首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Z.-Q. Liu    Y. Pei  Z.-J. Pu 《Plant Breeding》1999,118(2):119-123
Random amplified polymorphic DNA (RAPD) markers were generated from 20 wheat, Triticum aestivum lines. Fifty-four fragments generated by six primers of a 10-mer arbitrary sequence were used to study their potential power in differentiating parents with different characteristics and predicting the yield performance of hybrids produced from these parents. Experimental results showed that the 20 wheat lines were divided into four groups. Group I was characterized by more grains per spike, group II by heavy grains and group III by more spikes per unit area and short plants; group IV was similar to group III but had a much higher biomass yield and grain yield. Hybrids from parents in different groups were generally superior to most hybrids from parents in the same group. Both yield performance and heterosis of hybrids from parents between group I and group III were much better than those of other intergroup hybrids. These results suggest that, based on RAPD markers, it is possible to differentiate wheat lines with different performances and that the classification of parents from these markers is of predictive value for developing superior hybrids. However, genetic distance (GD) based on RAPD markers was not significantly correlated with hybrid performance and heterosis. It appears to be impossible to predict hybrid performance from GD itself.  相似文献   

2.
The heterosis and combining ability for plant height and its components of hybrid wheat were investigated in an incomplete diallel experiment including 5 CMS lines and 4 restorer lines. The results showed that heterosis (HS) and heterobeltiosis (HBS) occurred in plant height (PH) and length of the first internode (LFI), second internode (LSI), third internode (LTI), basal internode (LBI) and the spike (LS) of hybrids, but their values varied among crosses and characters; the HS and HBS of LBI were larger than those of other characters, the HS and HBS of LSI and LTI contributed a lot to those of PH. There were significant relationships between internode lengths and PH for specific combining ability (SCA) and general combining ability (GCA), and among lengths of the adjacent internodes for SCA and/or GCA effects. However, the relationships of LS with the lengths of internodes and PH were insignificant for GCA, SCA, HS and HBS. The SCA effects were more important than GCA effects for LFI, the reverse was true for LSI, LTI, LS and PH, and the SCA effects was nearly equal to the GCA effects for LBI. So, LFI was mainly influenced by non-additive effect of genes, while LSI, LTI, LS and PH were mainly controlled by additive gene effects, LBI was controlled equally by additive and non-additive effects of genes. The genes that control the length of specific internode not only affect PH, but also the length of the adjacent internode. The genetic system in charge of lengths of internodes and plant height is independent of that for length of spike. Thus, it is possible to develop new wheat cultivars or hybrid combinations having long spike but dwarf plant height. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
An endemic hexaploid wheat found in Tibet, China was taxonomically classified as a subspecies in common wheat, i.e. Triticum aestivum ssp. tibetanum. Seven accessions of the Tibetan wheat, 22 cultivars of common wheat and 17 lines of spelt wheat were used for RAPD analysis to study the genetic relationships of the Tibetan wheat with common wheat and spelt wheat, and to assess the genetic diversity (GD) among and within the taxa. RAPD polymorphism was found to be much higher within spelt wheat and the Tibetan wheat than within common wheat. The GD value between the Tibetan wheat and common wheat is lower than that between the Tibetan wheat and spelt wheat. The result of cluster analysis showed that the 46 genotypes were distinctly classified into two groups. Group 1 included all European spelt wheat lines, while group 2 includes all Chinese common wheat and the Tibetan wheat accessions. However, the Tibetan wheat was substantially differentiated from Chinese common wheat at a lower hierarchy. Our results support an earlier classification of the Tibetan wheat as a subspecies in common wheat. European spelt wheat and the Tibetan wheat showed much higher genetic diversity than Chinese common wheat, which could be used to diversify the genetic basis for common wheat breeding. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Variable results have been obtained in different crop species using geneticsimilarity (GS) estimates based on molecular markers and coefficient ofparentage (COP) to predict heterosis.This study was designed: i) to assess the level of GS among 40 breadwheat (Triticum aestivum L.) cultivars selected in Central and SouthEurope; ii) to compare GS with COP; iii) to correlate the estimates ofparental diversity with the heterotic effects detected on 149 F1hybrids obtained by crossing the 40 cultivars according to three matingdesigns.The parental cultivars and the F1 hybrids were grown in severallocations at normal seed density. Significant heterotic effects were detectedfor grain yield and other traits including quality attributes. The parentalcultivars were assayed for DNA polymorphisms using two classes ofmarkers: 338 RFLP and 200 AFLP® bands were scored. GS estimates werecomputed considering each molecular marker set separately (GSRFLP,GSAFLP) and together (GSTOT). Ample differentiation amongthe parental cultivars was detected with the two marker sets. Although theaverage GSTOT (0.43) was higher than COP (0.10), the twomeasurements were significantly correlated (r = 0.36, p < 0.01).Correlations between the different estimates of genetic diversity andF1 performance or mid parent heterosis for grain yield and otherrelated traits were in general low although statistically significant.A more detailed analysis was conducted on 28 F1 hybridsproduced in a half diallel cross of eight parental cultivars characterized byhigh heterotic effects for grain yield. The GS estimates based on RFLP,AFLP® markers and also on RAPD were partitioned into general andspecific components. Correlations with general and specific combiningability effects for the measured traits were in several cases statisticallysignificant but too low to be predictive and therefore exploitable in practicalbreeding.  相似文献   

5.
S. H. Tams    E. Bauer    G. Oettler    A. E. Melchinger    C.-C. Schön 《Plant Breeding》2006,125(4):331-336
Significant relative midparent heterosis (MPH%) for grain yield in triticale (×Triticosecale Wittm.) has generated interest in the development of hybrid cultivars. The objectives of this study were to (i) examine the association between parental genetic distance (GD) and specific combining ability (SCA), (ii) investigate the existence of genetically distant heterotic groups in elite germplasm, and (iii) draw conclusions for future hybrid breeding in winter triticale. Genetic distance between 61 lines was estimated, based on 93 polymorphic simple sequence repeat (SSR) marker loci and 10 AFLP (amplified fragment length polymorphism) primer‐enzyme combinations (PEC). Agronomic data of 206 F1 crosses and their 61 parental lines grown in six German environments were published recently in a companion study. Correlations were made between SCA for grain yield, number of spikes/m2, 1000‐kernel weight and number of kernels per spike with GD estimates of the 56 female and five male parents (testers). Principal co‐ordinate analyses (PCoA) based on SSR data revealed no distinct subgroups in the germplasm. Correlations between GD and SCA were low for all traits (|r| ≤ 0.31), which hampers the prediction of SCA from molecular data. A multi‐stage procedure is recommended for future hybrid breeding in triticale by applying a pragmatic approach for the grouping of germplasm following the early history of hybrid breeding of maize.  相似文献   

6.
Development of hybrids is considered to be a promising avenue to enhance the yield potential of crops. We investigated (i) the amount of heterosis observed in hybrid progeny, (ii) relative importance of general (GCA) versus specific (SCA) combining ability, and (iii) the relationship between heterosis and genetic distance measures in four agronomic traits of spring bread wheat. Eight male and 14 female lines, as well as 112 hybrids produced in a factorial design were grown in replicated trials at two environments in Mexico. Principal coordinate analysis based on Rogers' distance (RD) estimates calculated from 113 SSRs revealed three different groups of parents. Mid-parent heterosis (MPH) for grain yield averaged 0.02 t ha−1 (0.5%) and varied from −15.33% to 14.13%. MPH and hybrid performance (F1P) were higher for intra-group hybrids than for inter-group hybrids, with low values observed in inter-group crosses involving two non-adapted Chinese parents. Combined analyses of variance revealed significant differences among parents and among hybrids. Estimates of GCA variances were more important than SCA variances for all traits. Tight correlations of GCA with line per se performance, and mid-parent value with F1P were observed for all traits. In contrast, correlations of MPH with RD and coefficient of parentage were not significant. It was concluded that the level of heterosis in spring wheat was too low to warrant a commercial exploitation in hybrids. SSRs proved to be a powerful tool for the identification of divergent groups in advanced wheat breeding materials.  相似文献   

7.
Tropical maize inbred lines, eight derived from a Thai synthetic population (BR‐105) and 10 from a Brazilian composite population (BR‐106), were assayed for restriction fragment length polymorphisms with 185 clone‐enzyme combinations. The aim of this study was to investigate genetic distances among tropical maize material and their relationship to heterotic group allocation and hybrid performance. Genetic distances (GDs) were on average greater for BR‐105×BR‐106 lines (0.77) than for BR‐106×BR‐106 (0.71) and for BR‐105×BR‐105 (0.69) lines. Cluster analysis resulted in a clear separation of BR‐105 and BR‐106 populations and was according to pedigree information. Correlations of parental GDs with single crosses and their heterosis for grain yield were high for line crosses from the same heterotic group and low for line combinations from different heterotic groups. Our results suggest that RFLP‐based GDs are efficient and reliable to assess and allocate genotypes from tropical maize populations into heterotic groups. However, RFLP‐based GDs are not suitable for predicting the performance of line crosses from genetically different heterotic groups.  相似文献   

8.
Eight-parental diallel cross and SSR molecular markers were used to determine the combining ability of common wheat lines grown under well-watered (WW) and water-stress (WS) conditions. Analysis of variance of yield indicated highly significant differences among the progenies. General combining ability (GCA) determined most of the differences among the crosses. Specific combing ability (SCA) was also significant but less important. The estimates of GCA effects indicated that one line was the best general combiner for grain yield under drought. Neis genetic distance, measured using SSR markers, differed from 0.20 to 0.48 among the eight genotypes. The correlation of Neis genetic distance with SCA for grain yield and heterosis ranged from 0.4 to 0.5. These results indicate that the level of SCA and heterosis depends on the level of genetic diversity between the wheat genotypes examined. Microsatellite markers were effective in predicting the mean and the variance of SCA in various cultivars combinations. However, selection of crosses solely on microsatellite data would miss superior combinations.  相似文献   

9.
10.
Marker‐assisted selection may be useful for combining specific vernalization response (Vrn) alleles into a single wheat genotype for yield enhancement; however, DNA markers are only available for two of the three genes identified to date. The objectives of this study were to investigate reciprocal effects on days to heading using F2 populations generated by cross‐hybridizing near‐isogenic lines (NILs) carrying spring (Vrn‐B1; TDB) and winter (vrn‐B1; TDC) alleles, and to identify markers linked to Vrn‐B1 through genetic linkage analysis. Heading data were recorded for 91 and 89 progeny from reciprocal mapping populations TDB/TDC and TDC/TDB, respectively, and significant (P < 0.0001) reciprocal and dominance effects were detected. Among 207 amplified fragment length polymorphisms primer pairs and seven wheat microsatellite markers screened, two and one, respectively, were linked distally to Vrn‐B1 on wheat chromosome 5BL. Microsatellite Xgwm408 was most closely linked to Vrn‐B1 at 3.9 and 1.1 cM in the TDB/TDC and TDC/TDB map, respectively. Reciprocal differences in recombination distances emphasize the importance of female parent choice when generating mapping populations. Molecular markers are now available for three Vrn loci in wheat.  相似文献   

11.
陆地棉配合力与杂种优势、遗传距离的相关性分析   总被引:6,自引:2,他引:4  
 用10个陆地棉亲本进行不完全双列杂交,共配置了45个组合,计算亲本的一般配合力(GCA)、特殊配合力(SCA)、杂种优势,并结合SSR标记研究了陆地棉亲本配合力与杂种优势、遗传距离之间的相关关系。配合力分析发现,10个亲本的一般配合力和特殊配合力存在显著或极显著差异。分析亲本配合力、杂种优势和遗传距离的相关性发现,子棉产量、皮棉产量、衣分的一般配合力和杂种优势呈显著或极显著相关,纤维长度、比强度、麦克隆值、株高、果枝数、单株铃数、铃重、子棉产量、皮棉产量、衣分的特殊配合力和杂种优势均呈极显著正相关,而与遗传距离相关均不显著。单株铃数、铃重、子棉产量、皮棉产量、衣分的杂种优势与遗传距离均为正向显著或极显著相关。在育种实践中这些显著或极显著相关的性状可能具有较高的改良潜力。  相似文献   

12.
The objective of this study was to assess genetic diversity within old and modern common spring wheat (Triticum aestivumL.) varieties cultivated in Siberia and to find out whether old Siberian varieties could be a potential source for genetic diversity in modern wheat breeding in Siberia. A set of 54 varieties was analysed using 22 wheat microsatellite markers (WMS), determining 23 loci located on 19 different chromosomes. In total, 151 alleles were detected with an average of 6.6, ranging from three to 11 alleles per locus. The average genetic diversity value (polymorphic information content) was 0.70. WMS located in the B genome produced more alleles per locus (7.6) compared with WMS located in the A (6.0) and D (6.0) genomes. Genetic similarity values between varieties ranged from 0.19 to 0.96 and were used to produce a dendrogram. With a few exceptions the varieties studied were clustered in two nearly equal groups consisting of predominantly old (released before 1960) and modern (released in 1960‐90s) varieties, respectively. Genetic diversity values within these two groups were similar with 0.60 and 0.58, respectively. The numbers of group‐specific alleles were 34 and 29, respectively. A significant variation in frequencies of 79 shared alleles was observed. The results obtained by using genomic microsatellite sequences demonstrated that breeding has not resulted in a decrease in the genetic diversity in Siberian spring wheat. However, significant quantitative and qualitative changes in allelic frequencies of different loci were detected. It may be suggested, that old Siberian common spring wheat varieties are a potential basis for genetic diversity in modern wheat breeding in Siberia.  相似文献   

13.
G.J. Shieh  F.S. Thseng 《Euphytica》2002,124(3):307-313
To evaluate the genetic diversity of 13 maize inbred lines, and to determine the correlation between genetic distance and single cross hybrid performance, we employed the randomly amplified polymorphic DNA(RAPD)- a PCR-based technique. Six of these lines came from the Taichung population, and others derived from seven different sites. Forty different primers were used to give a total of 646 reproducible amplification products, 547 (84.7%) of them being polymorphic. Genetic divergence was determined using Jaccard's similarity coefficient, and a final dendrogram was constructed by UPGMA (unweighted pair-group method with arithmetical averages) cluster analysis in the CLUSTER procedure of the SAS system. The RAPD analysis was a useful tool in determining the extent of genetic diversity among Tainan-white maize inbred lines in the present case. Cluster analysis showed that the 13 inbred lines could be classified into distinct heterotic groups. There was no significant linear regression of grain dry weight heterosis value and mean performance of hybrids on genetic distance. And their coefficients of determination(R2) are small, so that predictive value is limited. The present results showed that the Jaccard's similarity coefficients based on RAPD data cannot be used to precisely predict the F1 hybrids yield performance and heterosis value. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
L. Kant    V. P. Mani  H. S. Gupta 《Plant Breeding》2001,120(3):255-258
Introgression of the winter gene pool into spring wheat is being considered as one of the strategies to break through the yield plateau. However, little information is available on the combining ability of these two important but distinct groups of wheats in Indian conditions. Therefore, the present study was undertaken to determine the combining ability and gene action of yield and yield attributes in winter × spring wheat crosses. Seventy F1 progenies developed by 14 winter and five spring wheat lines using a line × tester design were evaluated, along with their parents, for yield and yield attributes in a randomized complete block design under field conditions. The mean squares for all the characters studied showed highly significant differences. The mean squares due to female × male interactions were significant for all the characters studied except for grains per ear and grain weight per ear. Additive genetic effects were found to play a key role in controlling the expression of days to heading, plant height and spikelets per ear.‘MV 19’ and ‘Stepniak’/‘Karvuna’ among winter and ‘PBW 65’ among spring wheats were good general combiners for most of the yield attributes studied. The estimates for specific combining ability effects suggested that, although general combining ability (GCA) effects of most winter wheats are either average or poor, their combination can give desirable genotypes with spring wheat parents possessing a high GCA.  相似文献   

15.
A. Riaz    G. Li    Z. Quresh    M. S. Swati  C. F. Quiros 《Plant Breeding》2001,120(5):411-415
Significant heterosis for seed yield in oilseed rape has created interest in the development of hybrid cultivars. The DNA‐based marker protocol, sequence‐related amplified polymorphism (SRAP) was used to determine genetic diversity among oilseed rape maintainer and restorer lines. This measure was used in an attempt to establish an association between genetic distance and heterosis in hybrids for various agronomic traits. A total of 118 polymorphic loci were generated by 18 SRAP primer combinations. Based on the polymorphism generated by the markers, calculated similarity index values ranged from 0.46 to 0.97. Cluster analysis grouped 10 maintainer and 12 restorer lines into three groups, with the exception of two maintainer lines, PM5 and PM9, which fell outside these groups. The grouping of the lines was largely in agreement with the available pedigree data on their origin and agronomic performance. Analysis of variance among inbred lines and their resulting F1 hybrids over two locations revealed significant differences for plant height, days to maturity and seed yield, but not for oil content. Substantial mid‐parent heterosis was observed only for seed yield, and ranged from 26% to 169%. All hybrids surpassed their respective inbred lines for this trait, except for a single cross combination of related lines. In general, crosses of lines located in different clusters yielded more than those from the same clusters. Regression analysis revealed a statistically significant relationship between the genetic distance of the parents and seed yield in their hybrid, and their derived mid‐parent and high‐parent heterosis. The correlation coefficient between genetic distance and yield (0.64) indicated a moderately strong relationship, so it is possible that some of the SRAP markers might be linked to quantitative trait loci for seed yield.  相似文献   

16.
Crosses were made between seven hexaploid wheat genotypes. Twenty-one F1 hybrids and their parents were grown in a greenhouse with 16 h day/8 h night at 25°C and 15°C, respectively. The experiment was a complete randomized block design with three replications. Each replication consisted of one pot with three plants. Anther culture was performed in two different induction media (CHB and W14) and androgenetic traits were studied. Statistical analysis was carried out separately for each induction medium. Genetic variation was highly significant for androgenetic traits and the best parent (IBPT 19) produced 68 embryos and 9.3 green plants per 100 anthers in CHB medium. Genetic components were affected by induction media and some components were significant in one medium and non significant in the other. General combining ability (GCA) was significant for all androgenetic traits, except for albino plant regeneration in both media and total plant regeneration in CHB medium, whereas specific combining ability (SCA) was not significant for the traits studied. Narrow sense heritability was high for embryo induction frequency and green and total plant regeneration. All our results indicate that androgenetic parameters can be improved in hexaploid wheat by genetic means.  相似文献   

17.
Estimates of genetic diversity can be based on different types of data. The aim of this research were to study genetic diversity among Croatian wheat cultivars by random amplified polymorphic DNA (RAPD) markers, morphological traits and pedigree records; to analyse differences between wheat cultivars from two breeding centres; and to evaluate usability of RAPD markers for estimation of genetic diversity among wheat cultivars in comparison with morphological traits and pedigree record data. Studies were conducted on 14 wheat cultivars and breeding lines from two breeding centres in Croatia. For the RAPD analysis 36 primers were screened and the 14 most polymorphic ones yielded 341 polymorphic bands. Twelve morphological traits were used for morphological analysis. Pedigrees were composed of seven generations of ancestors. RAPD markers showed a high level of polymorphism among the cultivars examined and the breeding lines. No significant correlations were observed among the methods tested.  相似文献   

18.
B. A. Kiula    N. G. Lyimo    A.-M. Botha 《Plant Breeding》2008,127(2):140-144
Identifying the best inbred combinations for the development of commercial hybrid maize varieties remains the main challenge to maize breeders. The aim of this work was to study associations between the genetic distance (GD) of 21 inbreds and the corresponding F1 phenotypic data. Furthermore, the impact of grouping lines into genetically similar clusters was investigated. The 21 inbred lines were fingerprinted using amplified fragment length polymorphism markers. Parents and 210 F1 progeny were evaluated in the field. Joint data analysis mostly revealed a tighter association between GD and the F1 performance or mid parent heterosis in the intergroup than in the intragroup crosses. Despite these correlations, intergoup crosses should always be field‐tested before their release. Crosses showing low GD values should be discarded to avoid field‐testing costs. Better F1 hybrid performance predictions can be achieved by integrating molecular and F1 phenotypic data.  相似文献   

19.
Aegilops variabilis no. 1 is the only known source of resistance to the root‐knot nematode Meloidogyne naasi in wheat. Previous studies showed that a dominant gene, Rkn‐mn1, was transferred to a wheat translocation line from the donor Ae. variabilis. Random amplified polymorphic DNA (RAPD) analysis was performed on the wheat cultivar ‘Lutin’, on Ae. variabilis, on a resistant disomic addition line and on a resistant translocation line. For genetic and molecular studies, 114‐117 BC3F2 plants and F3‐derived families were tested. Five DNA and one isozyme marker were linked to Rkn‐mn1. Three RAPD markers flanking the Rkn‐mn1 locus were mapped at 0 cM (OpY16‐1065), 0.8 cM (OpB12‐1320) and 1.7 cM (OpN20‐1235), respectively. Since the Rkn‐mn1 gene remained effective, its introduction into different wheat cultivars by marker‐assisted selection is suggested.  相似文献   

20.
X. Q. Zhang    X. D. Wang    P. D. Jiang    S. J. Hua    H. P. Zhang    Y. Dutt 《Plant Breeding》2007,126(4):385-391
The present study was conducted to investigate the relationship between parental molecular marker diversity and hybrid performance in both intra‐ and interspecific hybrids of cotton to evaluate the feasibility of predicting hybrid performance using molecular markers. Three cytoplasmic male sterile (CMS) lines were crossed with 10 restorer lines to produce 22 F1 hybrids during 2003. Of 22 F1s, 14 hybrids were intraspecific (Gossypium hirsutum × G. hirsutum) and eight interspecific (G. hirsutum × G. barbadense). These 22 F1 hybrids and their parents were evaluated for yield and fibre quality traits at Zhejiang University, Hangzhou, China during 2004 and 2005. Genetic distances (GD) among the parents were calculated from 56 random‐amplified polymorphic DNAs (RAPD) and 66 simple sequence repeat (SSR) marker data, and their correlation with hybrid performance and heterosis were analysed. The parents could be discriminated into G. hirsutum and G. barbadense clusters by cluster analysis based on both RAPD and SSR markers data. The correlation (r = 0.503, P ≤ 0.05) was calculated between GDrapd (GD based on RAPD markers) and GDssr (GD based on SSR markers). Correlation of GD with hybrid performance and heterosis differed considerably between intra‐ and interspecific hybrids. The correlation between GD and hybrid performance was non‐significant for most of traits within the hybrids of G. hirsutum species. However, it was significantly and positively correlated for fibre length, fibre strength and elongation in interspecific hybrids. The relationship between GD and heterosis was observed to be positively significant for boll weight within hybrids of G. hirsutum with significant and negative correlations for fibre length and elongation. In conclusion, the power of predicting hybrid performance using molecular markers in cotton is low. But, the relationship between SSR marker heterozygosity and hybrid performance can be used to predict fibre length during interspecific hybrid cotton breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号