and 6 subsurface horizons of Illinois soils adsorbed significant amounts of F? with release of OH?. At low concentrations, adsorption was described by both Langmuir and Freundlich isotherms. The calculated Langmuir adsorption capacities were related to pH, clay, organic carbon, and amorphous aluminum contents. Two soils with different gross chemical properties behaved in essentially the same manner, with adsorption maxima occuring between pH 5.5 and 6.5. The similarity between adsorption at different pH values for the soils and those for bauxite, allophane and synthesized ‘soil chlorite’, and the lack of adsorption maxima between pH 5.5 and 6.5 for pure kaolinite and montmorillonite, suggest that F? adsorption in the soils is due primarily to the presence of amorphous aluminum oxyhydroxides which are common weathering products in these soils.  相似文献   

17.
Cesium and Strontium Exchange Properties of Marsh Soils The cesium and strontium exchange properties of some typical marsh soils of the estuary and lower river Weser region were described. Soil samples were taken according to the existing soil maps 1:25000 of Lower Saxony e.g. a “sea marsh soil”. a “brackish marsh soil”, and a “river marsh soil”. The exchange properties were determined by Cs/Ca and Sr/Ca exchange curves (Q/I relations) as generally used in soil potassium research. In addition to the Q/I relations the following investigations were carried out: - Cs and Sr desorption experiments (one time equilibration with Ca++ solutions) - Cs and Sr reexchange experiments (eight times equilibration with water, Ca++, Ba++, and K+ solutions) - the naturally-occuring Cs and Sr contents of the soils including amounts caused by imissions or fallout, respectively - clay mineral composition and swelling of layer silicates due to saturation with Ca++, Sr++, Cs+, and K+ ions. Q/I relations as well as desorption and reexchange experiments indicated strong cesium and low strontium fixation by the soils investigated. This was considered the reason for the stronger transfer of Sr from soil to plants as compared with Cs. Furthermore, the reexchange experiment revealed nearly complete reversibility of the Sr sorption reactions by equilibration with the divalent cations Ca++ and Ba++ and some Sr fixation after treatment with K+ solutions. However, cesium was much better reexchanged by K+ than by Ca++ and Ba++ ions. This led to the conclusion that Cs fixed in interlayer positions of clay minerals could be remobilized by potassium and ammonium fertilization. The naturally-occuring Cs contents of the soils were found to be below the detection limit of the analytical methods used. The contents of naturally-occuring exchangeable Sr, however, was in agreement with the amounts of “labile Sr” as derived from the Sr/Ca exchange curves. Concerning the cesium exchange properties a clear distinction between “sea and river marsh soils” on the one hand and “brackish marsh soils” on the other hand was established due to differences in clay mineral composition and swelling state of 1:2 layer silicates. The different cesium exchange properties of the two soil groups could also be verified by more or less pronounced hysteresis effects of sorption (Q/I relation) and desorption curves.  相似文献   

18.
许冀泉  杨德涌 《土壤学报》1964,12(3):275-285
西藏高原突起于我国西南,绝大部分地面的海拔高度在4000米以上,为世界上最高的大高原。它大致在第三纪开始形成,后来曾受第四纪冰川的深刻作用,高山顶部至今仍是冰川的活动场所[1,2]。高原为昆仑山、唐古拉山、喜马拉雅山和横断山等大山脉所盘踞。  相似文献   

19.
Contaminant adsorption properties of clays are markedly influenced by the type of clay minerals, the nature of the exchangeable ions, and the type of clay microstructure present. Clay soils, due to their high buffering capacity and low permeability, are very helpful materials as barriers in waste disposal projects. On the other hand, the different microstructures of clay soils, due to their different surface areas and the different quantity of these surfaces exposed to the water, cause different contaminant attenuation levels for clay minerals. Even though the dispersive structures of soils might cause some geotechnical problems, in geo-environmental projects they might be of use as an excellent contaminant absorbent due to the fact that their clay particles are well-exposed to the soil pore fluid. The present study investigates the role of various types and concentrations of pore fluid on the microstructure and contaminant adsorption of illite. A series of pH measurements, a turbidity experiment, an XRD analysis, batch equilibrium testing and soil adsorption evaluation were performed to achieve the aforementioned objective. Homo-ionic illite mineral was prepared and some experiments were performed on it to support the findings. The results of this study show that although the theoretical calculation of the double layer theory does not take into account the effect of different anion types on the variation of the thickness of double layer, the anion type has a major impact on the microstructure variations of clay minerals. In addition, the turbidity measurement and the monitoring of XRD peak intensity of the major basal spacings of illite are appropriate tools for evaluating its dispersivity behaviour. It is shown that the PDI treated illite has more capacity for adsorption of heavy metal contaminant than that of illite or Ca–illite. It is concluded that the observed geo-environmental behaviour is noticeably a function of changes in the microstructure of illite.  相似文献   

20.
It is considered that the study of the complex formation of soil colloids with urea and its derivatives is important not only to reveal the adsorption mechanisms of those compounds, but also to give valuable suggestions for the synthesis of organic fertilizers. Montmorine, on the other hand, is one of major clay constituents of soil colloids from arable soil in Japan, and that gives greater influence to the physical and chemical properties of the soils than other clay minerals do. The complex formation of montmorine with organic substances have been intensively studied by soil scientists, mineralogists and colloid scientists. From the data reported up to now, it is presumed that there are four different mechanisms in the complex formation of montmorine with organic substances. The first is a Van der Waals adsorption, the second the ion exchange reaction of adsorbed cations with organic molecules, the third the polar bonding of exchangeabe cations with polaar organic molecules, and the last the covalent bond of clays and organic substances. In the complex formation of montmorine with urea and its derivatives, two or more mechanisms are expected at a time, in accordance with their structural characters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号